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Abstract Eric Poisson and Matt Vissert in their 1995 paper
studied the linear stability of the Schwarzschild thin-shell
wormholes (STSW). It was shown that for a generic equa-
tion of state (EoS) of the form p = p (σ ) on the throat
of the wormhole the regions of stability are independent of
the explicit form of the surface energy density σ and the
EoS. Here in this work, the nonlinear version of their sta-
bility analysis is presented. To do so, three specific EoSs
namely a linear, a quadratic and a power law barotropic EoS
are considered. For every EoSs, the analytic function of the
effective potential is obtained. Finally, the possible motions
of the STSW within the corresponding effective potentials
are studied.

1 Introduction

Thin-shell wormhole was introduced by Matt Visser in [1,2].
The initial idea was to minimize the exotic matter needed
to support a traversable Lorentzian wormholes [3–5]. The
dynamics of such wormhole was studied in [2] where a gen-
eral stability analysis is presented. Further investigation on
the linear stability of the Schwarzschild thin-shell wormhole
(STSW), however, was studied by Poisson and Visser in Ref.
[6]. The idea was so practical which attracted intensive atten-
tions from the gravity community. This can be seen from the
papers published on the stability of the TSWs in different bulk
spacetimes [7–22]. In spite of the fact that the linear stability
formalism gives a reasonable solution about the local stabil-
ity of the STSW but a relevant point has not received enough
attentions. The point is that in must of the papers where the
linear stability analysis has been employed, the actual form
of the potential that the TSW undergoes, has been ignored. In
Ref. [2], however, the picture is different, i.e., some explicit
EoSs have been studied with their effects on the stability (not
linear) of the considered TSWs. This missing point may be
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explained and justified in the framework of the linear stability
analysis where by linearizing the actual effective potential,
some of the information, mainly related to the motion in a
larger scale, are discarded.

Furthermore, in the linear stability analysis it is assumed
that a static equilibrium radius exists where a0 = ȧ0 = ä0 =
0. Naturally, investigating the stability status of the TSW at
its equilibrium point i.e., a = a0 requires a perturbation
upon which the TSW becomes a dynamic system. The linear
equation of motion of the system is the result of the linear
approximation of the perturbation. Now, if one assumes that
the perturbation is of the form of an initial kinetic energy,
then its initial velocity can not be zero, i.e., ȧ0 �= 0. As we
will show in this paper, assuming a very small initial veloc-
ity i.e., ȧ2

0 � 1, the results of the linear stability analysis are
verified. However, for a greater values for the initial velocity,
it is natural to expect some modifications in the results of
the linear stability. The aim of this study is to consider the
dynamic of the STSW in a large scale where the actual shape
of the effective potential becomes relevant. Also the initial
values of the motion will be assumed in accordance with the
kinetic energy perturbation such that ȧ0 = v0 �= 0. As we
shall see in the paper, in order to find a larger picture of the
motion of the STSW after the perturbation, one needs to con-
sider an equation of state (EoS) for the fluid matter presented
on the STSW. Hence, three different barotropic EoS will be
considered and consequently the effective potential and the
status of the stability for the initial equilibrium point will be
investigated. The approach presented in this study is not the
same as the standard linear stability analysis and therefore it
will be refereed as the nonlinear stability analysis.

The organization of the paper is as follow. In Sect. 2, the
details of the cut and paste formalism for the construction of a
STSW are given [6,15]. In Sect. 3, the linear stability analysis
of STSW is presented. The nonlinear stability analysis is
introduced in Sect. 4. The paper is concluded with some
closing remarks in Sect. 5.
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2 Construction of the STSW

Following [1,2], let’s consider the Schwarzschild black hole
solution of the Einstein’s equations with the line element

ds2 = − f (r) dt2 + dr2

f (r)
+ r2

(
dθ2 + sin2 θdϕ2

)
(1)

in which

f (r) = 1 − 2M

r
(2)

and M is the mass of the black hole. From the manifold (1)
we cut out the region r < a (t) where a (t) > 2M and make
two identical copies, namely M±= {xμ(±)=(t (±), r (±),

θ (±), ϕ(±))|r (±) ≥ a}. Finally we glue the two copies at the
timelike hyperplane � := r − a = 0 and make a complete
manifold defined by M = M+ ∪M−. Here the hyperplane
� is called the throat of the wormhole which joins the two
spacetimes. The throat is a thin-shell and the spacetime is
known as the Schwarzschild thin-shell wormhole (STSW).
At the throat the Israel junction conditions have to be satis-
fied. The first condition implies that the induced metric on the
throat should be continuous across the throat. The induced
metric is defined as

ds2(±)
w = h(±)

i j dyi(±)dy j(±) (3)

in which

h(±)
i j = g(±)

