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Abstract In this paper, we study the scalar field condensa-
tion around the hyperbolic black hole solutions in the Ein-
stein and Gauss–Bonnet gravities. We investigate the Rényi
entropy and inequalities governing on it under this phase tran-
sition. Our numerical computations show that for the positive
values of the Gauss–Bonnet coupling and below a critical
temperature one of these inequalities is violated. This puts
more restrictions on the allowed values of the Gauss–Bonnet
coupling.

1 Introduction

The study of Entanglement Entropy (EE) has been a signifi-
cant subject in recent years. As an evidence to its importance,
one could point to its many applications in quantum informa-
tion theory and quantum computation [1], condensed matter
physics [2–5], quantum gravity and specially in holography
[6–15].

Generally speaking, when a quantum system is in a pure
state, EE is a good measure for the degree of entanglement
between any two subsystems. If the composite system is in
a mixed state, other metrics such as the mutual information
have to be used. To define EE more carefully, consider a
system in a pure quantum state, composed of two subsystems
A and its complement Ac, whose state can be described by a
density matrix ρ. The entangling surface ∂A is defined as a
boundary surface of the spatial region A in the quantum field
theory (QFT) under consideration.

By tracing over the degrees of freedom in Ac, one can
construct a reduced density matrix ρA = trAcρ. The EE
between these two subsystems is measured by the Von Neu-
mann entropy of the reduced density matrix i.e. SEE =
−trρA log ρA. The computation of log ρA is a hard task even
in the simplest cases of two dimensional QFTs. Instead, one
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can compute trρn
A and use it for another measure, known as

Entanglement Rényi Entropy (ERE) [16,17]

Sn = 1

(1 − n)
log trρn

A. (1.1)

Taking the limit n → 1 one yields the entanglement entropy,
i.e. SEE = limn→1 Sn .

ERE contains more useful information about the spectrum
of ρA than EE. Indeed, one can recover the whole spectrum
of the reduced density matrix ρA only by knowing the Rényi
entropies for all integers n > 0 [18]. For example, S∞ =
− log λmax , where λmax is the largest eigenvalue of ρA or
S0 = log D, in which, D is the number of non-vanishing
eigenvalues of ρA. In particular, S2 = − log trρ2

A = − ln P ,
where P is the probability of finding two systems in the same
state, after the measurement in a diagonalized basis. These
special cases are called the min-entropy, the Hartley or the
max-entropy and the collision entropy respectively.

As we mentioned, the computation of trρn
A is much easier

than the computation of tr log ρA. In the context of Conformal
Field Theories (CFT)s, a standard way to calculate trρn

A (and
consequently SEE ) is the “Replica Trick”. In this method,
after a Wick rotation from the flat Minkowski metric where
the CFT lives to a metric with Euclidean signature, the desired
trρn

A operator is given in terms of the path integral on an n-
sheeted Riemann surface

trρn
A = Zn

(Z)n
, (1.2)

where Z is the partition function of the original space-time
and Zn is the partition function on a singular space, which is
constructed by gluing n copies of the original space along the
boundary ∂A. At the end, trρn

A essentially becomes product
of the two-point correlation functions of the twisted vertex
operators [2,19] which is very hard to calculate, except in
very specific cases, for example see [20–22] or [8] and refer-
ences therein. In any case, after the computation of trρn

A, we
can substitute it in the following equation to compute SEE ,
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SEE = − ∂

∂n
log trρn

A

∣
∣
∣
n=1

. (1.3)

In the context of holography, EE first appeared in [6] where
the authors, Ryu and Takayanagi (RT), gave a simple yet inge-
nious way for the computation of the SEE . In their method,
the EE between the two spatial regions A and its comple-
ment in the d-dimensional boundary CFT, is found to be
proportional to the extremum of the surface area of the bulk
hypersurfaces �, which are homologous to the region A, i.e.
∂A = ∂�.

SEE (A) = Ext

[A(�)

4GN

]

. (1.4)

The resemblance between the formula above and the
Bekenstein–Hawking formula for black hole (BH) thermal
entropy SBH = A

4G , is extraordinary. However, the surface
� does not need to coincide with any BH event horizon in
general. This striking similarity prompted physicists to look
for a derivation of the RT conjecture, for example, see [23].

In paper [24], authors give a novel method for the compu-
tation of the entanglement entropy of a Spherical Entangling
Surfaces (SES) in a CFT, on a flat Minkowski space-time. In
what follows we present a quick review of their approach.

First, let us consider a quantum system in a d-dimensional
flat Minkowski space-time R1,d−1, which is divided into two
subsystems, A and its complement Ac. The subsystem A
consists of a spatial region inside a ball of radius R, whose
boundary (at time t = 0) is denoted by ∂A. The subsystem
A can be described by a reduced density matrix ρA = trAcρ,
where ρ is the density matrix of the vacuum state of the whole
system. The Cauchy development D(A), by definition is the
set of all space-time events p ∈ R1,d−1, through which,
every non-space-like curve intersects with the region A at
least once. After a Wick rotation the metric is

ds2
Rd = dt2

E + dr2 + r2d�2
d−2, (1.5)

where tE is the Euclidean time, r is the radial coordinate on
the constant time slice (tE = 0) and d�2

d−2 is the metric
on a unit (d − 2)-sphere. Notice that, SES in this metric
is the region (tE , r) = (0, R). After a series of conformal
transformations (first z = r + i tE , second exp(−w) = R−z

R+z

and finally w = u + iτE
R ) the metric can be written as

ds2
S1×Hd−1 = �2ds2

Rd = dτ 2
E + R2(du2 + sinh2 ud�2

d−2)

= dτ 2
E + R2d�2

d−1, (1.6)

where d�2
d−1 is the metric on a unit (d − 1)-dimensional

hyperbolic plane and � is a conformal factor � = 2R2

|R2−z2| =
|1 + cosh w|.

In short, D(A) is conformally mapped to S1 × Hd−1. In
other words after the inverse Wick rotation, we will see that

the causal development of the ball enclosed by the entangling
surface (SES) is conformally mapped into a hyperbolic cylin-
der R×Hd−1, or equivalently the minimal surface of the RT
conjecture gets mapped to the horizon of the topological BH.
This mapping also translates the vacuum of the CFT in the
original Minkowski space-time into a thermal bath with the
temperature T0 = 1

2πR in the hyperbolic cylinder.
Note that, the curvature scale on the hyperbolic spatial

slice, is equal to the radius R of the original SES. Just like any
other operator in a CFT, the density matrix in the new space-
time R1 × Hd−1, can be achieved by a unitarity transforma-
tion of the density matrix in the original geometry R1,d−1

i.e. ρtherm = UρAU−1. More explicitly, we may write the
density matrix on D(A) as

ρA = U−1 e
−H/T0

Z(T0)
U, Z(T0) = tr(e−H/T0). (1.7)

By considering the n copies of ρA and after taking its trace

tr [ρn
A] = e−nH/T0

Z(T0)n
= Z(T0/n)

Z(T0)n
. (1.8)

Now by using the definition of free energy, F(T ) =
−T log(Z(T )), we can write the Rényi entropy as follow

Sn = 1

1 − n
log

(
Z(T0/n)

Z(T0)n

)

= n

(1 − n)T0

{

F(T0) − F

(
T0

n

)}

. (1.9)

Finally by utilizing the thermodynamical identity S =
−∂F/∂T , one can rewrite the Rényi entropy of the above
equation to

Sn = n

(n − 1)T0

∫ T0

T0/n
Stherm(T )dT . (1.10)

Here, Sn is the desired entanglement Rényi entropy between
the two subsystems A and its complement in the vacuum
of the CFT, and Stherm(T ) denotes the thermal entropy of
the CFT. Upon taking the n → 1 limit of the above for-
mula, SEE = limn→1 Sn = Stherm(T0), which means that
the conformal transformations and the corresponding uni-
tarity transformation of the density matrix discussed above,
relate the EE of the SES to the thermal entropy of the same
CFT at a temperature T0 in R1 × Hd−1 space.