αβ

∂xα(±)

∂yi(±)

∂xβ(±)

∂y j(±)
. (4)

Note that, yi(±) = (
t (±), θ (±), ϕ(±)

)
and the induced metrics

are

ds(±)2
w = −

(
f (±) (a) − a′(±)2

f (±) (a)

)
dt (±)2

+a2
(
dθ(±)2 + sin2 θ(±)dϕ(±)2

)
. (5)

To satisfy the first Israel junction condition, one may set,

θ(±) = θ, ϕ(±) = ϕ and
(
f (±) (a) − a′(±)2

f (±)(a)

)
dt (±)2 = dτ 2

in which τ is defined as the proper time on the throat � and
a′(±) = da

dt (±) . In short, one finds

ds(±)2
w = −dτ 2 + a2 (τ )

(
dθ2 + sin2 θdϕ2

)
(6)

and upon using f (+) (a) = f (−) (a) = 1 − 2M
a , one finds

− f (a) ṫ (±)2 + ȧ2

f (a)
= −1 (7)

where an over-dot stands for the derivative with respect to τ.

The second Israel junction condition implies (G = 1)

[
K j
i

]
− δ

j
i [K ] = −8π S j

i (8)

in which S j
i = diag (−σ, p, p) is the energy momentum

tensor on the throat, [Z ] = Z+ − Z−,

K j(±)
i = −n(±)

γ

(
∂2xγ

∂yi∂y j
+ 

γ
αβ

∂xα

∂yi
∂xβ

∂y j

)(±)

(9)

with the spacelike unit normal

n(±)
γ = ± 1√

�

∂�

∂xγ (±)
(10)

and K = Ki
i . Also, n(±)

γ nγ (±) = 1 which yields

� = g(±)αβ ∂�

∂xα(±)

∂�

∂xβ(±)
. (11)

A detail calculation reveals

σ = − 1

2πa

√
1 − 2M

a
+ ȧ2 (12)

and

p = −σ

2
+ a2ä + M

4πa2
√

1 − 2M
a + ȧ2

. (13)

Furthermore, the energy conservation i.e., Si j; j = 0 for i = τ ,
reveals that σ and p are not independent and they satisfy

dσ

da
+ 2

a
(σ + p) = 0. (14)

Traditionally, one assumes that there exists a static equilib-
rium radius for the STSW where a = a0 and ȧ = ä = 0. The
static components of the energy-momentum tensor, hence,
are obtained to be

σ0 = − 1

2πa0

√
1 − 2M

a0
(15)

and

p0 = −σ0

2
+ M

4πa2
0

√
1 − 2M

a0

. (16)

Now, we have a static equilibrium thin-shell wormhole whose
throat is located at a = a0 with ȧ = ä = 0 and σ0 and p0

are given above. The next step is to investigate the stability
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of the static equilibrium of the STSW. To do so one has to
perturb the thin-shell wormhole from its static equilibrium
and then study the behavior of the throat. Here in this study
from the perturbation we mean an initial kinetic energy or an
initial velocity i.e., ȧ0 = v0. Hence, the initial value of the
surface energy density and angular pressure are no longer of
the form given in the Eqs. (15) and (16) and instead they read
as

σ̃0 = − 1

2πa0

√
1 − 2M

a0
+ v2

0 (17)

and

p̃0 = − σ̃0

2
+ M

4πa2
0

√
1 − 2M

a0
+ v2

0

. (18)

Note that 0 ≤ v2
0 ≤ 1 and σ̃0 and p̃0 are the initial values of

σ and p after the kinetic energy perturbation. In the sequel I
study the linear and nonlinear stability of the STSW.

3 Linear stability analysis

The equation of motion of the STSW after the perturbation
is given by the Eqs. (12) or (13) provided one knows the
closed form of the surface energy density σ and the angu-
lar pressure p. On the other hands, for any type of fluid
matter presented on the STSW, one may consider an equa-
tion of states (EoS). In this work, following the Ref. [6],
we consider a generic EoS of the form p = p (σ ) such
that

dp

dσ

∣∣∣∣
a=a0

= ∂p

∂σ

∣∣∣∣
a=a0

= β2
0 . (19)

Upon considering the energy conservation equation and
the EoS one, in principle, is able to find the closed form
of σ and p which will result in two dependent equa-
tions of motion namely (12) and (13). Consequently, one
of the equations may be considered, which traditionally
is the equation of σ which, in its rearranged form, reads
as