This insight might not be particularly useful in the com-
putation of the EE for a generic CFT unless using the
AdS/CFT correspondence. We can relate the thermal bath
in the boundary to a topological black hole in the AdS bulk
space whose event horizon has a hyperbolic cross-section
[25–30]. According to the AdS/CFT dictionary

Stherm(T )

∣
∣
∣
CFT in R1×Hd−1 geometry

= Stherm(T )

∣
∣
∣
hyperbolic BH

.

(1.11)
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The right hand side of this equation is easy to compute by
using the Wald’s formula for entropy [31,32] in any general
gravitational theory.

The authors of [33], use this method to find the Rényi
entropies of the dual CFTs by finding the thermal entropy of
black holes in the Einstein, Gauss–Bonnet (GB) and quasi-
topological gravitational theories. Moreover, the authors of
[34,35] expand the aforementioned method to compute the
ERE for the grand canonical ensembles. For these cases, one
requires to consider a U (1) charged hyperbolic black hole.
The computation of the charged Rényi entropies in [36,37]
shows that the Rényi entropy inequalities put a new restric-
tion on the allowed values of the coupling constants of the GB
gravitational theory. The Rényi entropies obey the following
inequalities [38]

∂Sn
∂n

≤ 0, (1.12a)

∂

∂n

(
n − 1

n
Sn

)

≥ 0, (1.12b)

∂

∂n
((n − 1)Sn) ≥ 0, (1.12c)

∂2

∂n2 ((n − 1)Sn) ≤ 0. (1.12d)

As discussed in [33], while the second and the third inequal-
ities are yielded from the positivity of the black hole thermal
entropy the first and the last inequalities are correct as long
as the black hole has a positive specific heat. For a recent
study of these inequalities see [39].

In [40] it was shown that adding a scalar field to the Ein-
stein gravitational action creates a “hairy” black hole solu-
tion below a critical temperature and this encourages one
to study the Rényi entropies of the dual CFT at this phase
transition. It was also shown that at this critical temperature
where the scalar field condenses, the second derivative of the
Rényi entropy becomes discontinuous. Similar phase tran-
sitions occur in the study of the holographic superconduc-
tors [41], where it might cause a phase transition in the dual
boundary CFT. For a review on holographic superconductors
see [42].

Inspired by the works of [37,40] we are going to add a
scalar field to the GB gravity to study the phase transition in
the presence of the new gravitational coupling. We also find
new restrictions on the allowed region of the GB coupling
constant by studying the Rényi entropy inequalities.

The organization of the paper is as follow: In Sect. 2 we
introduce the Einstein and the hairy black holes and com-
pute their physical quantities such as the temperature, energy,
and thermal entropy and also discuss the condensation of the
scalar field. We review the related holographic Rényi entropy
and its behavior under the phase transition. In Sect. 3 we add
the Gauss–Bonnet terms and investigate the effect of these
higher derivative terms to the results of Sect. 2. In the last

section, we discuss our results and the inequalities of the
HRE.

2 Phase transition and Rényi entropy

In this section we review the phase transition between Ein-
stein and hairy black holes in five dimensions which have
been already studied in [40,43]. We also look at the behavior
of the Rényi entropies under the scalar field condensation.

2.1 The Einstein black hole

We begin this section by introducing the Einstein–Hilbert
action together with a cosmological constant term in a five
dimensional space-time

I = 1

16πGN

∫

d5x
√−g

(

R + 12

L2

)

. (2.1)

To study the entanglement entropy of a spherical region with
radius R in a quantum field theory side, which is supposed to
exist as a gauge theory on R1 × Hd−1 geometry, we need to
consider a black hole in the AdS space-time with character-
istic scale of L and a hyperbolic spatial boundary. Therefore
we start from the following metric

ds2 = −N (r)2F(r)dt2 + dr2

F(r)
+ r2d�2

3 , (2.2)

where d�2
3 is the metric on a unit hyperboloid in three dimen-

sions

d�2
3 = du2 + sinh2 u (dθ2 + sin2 θdφ2). (2.3)

By inserting (2.2) into the equations of motion, we find the
following solutions for the unknown functions of the metric
[43]

F(r) = r2

L2 f (r) − 1, f (r) = 1 + r2
H L2 − r4

H

r4 ,

N (r) = N = L

R
, (2.4)

where rH is the radius of horizon. In a series of straight-
forward steps, we will compute the temperature, energy and
thermal entropy of this black hole. By knowing the metric
we may find the temperature of the black hole by using the
following definition

T = N

4π

[
d

dr
F(r)

]

r=rH

= 1

2πR
(2rH L−1 − Lr−1

H ). (2.5)

To compute the black hole energy (mass) in an asymptotically
AdS space-time, one could use the Astekhar-Das formalism
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[44]. A quick but equivalent way is to expand the g00 in the
metric [43]

g00(r) = −N 2
(
r2

L2 − 1 − m

r2 + · · ·
)

. (2.6)

For simplicity we assume that R = L (we can get rid of this
coefficient by a rescaling of time). Therefore the black-hole
energy would be

E = 3V�

16πGN
m = 3V�

16πGN
(r4

H L−2 − r2
H ), (2.7)

where V� is the regularized volume of the hyperbolic space.
Finally to compute the thermal entropy we use the Wald’s
formula for entropy [31,32]

Stherm = −2π

∫

horizon
d3x

√
h

∂L
∂Rabcd

ε̂abε̂cd . (2.8)

In this formula h is the determinant of the induced metric
on the horizon and ε̂ab is a binormal, composed from the
Killing vectors ξb and the normal vectors to the horizon ηa ,
i.e. ε̂ab = ηaξb − ηbξa . At the level of the Einstein–Hilbert
action, the Wald’s formula coincides with the Bekenstein–
Hawking area formula

Stherm = Ahorizon

4GN
= r3

H

4

V�

GN
. (2.9)

For future purposes it would be useful to introduce a dimen-
sionless parameter x ≡ rH

L , so that the temperature, energy
and thermal entropy of the black hole can be written as

T̃ = 1

2π

(

2x − 1

x

)

, Ẽ = 3

16π
x2(x2 − 1), S̃ = x3

4
,

(2.10)

where we have assumed R = L = V�L2

GN
= 1 for simplicity.

It is easy to show that the first law of thermodynamics, i.e.
d Ẽ = T̃ d S̃, is satisfied by the above values.

Now we can go one step further and find the Rényi
entropies which we have introduced in Eq. (1.10) by inte-
grating the thermal entropy

Sn = n

n − 1

∫ T0

T0
n

SthermdT = n

T0(n − 1)

∫ 1

xn
S̃(x)

dT̃

dx
dx

= 1

8

n

n − 1
(2 − x2

n (x
2
n + 1)), (2.11)

where T (x)
∣
∣
x=xn

= T0
n and T0 is related to the length scale

of the hyperbolic space, here T0 = 1
2π

. In order to draw the
behavior of the Sn versus n, we should substitute the value of

Fig. 1 The Rényi entropies computed from the hyperbolic black hole
solution

xn in Sn . It is given by the real positive root of the following
quadratic equation

1

2π

(

2xn − 1

xn

)

= 1

2πn
⇒ xn = 1

4n
(1 +

√

1 + 8n2).

(2.12)

Substitution gives

S̃n = 40n4 − 12n2 − 1 − (1 + 8n2)
√

1 + 8n2

256(n − 1)n3 . (2.13)

In the limit n → 1, S̃1 = 1
4 gives the entanglement entropy

and when n → ∞ the Rényi entropy goes to the S̃∞ → 5
32

(see Fig. 1). Moreover one can simply check that all the
inequalities in (1.12a)–(1.12d) hold for the Rényi entropy
in (2.13).

2.2 The hairy black hole

In this section we review the scalar field condensation in the
background of an AdS black hole with a hyperbolic spatial
slicing. We also study the effect of condensation (phase tran-
sition) on the behavior of the Rényi entropies. To begin, we
add a real scalar field ψ which is coupled to gravity as

I = 1

16πGN

∫

d5x
√−g

(

R + 12

L2 − μ2ψ2 − (∇ψ)2
)

.

(2.14)

For simplicity we just consider a mass and a kinetic term. To
find the desired black hole solution, we choose the following
ansatz for the metric and scalar field

ds2 = −F(r)e2χ(r)dt2 + dr2

F(r)
+ r2d�2

3 , ψ = ψ(r).

(2.15)
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The back reaction of the scalar filed on the metric will
appear through F and χ functions. The equations of motion
are

ψ ′′(r) + 1

3L2r F(r)

(

ψ ′(r)[6(2r2 − L2) + 3L2F(r)

− r2μ2L2ψ(r)2] − 3rμ2L2ψ(r)
) = 0,

F ′(r) + F(r)

(
2

r
+ r

3
ψ ′(r)2

)

+ r

3
μ2ψ(r)2

+ 2

r
− 4r

L2 = 0,

χ ′(r) + r

3
ψ ′(r)2 = 0, (2.16)

where the prime stands for differentiation with respect to the
radial coordinate r . To solve this system of coupled non-
linear differential equations numerically, we need to impose
boundary conditions on the metric and scalar field at the hori-
zon (r = rH ) and at the space-like boundary (r → ∞) as
follows:

• F(r): The definition for the location of the horizon
demands that F(rH ) = 0. For asymptotically AdS black
holes and at large distances near the infinite boundary,
F(r) must behave as r2

L2 − 1.
• ψ(r): In order to have a hairy black hole, we need a

regular scalar field at the horizon of the black hole, so
we suppose that ψ(rH ) = O(1). As is well known in
the dictionary of AdS/CFT, our gravitational bulk the-
ory must be dual to a conformal field theory that lives
at the boundary of the AdS space. This CFT contains a
scalar operator with the conformal dimension � so that
μ2L2 = �(� − 4). In order to have an asymptotically
AdS black hole, unstable against the scalar field conden-
sation, � has to be sufficiently small. We use the ben-
efits of this instability to study the phase transition due
to the scalar field condensation. The instability condition
requires that the scalar mass takes the values between the
two Breitenlohner–Freedman (BF) bounds of AdS5 and
AdS2 [40,45–47]

−4 ≤ μ2L2 ≤ −1. (2.17)

To specify the behavior of the scalar field at the AdS bound-
ary, it will be sufficient to study its equation of motion
around the AdS-Schwarzschild background, which assumes
the form of a Klein–Gordon equation. The solution to this
equation behaves asymptotically as

ψ(r) ≈ A(+)

r�+ + A(−)

r�− , (2.18)

where �± = 2 ± √

4 + μ2L2, and A(±) are the expectation
values of the conformal operators with conformal dimensions

�±, i.e. 〈O�±〉 ≡ A(±). If we assume the Dirichlet boundary
condition then we can keep the fastest falling off mode near
the boundary and ignore the other one, hence we choose,
A(−) = 0.

• χ(r): By using the third equation of (2.16) and apply-
ing the boundary conditions ψ(r) ≈ A(+)

r�+ and ψ(rH ) =
O(1), it is easy to obtain the boundary conditions for χ(r)

χ(r → ∞) = O(r−2�+) + · · · , χ(rH ) = O(1).

(2.19)

In this paper, we are going to find the numerical solutions
for equations of motion by using the shooting method. To
do this it would be easier to change the radial variable from
r to z via z = rH

r . This substitution maps the region rH ≤
r < ∞ to the region 1 ≥ z > 0. Here we also introduce two
dimensionless parameters, m = −μ2L2 and z0 = rH

L . By
these changes the equations of motion assume the form

ψ ′′(z) + 1

z
ψ ′(z)

(

1 + 1

F(z)
[2 − z2

0

z2

(

4 + m

3
ψ(z)2

)

]
)

+ m
ψ(z)

F(z)

z2
0

z4 = 0,

F ′(z) − F(z)

(
2

z
+ z

3
ψ ′(z)2

)

+ z2
0

3z3mψ(z)2

− 2

z
+ 4z2

0

z3 = 0,

χ ′(z) + z

3
ψ ′(z)2 = 0, (2.20)

and boundary conditions yield

FB(z → 0) ∼ z2
0

z2 − 1, FH (z → 1) = 0,

ψB(z → 0) ∼ C+z�+ , ψH (z → 1) = O(1),

χB(z → 0) ∼ O(z2�+), χH (z → 1) = O(1). (2.21)

In the shooting method, we need to calculate the series expan-
sions of the scalar and metric functions around the horizon
and boundary. By inserting these series into the equations of
motion we can find the unknown coefficients of the expan-
sions. After that, we match the series smoothly at some small
distance, say ε, from one end of the interval 0 < z < 1. Note
that for a given ψ(z) one can find χ(z) from the last equation
of motion in (2.16), simply by an integration.

Since the equations of motion are regular at the horizon,
the expansion of functions are given by a Taylor series near
the horizon
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Table 1 The numerical values for series expansion near the boundary

m 4 63
16

60
16

55
16 3 39

16

�+ 2 9
4

10
4

11
4 3 13

4

δ 1 1
4

1
2

1
4 1 1

4

imin 0 −1 −1 −3 −1 −5

ψH (z) =
∞
∑

n=0

ψ(n)(z − 1)n,

FH (z) =
∞
∑

n=0

F(n)(z − 1)n .