ȧ2 + V (a) = 0 (20)

where

V (a) = 1 − 2M

a
− (2πaσ (a))2 . (21)

For a linear stability / perturbation analysis, we make a Taylor
expansion of the potential about a = a0 to obtain

V (a) 	 V (a0) + V ′ (a0) (a − a0) + 1

2
V ′′ (a0) (a − a0)

2

+O
(
(a − a0)

3
)

. (22)

As of the assumption of the linear perturbation, we assume
that v2

0 	 0 (but not zero) which yields V (a0) = −v2
0 	 0,

V ′ (a0) = 0 and

V ′′ (a0) = 24
[
β2

0

( 1
6

(
1 + v2

0

)
x

((
1 + v2

0

)
x − 5

) + 1
) + 1

4 + 1
12

(−3 + (
1 + v2

0

)
x
) (

1 + v2
0

)
x
]

M2x3
(
2 − x

(
1 + v2

0

)) (23)

in which x = a0/M. With the linear perturbation / stabil-
ity analysis, as we mentioned above, v2

0 � 1 and therefore
V ′′ (a0) approximately becomes

V ′′ (a0) 	 24
[
β2

0

( 1
6 x (x − 5) + 1

) + 1
4 + 1

12 (−3 + x) x
]

M2x3 (2 − x)
.

(24)

Clearly, a stable STSW needs V ′′ (a0) ≥ 0. Upon (24), in
terms of β2

0 and x = a0/M, the regions of stability of STSW
can be found (see Fig. 1 of Ref. [6]). Referring to the STSW,
in Refs. [2,6], a0 = 3M has been reported as a critical radius
for the STSW at which the wormhole is definitely unstable
irrespective of the value of β2

0 . Also, for a0 > 3M and a0 <

3M there are different conditions for β2
0 to be satisfied in

order to have a stable STSW (see the Eqs. (31) and (32) of
Ref. [6]). Hence, for a stable STSW

{
β2

0 > − x2−3x+3
2(x−2)(x−3)

2 < x < 3

β2
0 < − x2−3x+3

2(x−2)(x−3)
x > 3

(25)

which are found from (24).

It is remarkable to observe that, having a generic EoS in
[6] implies that the stability region becomes independent of
the explicit form of the EoS and consequently σ .

4 Nonlinear stability analysis

Let’s recall that the exact equation of motion of the STSW
has been reduced to (20) with the potential given in (21).
Unlike the linear stability analysis, in a nonlinear stability
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Fig. 1 VI and σI in terms of a for a0 = 2.5M , β2
0 = 16, M = 1

and from above v0 = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0. The arising zero
of VI where V ′

I �= 0 is a turning point of the motion. The value of

the surface energy density is negative in the region where the motion
is physically possible. The stable STSW corresponding to the linear
stability analysis, becomes unstable with v2

0 > 0

Fig. 2 Plots of VI and σI against a for a0 = 3M , β2
0 = −16, M = 1

and from above v0 = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0. We note that in lin-
ear stability analysis (corresponding to v0 = 0) with M = 1, a0 = 3M

is the radius where the STSW is unstable irrespective of the value of
β2

0 . The effect of v0 �= 0 can be seen in the shape of the potential

analysis one has to know the function of σ (a). This, how-
ever, requires a given EoS. Here in this section three specific
barotropic EoSs, namely a linear, a quadratic and a power-
law, are considered in order to calculate the corresponding
surface energy densities and potentials. Consequently, we
study the behavior of the perturbed STSW. Furthermore, any

constraint on the initial velocity of the STSW is removed
such that v2

0 ∈ [0, 1] .

4.1 Linear and quadratic barotropic EoSs

First let’s consider the following linear and quadratic barotro-
pic EoSs:

123



Eur. Phys. J. C (2019) 79 :410 Page 5 of 10 410

Fig. 3 Plots of VI and σI against a for a0 = 5M , β2
0 = −16, M = 1 and from above v0 = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0. Similar to Fig. 1, the

nonlinear analysis reveals that the well stable STSW in the framework of the linear perturbation, becomes unstable with large enough v0

Fig. 4 VI I and σI I in terms of a for a0 = 2.5M , β2
0 = 16, M = 1 and from above v0 = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0. This figure is in analogy

with Fig. 1 and the potential’s shape changes due to the effects of v0 �= 0. Such effects are not trivial but nonlinear

{
Case I: pI = β2

0 (σ (a) − σ̃0) + p̃0

Case II: pI I = β2
0

2σ0

(
σ 2 (a) − σ̃ 2

0

) + p̃0
. (26)