(2.22)

The boundary conditions (2.21) require that the F(0) = 0.
By substituting the near horizon expansions of (2.22) into
the equations of motion (2.20) and expanding again near the
z = 1, we can find the values of F(n) and ψ(n) as functions of
free parameters z0, m and ψ(0) ≡ ψ1. In the precision region
of our computations it would be enough to keep expansions
up to n = 6. For example the first few terms are1

ψH (z) = ψ1 + (z − 1)

(

3mz2
0ψ1

z2
0(12 + mψ2

1 ) − 6

)

+ · · · ,

FH (z) = (z − 1)
(

2 − 4z2
0 − m

3
z2

0ψ
2
1

)

+ · · · . (2.23)

The expansion near the boundary at z = 0 is a little bit
trickier, because the equations of motion are irregular at this
point. Here we have a power series expansion and the power
of the leading term depends on the value of m. We denote
this, by a mass dependent parameter δ

ψB(z) = C+z�+ + · · · =
∞
∑

i=imin

ai z
2+iδ,

FB(z) = z2
0

z2 − 1 +
∞
∑

j=1

b j z
jδ. (2.24)

Here we have expanded the functions until the resulting alge-
braic system of equations gives a non-trivial solution. In
Table 1 we have presented the values of m,�+, δ and imin

which we have used to solve the equations of motion numer-
ically

By substituting the expansions in (2.24) for every mass
parameter m from Table 1 into the equations of motion, we
can find the expansion coefficients, ai and b j in terms of three
free parameters C+,Cm and z0. Here C+ is the coefficient
of z�+ in ψB(z) and Cm is the coefficient of z2 in FB(z) in

1 It is important to note that by going to the higher orders of expansion
bigger than six, the change in our numerical results (graphs) was much
smaller than the precision that we have used in our calculations.

Eq. (2.24) (note thatCmz2 always exists in the near boundary
expansion of F(z)).

Let us explain the shooting method a little bit. At first step,
we read the initial values of the fields and their derivatives
near the horizon at z = 1 − ε from the series expansion
in (2.23), remembering that the coefficients are functions of
C+,Cm and z0. Then we solve the first two differential equa-
tions in (2.20) numerically to find the values of the fields
near the boundary at z = ε (note that we need the very small
parameter ε as a regulator).

Now we can compare these values of the fields (two equa-
tions) and their first derivatives (two equations) with those
which are computed from the near boundary expansion in
(2.24). At the end of the day, we will have four equations for
four unknown parameters C+,Cm, ψ1 and z0 to solve. This
set of equations has innumerable numerical solutions which
can be found and put into the power series expansions of
the fields both at the horizon (2.23) and boundary (2.24) to
compute various physical and thermodynamical quantities.

The first quantity that we consider, is again the temperature
of the hairy black hole

T = eχ(r)

4π
|F ′(r)|

∣
∣
∣
r=rH

= eχ(z)

4π z0
|F ′(z)|

∣
∣
∣
z=1

, (2.25)

where F ′(1) = 2−4z2
0−m

3 z
2
0ψ

2
1 is computed from Eq. (2.23)

and

χ(1) =
∫ 1−ε

z=ε

(

− z

3

)

(ψ ′(z))2dz, (2.26)

can be computed numerically by imposing the boundary con-
ditions of (2.21).

The next quantity is the thermal entropy of the hairy black
hole

Stherm = r3
H

4

V�

GN
→ S̃ = z3

0

4
, (2.27)

where we have calculated the entropy again in units where
L3V�

GN
= 1.

To compute the energy of the hairy black hole we can use
two different ways again. Either we can expand the g00

g00(z)z→0 = −F(z)e2χ(z)
∣
∣
∣
z→0

= − z2
0

z2 + 1 + m̃z2 + · · · ,

(2.28)

and pick up the coefficient of z2

z2
0
, therefore the energy yields

E = 3V�

16πGN
m̃z2

0 → Ẽ = 3

16π
m̃z2

0, (2.29)
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Fig. 2 Left: The condensate as a function of temperature (scaled by the corresponding critical temperature) for various values of �+. The lowest
curve corresponds to �+ = 13

4 and the top curve is for �+ = 2. Right: The critical temperature as a function of �+

or we can use the first law of thermodynamics for black holes
(dE = TdS) numerically and compute the energy. Both
ways provide the same result.

As we discussed previously, in the AdS/CFT dictionary
the coefficient of r−�+ gives the expectation value of the
conformal operator O with a conformal dimension �+. This
coefficient is called the condensate. In the z coordinates at
leading order of ψ(z) ∼ C+z�+ therefore the value of the
condensate is 〈O〉 = C+z�+

0 .

Figure 2 shows the behavior of the 〈O〉 1
�+ in terms of

the temperature, for various possible values of the �+ in the
interval 2 ≤ �+ ≤ 2 + √

3. The condensation happens for
each value of the �+ at different critical temperatures T̃c,
which decreases when �+ increases.

When the AdS5 BF bound saturates, i.e.�+ = 2 orm = 4,
the critical temperature Tc reaches to its maximum value at
T̃0 = 1

2π
≈ 0.159. This is the Rindler temperature (the

temperature of massless black hole).
In the following figures, we have sketched the behavior of

various physical quantities as a function of the energy or the
temperature.

In each diagram in Fig. 3 the dashed curve represents
the Einstein black hole. The S̃ − T̃ diagram shows how the
condensation happens. When temperature decreases there is
a critical temperature for each value of the �+ (the point
where solid curves meet the dashed one) in which, the Ein-
stein black hole is replaced by a hairy black hole. As we
see the critical temperature decreases when �+ increases.
One can convert the temperature to energy using the T̃ − Ẽ
diagram. The S̃ − Ẽ diagram shows that the entropy of a
hairy black hole at a specific value of the energy is larger
than that of the Einstein black hole, therefore, the hairy
black holes are more favorable (stable) after the condensa-
tion. The 〈O〉 − Ẽ diagram displays where the condensa-

tion starts and reaches to its maximum value in terms of the
energy.

To compute the Rényi entropies from (1.10) according to
the S̃ − T̃ diagram in the Fig. 3, we should take into account
the phase transition from the Einstein black hole (EBH) to
the hairy black hole (HBH) [40]

Sn = n

T0(n − 1)

{
∫ Tc

T0/n
SHBH

therm(T ) dT +
∫ T0

Tc
SEBH

therm(T ) dT

}

.

(2.30)

The second term above, differs from (2.11) only on its lower
limit. Here we can define T (x)

∣
∣
x=xc

= Tc in accordance with

the definition of the xn . So the S̃n yields

S̃n = n

T̃0(n − 1)

{
∫ T̃c

T̃0/n
SHBH

therm(T ) dT +
∫ 1

xc
S̃EBH(x)

dT̃

dx
dx

}

= 2πn

n − 1

∫ T̃c

T̃0/n
SHBH

therm(T ) dT + n

8(n − 1)
[2 − x2

c (x2
c + 1)],

(2.31)

where xc is the real positive root of the 1
2π

(

2xc − 1
xc

)

= T̃c

or xc = π T̃c
2

(

1+
√

1 + 2
(π T̃c)2

)

. By a numerical computation,

we can draw the S̃n in terms of n, see Fig. 4.
As we observe in Fig. 4, one can define a critical number

nc = T̃
T̃c

, where the curve of HBH approaches that of EBH. At

this point the second derivative of S̃n suddenly changes. This
discontinuity of the second derivative of S̃n with respect to n
confirms that the condensation of the scalar field is a second
order phase transition. Moreover, the value of nc increases
when �+ increases as we depicted in Fig. 5. Here all four
inequalities (1.12a)–(1.12d) hold again.
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Fig. 3 Thermodynamical quantities for various values of �+. Note that the colors in this figure match with those of Fig. 2. The dashed black curve
represents the Einstein black hole solution and the solid curves belong to the hairy black holes

Fig. 4 Each diagram shows the behavior of the Rényi entropies for EBH (dashed curve) and HBH for various values of the �+. Two curves meet
each other at a critical number, nc

2.3 A note on the normalizability of the scalar modes

The scalar modes that we have considered so far, are constant
on the hyperboloid i.e. ψ = ψ(r). These modes are called the

non-normalizable modes in the context of AdS/CFT. Since
these modes preserve the symmetries of the hyperboloid, the
construction of fully backreacting hairy black holes in the
gravitational background is relatively easy; and for this rea-
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Fig. 5 The logarithm of the critical Rényi parameter as a function of
�+

son, they offer a good toy model in the study of the phase
transition via the condensation of a scalar field in the gravi-
tational theory.

However, the more physical cases would be those which
are not constant on the hyperboloid ψ = ψ(t, r, u, θ, φ),
i.e. the normalizable modes. In these cases, the construction
of the fully backreacting hairy black holes is considerably
more difficult (if not impossible). As an example, the authors
of [40] perform a linearized analysis of the Klein–Gordon
equation for these modes and manage to show the existence of
a phase transition. The main result of this linearized analysis
is a phase transition, that occurs if the scalar mass was in
the range −4 ≤ μ2L2 ≤ −3 which is more restricting than
−4 ≤ μ2L2 ≤ −1.

Conversely, one could say that the linearized analysis
restricts the admissible region of conformal dimension from
2 ≤ � ≤ 2 + √

3 to 1 ≤ � ≤ 3. Indeed, if one compares
the Fig. 5 of our paper to the Fig. 6 in [40], one would see
that both curves generally behave similarly, especially in the
lower admissible region of the conformal dimension. The
reason for the similarity of these two curves is hidden in the
fact that if the scalar mass is just above the AdS5 BF bound
and below the unitarity bound (a bound imposed by unitarity
conditions) i.e. − 4

L2 < μ2 < − 3
L2 , then the constant modes

on the hyperboloid are normalizable, because it is possible
to quotient the hyperboloid to form a compact space, see for
example [40,43,48,49].

Therefore, despite the difference in the length of the
allowed region and the difference in the behavior of the afore-
mentioned curves in the upper part of the allowed region, at
least in the lower parts, the constant modes of the scalar field
could be regarded as a good approximation to the compli-
cated problem of finding the fully backreacting normalizable
modes.

All in all, since our main objective in this paper is to study
the effect of the higher derivative terms on the entanglement
Rényi entropy in the process of the phase transition, we will
consider the constant modes as a good toy model and focus

on them in the remainder of this paper. We will leave the
study of normalizable modes to future works.

3 The ERE from the Gauss–Bonnet gravity

In this section, we are going to explore the effect of higher
curvature bulk theories of gravity on the condensation and the
holographic Rényi entropy. We consider the Gauss–Bonnet
(GB) gravity in five dimensions where the equations of
motion are of the second order in derivatives and the numeri-
cal method of the previous section works here as well without
imposing any further boundary condition. The GB gravity
has been studied extensively in the literature [50–54], which
we will review in the following subsection. Afterwards, in
Sect. 3.2, we will present our own original work on the study
of the hairy black holes for this gravitational theory.

3.1 The modified Einstein Gauss–Bonnet black hole

Similarly to the previous section, we start from a pure grav-
itational action in five dimensions

I = 1

16πGN

∫

d5x
√−g

{

R + 12

L2 + λL2

2
(RabcdRabcd

− 4RabRab + R2)

}

, (3.1)

where λ is a free dimensionless coupling. To find the asymp-
totically AdS black hole solutions with a hyperbolic horizon,
we use again the ansatz in Eq. (2.2) and insert it into the equa-
tions of motion. We will find

(

1 − 2λL2

r2 (1 + F(r))

)

F ′(r) + 2

r
(1 + F(r)) − 4r

L2 = 0,

dN (r)

dr
= 0, (3.2)

with the following Einstein Gauss–Bonnet (EGB) black hole
solution

F(r) = r2

L2 f (r) − 1

= r2

L2

(

1

2λ

[

1 −
√

1 − 4λ

(

1 − C

r4

)])

− 1, (3.3)

where the constant of integration is fixed in terms of the hori-
zon radius by demanding that F(r) vanishes at the horizon,
i.e.C = r4

H−r2
H L2+λL4. By comparing (3.3) with Eq. (2.4)

we can fix the constant value of N (r) = N . Since asymptot-
ically f (r) → f∞ = 1

2λ
(1 − √

1 − 4λ) we can choose

N = L
√

2λ

R
√

(1 − √
1 − 4λ)

≡ Leff

R
, (3.4)
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where Leff is an effective asymptotic AdS scale. Note that
asymptotically F(r) → r2

L2
eff

− 1.

In order to avoid an imaginary AdS scale or a naked sin-
gularity, the Gauss–Bonnet coupling λ has to be limited to
the region λ ≤ 1/4. On the other hand the unitarity of the
boundary theory dual to the Gauss–Bonnet gravity in this
background, demands that − 7

36 ≤ λ ≤ 9
100 , for example see

[55,56], or [57]. Therefore we will restrict our numerical
computations to this interval from now on.

Now we follow analogous steps, similar to the Sect. 2, to
calculate the thermodynamical quantities and then compute
the holographic Rényi entropy. The black hole temperature
is given by

T = N

4π

∂F(r)

∂r

∣
∣
∣
r=rH

= Leff

4πRL2

2rH (2r2
H − L2)

r2
H − 2λL2

. (3.5)

By introducing the X = rH
Leff

and T0 = 1
2πR , the temperature

can be expressed as [33]

T = T0X (2X2 − f∞)

f∞(X2 − 2λ f∞)
≡ 2πT0T̃ . (3.6)

To compute the black hole energy, we use again the procedure
discussed in the Sect. 2. By expanding the metric near the
boundary and assuming that R = Leff we have

g00(r)
∣
∣
∣
r→∞ = −

{

r2

L2
eff

− 1 − C

r2L2
√

1 − 4λ
+ · · ·

}

.