Please note that these models are the simplest form of the
barotropic EoS which satisfy the necessary conditions i.e.,
pI,I I (a0) = p̃0 and Eq. (19). The Case I, was also studied
by Visser in [2]. Using the energy conservation equation (14),

the explicit form of the surface energy densities are obtained
as
⎧⎪⎪⎨
⎪⎪⎩

Case I: σI (a) = 1
β2

0 +1

[
(σ̃0 + p̃0)

(
a
a0

)−2
(
β2

0 +1
)
+ β2

0 σ̃0 − p̃0

]

Case II: σI I (a) = σ̃0
β2

0

[ √
�

σ̃0
tanh

( √
�

σ̃0
ln

(
a
a0

)
+ tan−1

(
σ̃0

(
β2

0 +1
)

√
�

))
− 1

]

(27)
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Fig. 5 VI I and σI I in terms of a for a0 = 3M , β2
0 = −16, M = 1

and from above v0 = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0. With v0 = 0.0,
a0 is clearly an unstable equilibrium point, however, a very small per-

turbation to the positive direction makes the STSW oscillating about a
new stable point. This stability is a new observation which has not been
detected before in linear stability analysis

Fig. 6 Plots of VI I and σI I against a for a0 = 5M , β2
0 = −16, M = 1 and from above v0 = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0

in which

� =
(
β2

0 σ̃0 − p̃0

)2 + σ̃ 2
0 − p̃2

0 . (28)

Having σ (a) in each Case, the corresponding potential is
found using the Eq. (21). Referring to the critical radius of
the STSW in the linear stability analysis i.e., a0 = 3M, we
consider three different configurations: (1) a0 = 2.5M <

3M with β2
0 = 16, (2) a0 = 3M with β2

0 = −16 and (3)
a0 = 5M > 3M with β2

0 = −16. For all three cases the
mass M behaves as a scale factor and without any loss of
generality we may assume M = 1. Let’s recall that, in the
linear stability, the STSW is stable in cases (i) and (iii) while
in case (ii) it is unstable irrespective of the value of β2

0 .
Figures. 1, 2, and 3 display the potential VI (a) and σI (a)

againsta in accordance with the first, second and third config-
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urations and various values of v0. In these figures the v0 = 0-
curve (the uppermost) corresponds to the potential used in
the linear stability analysis. It is remarkable to observe from
Fig. 1 that, having v0 �= 0 not only shifts the potential to the
negative region but also its shape is getting changed signif-
icantly. In other words the potential of the STSW depends
on how it is perturbed. This becomes more interesting if we
note that any intersection of the potential with the a−axis is a
turning point for the motion of the STSW. Hence, for instance
with v0 very small there are two turning points which implies
that the STSW oscillates between the two turning points. But
for larger v0 up to a certain v0 there is only one turning point
located to the left of a = a0 which indicates that the STSW
expands to infinity and is unstable. For large enough v0 the
only turning point disappears and depending on the direction
of the initial velocity the STSW may either collapse into a
black hole or expands to an evaporation. In Fig. 2, similar
to Fig. 1 the shape of the potential is changed significantly
such that although with v0 = 0 the wormhole is unstable
from both directions (i.e., it may collapse or evaporate) but
with v0 �= 0 the wormhole faces a barrier such that it can
not penetrate to infinity and indeed collapses. Knowing that
even for the linear stability one has to apply a non-zero ini-
tial velocity, Fig. 2 suggests that the such STSW definitely
collapses to a black hole. Let’s comment that for very small
velocity there is a different scenario which we shall come
back later. Fig. 3 shows that the STSW which appearently is
stable with v0 = 0 and small v0, may not be stable for large
enough v0 and collapses to form a black hole. In Figs. 1, 2,
and 3, in the right column, we plot also the surface energy
density using the same configurations. Here, it is observed
that, in any possible motion of the STSW, its energy density
is negative and the matter source remains exotic.

In Figs. 4, 5, and 6 we plot VI I (a) and σI I (a) in terms of
a for the same three different configurations as of the Figs. 1,
2, and 3. Although the general appearance of VI I (a) and
σI I (a) are different from VI (a) and σI (a) but the effects of
v0 �= 0 are almost the same. In addition to that, there is a new
observation in the shape of the potential in Fig. 5. It is seen
that although with v0 	 0 the wormhole is locally unstable
at a = a0, for a positive but very small velocity, it falls into
a potential well and oscillates ever after. This means that a
STSW which under the linear perturbation is considered to
be unstable at a0 = 3M , apparently, is stable. We should
add that this new stability is not static stability at a = a0

but a dynamic stability about a radius grater than a = a0.
The same argument as of Figs. 1, 2, and 3 is valid for the
corresponding surface densities in Figs. 4, 5, and 6 as well.