(3.7)

Therefore the black hole energy assumes the form

E = 3V�

16πGN

(

r4
H − r2

H L2 + λL4

L2
√

1 − 4λ

)

= 3V�L2

16πGN

X4 − f∞X2 + λ f 2∞
f 2∞

√
1 − 4λ

≡
(
V�L2

GN

)

Ẽ, (3.8)

where Ẽ is the dimensionless energy of the EGB black hole.
As it was mentioned in Sect. 2, for the higher derivative grav-
itational theories we must use the Wald’s formula (2.8) to
compute the thermal entropy. After some algebra we find

∂LGB

∂Rabcd
ε̂abε̂cd = 1

16πGN

{
12λL2

r2 [1 + F(r)] − 2

}

, (3.9)

from which, we can express the thermal entropy as

Stherm = V�

4GN
r3
H

(

1 − 6λL2

r3
H

)

= V�L3

GN

X3 − 6λX f∞
4 f 3/2∞

≡
(
V�L3

GN

)

S̃therm. (3.10)

By knowing the thermal entropy we can compute the holo-
graphic Rényi entropy. Using the Eq. (2.11) and defining the
T (X)

∣
∣
X=Xn

= T0
n , we find [33]

Sn = n

T0(n − 1)

∫ 1

Xn

S(X)
dT

dX

= n

T0(n − 1)

∫ 1

Xn

(
L3V�

GN
S̃therm

) (

1

R

dT̃

dX

)

dX

= n

n − 1

L3V�

GN

1

8 f 5/2

(

9(1 − X4
n) − 3 f∞(1 − X2

n)

+ 4( f∞ − 2)

1 − 2λ f∞
− 4X4

n( f∞ − 2X2
n)

X2
n − 2λ f∞

)

. (3.11)

Note that, Xn stands for the real positive root of the following
third order equation

2nX3
n − f∞X2

n − n f∞Xn + 2λ f 2∞ = 0. (3.12)

In [36,37] the authors show that in the Gauss–Bonnet gravity
there is a new bound on the coupling λ when we demand the
positivity of the thermal entropy. In five dimensions, this is
− 7

36 ≤ λ ≤ 1
12 . We will discuss this in the next section.

3.2 The modified hairy black hole

In Sect. 2, we reviewed the condensation of the scalar field
around a five-dimensional asymptotically AdS black hole
with the hyperbolic horizon in the Einstein gravity. In this
section, we are going to study the effect of higher-derivative
terms on the scalar condensation, by considering the Gauss–
Bonnet gravity. We first prove the existence of a non-trivial
scalar solution below the critical temperature and then com-
pare its thermodynamical properties and holographic Rényi
entropy with those of the hairy black hole of the Einstein
gravity, in various values of the scalar mass μ and coupling
λ. Let us start from the following action where a real scalar
field is coupled to the gravity

I = 1

16πGN

∫

d5x
√−g

{

R + 12

L2 + λL2

2
(RabcdRabcd

− 4RabRab + R2)−μ2ψ2 − (∇ψ)2
}

. (3.13)

The metric and the scalar field ansatz for the Gauss–Bonnet
gravity are the same as those in Eq. (2.15). The equations of
motion are

ψ ′′(r) + 1

3L2r F(r)[1 − V (λ, r)] {ψ
′(r)[6(2r2 − L2) + 3L2

−μ2L2r2ψ(r)2 − 9L2F(r)V (λ, r)]
− 3μ2L2rψ(r)[1 − V (λ, r)]} = 0,

F ′(r) + 1

[1 − V (λ, r)]
{

F(r)

[
2

r
+ r

3
ψ ′(r)2

]
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+ r

3
μ2ψ(r)2 + 2

r
− 4r

L2

}

= 0,

χ ′(r) − r

3[1 − V (λ, r)]ψ
′(r)2 = 0, (3.14)

where we have defined, V (λ, r) = 2λL2

r2

(

1 + F(r)
)

. Since in
the Gauss–Bonnet gravity the equations of motion remain the
second order differential equations, the number of boundary
conditions are the same as in Einstein gravity. Similarly to
the previous section, we need to know the behavior of every
unknown function near the horizon r = rH and near the
boundary when r → ∞.

As always, the definition of the location of horizon F(r =
rH ) = 0 gives the first boundary condition on F(r). On
the other hand, as we mentioned previously, the asymptotic
behavior of this function is given by

F(r → ∞) ∼ r2

L2
eff

− 1, L2
eff = 2λL2

1 − √
1 − 4λ

. (3.15)

We also demand that the scalar field is a regular function
at the horizon so the ψ(rH ) = O(1). If we consider the
scalar field as a quantum field living in the curved space-
time outside the black hole horizon, even in the presence of
the Gauss–Bonnet terms, it should satisfy the Klein–Gordon
equation. The solution of this equation decays at infinity as
ψ(r) ∼ A(+)

r�+ + A(−)

r�− . Again, A(±) are the expectation values
of the conformal operators with �± conformal dimensions.

To find a relation for �, one needs to substitute F(r) =
r2

L2
eff

− 1 and ψ(r) = A r−� into the equation of motion for

the scalar field (the first equation in (3.14)) in the limit of
r → ∞. In this regard, we will find the following values for
the conformal dimension

�± = 2 +
√

4 + μ2L2
eff. (3.16)

In what follows, we again assume the Dirichlet boundary
conditions, A(−) = 0, therefore we expect ψ(r → ∞) ∼
A

r�+ asymptotically. It is also easy to derive the boundary
conditions for χ(r) just by looking at the last equation of
motion in (3.14)

χ(rH ) = O(1), χ(r → ∞) = O(r−2�+) + · · · (3.17)

We can use the advantage of working with the dimensionless
parameters which is desirable in the numerical methods. To
do this we change the radial coordinate from r to z via z = rH

r
and introduce a dimensionless mass parameter m = −μ2L2.
We also use the scaling symmetry of the equations of motion
to define, z0 = rH

Leff
. Then the equations of motion will be the

following

ψ ′′(z) + ψ ′(z)
z[1 − V (λ, z)]

{

1 + 1

F(z)

×
[

2 − z2
0

f∞z2 (4 + m

3
ψ(z)2)

]

+ V (λ, z)

}

+ ψ(z)

F(z)

mz2
0

f∞z4 = 0,

F ′(z) + 1

z[1 − V (λ, z)]

{

− F(z)

[

2 + z2

3
ψ ′(z)2

]

+ z2
0m

3z2 f∞
ψ(z)2 − 2 + 4z2

0

z2 f∞

}

= 0,

χ ′(z) + z

3[1 − V (λ, z)]ψ
′(z)2 = 0, (3.18)

where

V (λ, z) = 2λz2 f∞
z2

0

(1 + F(z)),

L2

L2
eff

= f∞ = 1 − √
1 − 4λ

2λ
. (3.19)

The boundary condition also can be written as

FB(z → 0) ∼ z2
0

z2 − 1, FH (z → 1) = 0,

ψB(z → 0) ∼ C+z�+ , ψH (z → 1) = O(1),

χB(z → 0) ∼ O(z2�+), χH (z → 1) = O(1). (3.20)

These boundary conditions are identical to those of (2.21).
As we discussed in Sect. 2, in order to find a numeri-

cal solution for equations of motion, we need to compute
the expansions of the metric and the scalar functions near
the horizon and boundary. Once again, we substitute the
near horizon expansion (2.22) into the first two equations
of motion in (3.18) and expand them near the z = 1. We find

ψH (z) = ψ1 + (z − 1)

[

3mψ1(z2
0 − 2λ f∞)

z2
0(12 + mψ2

1 ) − 6 f∞

]

+ · · ·

FH (z) = (z − 1)
z2

0

3 f∞

[

6 f∞ − z2
0(12 + mψ2

1 )

z2
0 − 2λ f∞

]

+ · · ·
(3.21)

Similarly, we use the near boundary expansion at z = 0 in
the Eq. (2.24), but here we note that the leading order is given

by the value of �+ in the Eq. (3.16) or �+ = 2 +
√

4 − m
f∞

equivalently.
Here we have a two-parameter family of the solutions

which are controlled by the values of m and f∞ or equiv-
alently by μ and λ. In our numerical method, it would be
simpler to fix the value of �+ firstly and then choose some
appropriate values for the dimensionless mass and coupling.

Once again, in shooting method we first read the initial
values of the fields and their derivatives near the horizon and
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Fig. 6 Left: The condensate as a function of the temperature (scaled by the corresponding critical temperature) for the various values of λ when
�+ = 2. The lowest curve is for λ = 9

100 and the top one corresponds to the λ = − 7
36 . Right: The critical temperature as a function of λ

then solve the equations of motion numerically, to find the
values of the fields near the boundary. By comparing with the
values of the near boundary expansion we will find four equa-
tions for four unknown parameters C+,Cm, ψ1 and z0. The
values of these parameters can be used to compute the various
physical and thermodynamical quantities of our problem.

The temperature of the modified hairy black hole is given

by T̃ = eχ(z)

4π z0
|F ′(z)|

∣
∣
∣
z=1

, where from Eqs. (3.21) and (3.18)

we find

F ′(1) = z2
0

3 f∞

(

6 f∞ − z2
0(12 + mψ2

1 )

z2
0 − 2λ f∞

)

,

χ(1) =
∫ 1−ε

z=ε

−z

3[1 − V (λ, z)]ψ
′(z)2 dz. (3.22)

The next physical quantity will be the thermal entropy, which
we have calculated for the EGB black hole from the Wald’s
entropy formula in (3.10). For the modified hairy black hole
we can use again this equation just by replacing rH → z0Leff.
Hence

Stherm = V�L3

GN

z3
0

4 f 3/2∞

(

1 − 6λ f∞
z2

0

)

≡
(
V�L3

GN

)

S̃.

(3.23)

The computation of the energy is straightforward and we can
use the same formula that we found in Eqs. (2.28) and (2.29)
again

E = 3V�

16πGN
m̃z2

0L
2
e f f ≡ V�L2

GN
Ẽ . (3.24)

Since we are interested in the thermal phase transition, we
need to find the condensate or the 〈O〉 = C+( z0√

f∞
)�+ . By

plotting the condensate versus the temperature (see Fig. 6),

we observe that the scalar field condensates at every value
of the λ within the allowed interval − 7

36 ≤ λ ≤ 9
100 . As

we see in Fig. 6, for the fixed value of �+ = 2, the criti-
cal temperature decreases when the Gauss–Bonnet coupling
increases.

To see the relationship between the various thermody-
namical quantities and moreover to follow how the con-
densation happens in this theory, we have depicted their
graphs in Fig. 7. The behavior of various quantities is the
same as in the case of Einstein gravity. We can see this
by comparing the curves of λ �= 0 with the curve λ = 0
(black curve) in each graph. For each value of the cou-
pling, there is a critical temperature where a phase transition
from the EGB black hole to the modified hairy black hole
happens.

But there is an important point which can be seen easily
in the S̃ − Ẽ or the S̃ − T̃ diagrams. For the positive values
of the coupling λ, there is a temperature or energy below
the critical point, where the value of the entropy becomes
negative. The value of these temperatures, Tv , is depicted in
Fig. 8. The same behavior is happening for the EGB thermal
entropy in a narrow region of the couplings 1

12 < λ < 9
100 ,

this has been already reported in [36,37].
Finally the Rényi entropies should be computed using the

EGB temperature in the Eq. (3.6). By considering the dimen-
sionless temperature, X̃c will be the real positive root of the
following equation

X̃3
c − X̃2

c (π T̃c f∞) − X̃c

(
f∞
2

)

+ 2πλT̃c f
2∞ = 0.

(3.25)

Then according to (3.11), the dimensionless entanglement
Rényi entropies yield
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Fig. 7 The thermodynamical quantities for the various values of λ

when �+ = 2. The colors in these graphs are matched with those in
Fig. 6. In each graph, a horizontal black line is sketched to guide the

zero temperature and zero thermal entropy. The dashed curves represent
the EGB black hole, while the solid ones represent the modified hairy
black holes

Fig. 8 For each positive value of the λ there is a temperature, Tv , where
the thermal entropy becomes negative

S̃n = 2πn

n − 1

∫ T̃c

T̃0/n
S̃HBH

thermal(T̃ ) dT̃

+
(

n

n − 1

) (

1

8 f 5/2∞

)
{

9(1 − X̃4
c ) − 3 f∞(1 − X̃2

c )

+ 4( f∞ − 2)

1 − 2λ f∞
− 4X̃4

c ( f∞ − 2X̃2
c )

X̃2
c − 2λ f∞

}

, (3.26)

where T̃0 = 1
2π

. Once again the first term of this expres-

sion should be computed numerically. Since T̃c ≥ T̃0
n we can

define a critical value, nc = T̃0

T̃c
, where the Rényi entropy cor-

responding to the modified hairy black hole approaches that
of the EGB black hole, see Fig. 9. These diagrams show that
in the presence of the Gauss–Bonnet terms the condensation
of the scalar field is again a second order phase transition.

To show the behavior of nc under the change of the cou-
pling λ, we have sketched the Fig. 10 (left). As we see, this
critical value increases by moving from the negative values
of the coupling to the positive values.

Since we have the numerical behavior of the Rényi
entropies, it is worth checking the inequalities of (1.12a)–
(1.12d). We have sketched the corresponding diagrams in
terms of the various values of n, see Fig. 11.

As we observe, the inequalities (1.12a) (up-left) and
(1.12d) (down-right) hold here but the second inequality
(1.12b) (up-right) is violated for the positive values of the
coupling λ (there is an interval for n, where the curves get
the negative values). This is completely consistent with the
fact that for the positive values of the coupling, there is a tem-
perature where the thermal entropy becomes negative. By a
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Fig. 9 In each diagram there is a critical point where the ERE of the modified hairy black hole (solid curve) approaches that of the EGB black
hole (dashed curve)

Fig. 10 Left: When the scalar mass is �+ = 2, the critical Rényi
parameters are extremely close to one. So we have sketched nc − 1 as
a function of λ. Right: The nv shows the value of n, where the sec-

ond inequality governing the EREs is violated. This diagram shows the
values of nv as a function of λ, for all the positive values of the GB
coupling constant
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Fig. 11 Inequalities of Rényi entropies. The (down-left) diagram shows that the phase transition is a second order one

Fig. 12 From left to right, the critical temperature, the critical Rényi parameter, and the violation number in terms of the GB coupling

numerical study, one can find a violation number, nv , where
the second inequality governing the EREs is violated, see the
right diagram in Fig. 10. The third inequality (1.12c) (down-
left) also holds here, and as we see, there is a discontinuity
in the slope of the curves at n = 1. This shows a second
order phase transition. We will discuss these results in the
next section.

3.2.1 Results for �+ > 2

To complete our results, we have drawn the Fig. 12 for other
values of �+ > 2. In this figure we have presented the crit-
ical temperature T̃c, the critical Rényi parameter nc and the
violation number nv for each value of the Gauss–Bonnet cou-
pling λ. The behavior of these parameters are similar to those
of �+ = 2 but is more pronounced as �+ increases.
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4 Discussion

In Sect. 2, we have reviewed the phase transition from the
Einstein black hole to a hairy black hole due to the con-
densation of a scalar field. Both solutions exist in a five-
dimensional space-time and have a hyperbolic spatial bound-
ary. The numerical results of the condensate in terms of the
temperature are sketched in Fig. 2 (the left diagram). We have
also found the critical temperatures for this phase transition
within the unitarity bound 2 ≤ �+ ≤ 2+√

3, see Fig. 2 (the
right diagram). These diagrams show that, by increasing the
value of the conformal dimension of the scalar field, the crit-
ical temperature of the phase transition decreases. Moreover,
the value of the condensate decreases too.

One can explain this condensation in terms of the energy,
by finding the relation between the energy of the black holes
and their temperatures, via the T̃ − Ẽ diagram in Fig. 3. The
S̃ − Ẽ diagram shows that the entropy of a hairy black hole
at a specific value of the energy is larger than the entropy of
the Einstein black hole, so the hairy black hole is preferred to
the Einstein black hole after the condensation. The 〈O〉 − Ẽ
curves display a phase transition when the energy decreases.

As we reviewed in the introduction, by knowing the
thermal entropy, one can compute the entanglement Rényi
entropies Sn , for a spherical region in the dual gauge theory.
The results for these entropies are given in the S̃n − n dia-
grams of Fig. 4. They show the existence of a critical value,
nc, where a discontinuity is happening for the second deriva-
tive of the Sn . This suggests that the condensation is a second
order phase transition.

In Sect. 3 we have extended the study of the phase transi-
tion in Sect. 2, by adding the Gauss–Bonnet terms to the
action. We have found the modified black hole solutions
before and after the condensation, which now depend on the
GB coupling λ in the allowed region − 7

36 ≤ λ ≤ 9
100 . The

effect of adding this coupling on the condensation is pre-
sented in Figs. 6 and 7. Here we have two important param-
eters, the conformal dimension of the scalar field, �+ and
the coupling λ. We have presented the results for �+ = 2
completely and for �+ > 2 briefly in this paper.

We show that by going from the positive values of the
coupling to the negative ones the value of the condensate and
the critical temperature are increasing, see Fig. 6. By looking
at the diagrams S̃ − Ẽ or S̃ − T̃ in Fig. 7, we observe a new
behavior for λ > 0. For the positive values of the coupling
λ, there is a temperature or energy, below the critical point,
where the value of the entropy becomes negative. The value
of these temperatures, Tv , is depicted in Fig. 8.

As it was mentioned, the violation of the second inequal-
ity of the Rényi entropy (1.12b), is related to the negativity
of the black hole entropy. In references [36,37], the authors
have studied the same violation in the Gauss–Bonnet gravita-
tional theory in the presence of a gauge field and found a new

bound on the coupling of the theory i.e. − 7
36 ≤ λ ≤ 1

12 in 5
dimensions, instead of the interval demanded by the unitarity
of the theory i.e. − 7

36 ≤ λ ≤ 9
100 . In this paper, we show that

for the Gauss–Bonnet gravity and in the presence of a scalar
field, if we demand the positivity of the black hole thermal
entropy, then there will be a novel bound on the coupling of
the theory i.e. − 7

36 ≤ λ ≤ 0.
The entanglement Rényi entropy is calculated in the

Eq. (3.26) and for the various values of the coupling are
depicted in Fig. 9. As we see, a second order phase transi-
tion is happening again. The critical points of nc, where the
ERE of the hairy black holes meet the ERE of the EGB black
holes, have been drawn in the left diagram of the Fig. 10.

One of the important subjects in the study of the entangle-
ment Rényi entropy is the existence of the inequalities. We
have checked some of these inequalities, (1.12a)–(1.12d),
and the reader can see the results of our numerical computa-
tions in Fig. 11.

Let us explain our results according to the Eq. (3.26) and
write it in a little simpler form

S̃n = 2πn

n − 1

∫ T̃c

T̃0/n
SHBH(T̃ )dT̃ + n

n − 1
ξ, (4.1)

where ξ is a positive number independent of n. As it was
discussed, the inequalities (1.12a) and (1.12d) hold in our
case. To explain the first inequality we can write

∂

∂n
S̃n = − 2π

(n − 1)2

∫ T̃c

T̃0/n

[

SHBH(T̃ ) − SHBH

(

T̃0

n

)]

dT̃

− 1

(n − 1)2 ξ. (4.2)

The first term in the above equation is negative, because the
SHBH is a monotonically increasing function of the temper-
ature, see the S̃ − T̃ diagram in the Fig. 7. Since the ξ is a
positive constant, the total value of the right hand side of the
above expression will be negative.

The fourth inequality can be written in terms of the specific
heat, to see this we notice that

∂2

∂n2

(

(n − 1)S̃n
) = − 1

n2

∂ Ẽ

∂ T̃

∣
∣
∣
T̃0/n

. (4.3)

The T̃ − Ẽ diagram in Fig. 7 easily shows that the right hand
side of the above equation is always negative.

Now let us look at the second inequality (1.12b), which is
violated for the positive values of the coupling λ, as depicted
in the Fig. 11. This is completely consistent with the fact that
for the positive values of the coupling there is a temperature
where the thermal entropy becomes negative. In fact, we have
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∂

∂n

(
n − 1

n
S̃n

)

= 1

n2 S
HBH

(

T̃0

n

)

. (4.4)

The S̃− T̃ diagram in the Fig. 7 proves that whenever the T̃0
n

is smaller than a specific temperature then the value of the
thermal entropy becomes negative and therefore the second
inequality is violated. We have sketched the violation number
nv , in the right diagram of the Fig. 12 for the positive values
of the coupling. In fact, this violation never occurs for λ ≤ 0,
because as we see from Eq. (3.23), for the negative values of
the coupling, the thermal entropy is always positive.

The third inequality (1.12c) has a more complicated form

∂

∂n

(

(n − 1)S̃n
) = 2π

∫ T̃c

T̃0/n
SHBH(T̃ )dT̃ + 1

n
S̃HBH

(

T̃0

n

)

+ ξ.

(4.5)

The first and the second terms above, may have positive

or negative values, depending on the value of the T̃0
n . The

last term is always positive, therefore it would be difficult to
find the total sign of the above expression, otherwise we use
the numerical data. Our numerical analysis shows that, this
inequality holds for the most areas of the parameters of the
theory as depicted in the Fig. 11 (down-left).

By more numerical analysis for the other values of the
�+ > 2, we conclude that all the above arguments and dis-
cussions are �+ independent, see Fig. 12.
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