4.2 A power-law barotropic EoS

Beside the two EoSs which I have employed in the previous
section, here I introduce a third form for the EoS whose

structure is different. Let’s introduce

Case III: pI I I = p̃0

(
σ (a)

σ̃0

)α

(29)

in which

α = σ̃0

p̃0
β2

0 . (30)

After applying the energy conservation equation (14) one
finds

σI I I (a) =
⎛
⎜⎝ σ̃0(

a
a0

)2(α−1)

(σ̃0 + p̃0) − p̃0

⎞
⎟⎠

1
α−1

σ̃0. (31)

We note that, σI I I (a0) = σ̃0, pI I I (a0) = p̃0 and
dpI I I
dσ

∣∣∣
a=a0

= β2
0 as are expected. Using Eq. (21) the

corresponding effective potential is also obtained. Finally,
VI I I (a) and σI I I (a) are plotted in Figs. 7, 8, and 9 using
the same configuration as in Figs. 1, 2, and 3 and Figs. 1,
2, 3, 4, 5, and 6. These three figures for the Case III, mani-
fest the same facts as the other two cases. In particular, Fig. 7
shows that the linear stable STSW may not be stable after the
nonlinear perturbation. This means that while for the smaller
initial velocity the STSW remains stable around a = a0, for
a larger initial velocity, at first it may only blow to infinity
and than for greater velocity it may collapse or evaporate
depends on the direction of the initial velocity. Figs. 8 and 9
are strongly support our observations in the other two cases
as well.

5 Closing remarks

The nonlinear stability analysis of the STSW has been pre-
sented. In this line, we studied the equation of motion of the
STSW after a kinetic energy perturbation in the form of an
initial velocity v0. Having v0 �= 0 , modifies the initial sur-
face energy density and angular pressure. Hence, the effective
potential is found to be depending on v0. For a linear stability
analysis, one has to assume either v0 = 0 or very close to zero
i.e., v2

0 � 1. We employed three different EoSs and using
the energy conservation equation, found the closed form of
the surface energy density for each EoS. The corresponding
effective potential, hence, has been obtained separately for
each EoS. Finally, we plot the effective potential and the sur-
face energy density in terms of the radius of the STSW for
different configurations. Our numerical plots revealed that
the stability of the STSW not only depends on the parameters
such as a and β2

0 , but also the initial velocity in a nonlinear
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Fig. 7 VI I I and σI I I in terms of a for a0 = 2.5M , β2
0 = 16, M = 1 and from above v0 = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0

Fig. 8 VI I I and σI I I in terms of a for a0 = 3M , β2
0 = −16, M = 1 and from above v0 = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0. See the caption of

Figs. 2 and 5

manner. Specifically, the shape of the potential changes sig-
nificantly with the different values of v0. This shape-change
is accompanied with a shift toward the negative region of the
potential too. In Fig. 10 we plot again the potentials VI , VI I

and VI I I in terms of a with the equilibrium radius a0 = 3M
and M = 1 but for small initial speed. This radius is specifi-
cally important as it is the radius of the definite instability of
the STSW in the formalism of the linear stability analysis. It

is observed from this figure that although a0 = 3M is a local
instability radius for the STSW, a very small perturbation as
an initial speed in the positive radial direction, pushes the
STSW to fall into a potential well with two turning points.
Consequently, the STSW oscillates around a new stability
radius which is greater than a0 = 3M . Such a STSW expe-
riences a new stability which is not static and instead we
shall call it dynamic stability. The final point regarding to the
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Fig. 9 Plots of VI I I and σI I I against a for a0 = 5M , β2
0 = −16, M = 1 and from above v0 = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0

Fig. 10 A closer look at the potentialsVI , VI I andVI I I with very small
initial velocity i.e., v0 � 1 and a = 3M , M = 1 and β2

0 = 16,−16
and −16 for VI , VI I and VI I I respectively. For all three potentials the
value of the initial velocity varies from 0.0010 (the leftmost curve)

to 0.0000 (the rightmost curve) with steps equal to 0.0002. Hence,
v0 = 0.0000, 0.0002, 0.0004, 0.0006, 0.0008 and 0.0010 correspond
to the brown, red, green, gray, black and blue curve respectively

Fig. 10 is that for the quadratic EoS, the potential i.e., VI I

in this figure, behaves the same even for v0 = 0 . In other
worlds, the potential VI I suggests that a0 = 3M with v0 = 0
is not a local stable equilibrium point. However, this does not
necessarily mean that the STSW evaporates or collapses. It
may become stable after a perturbation with a small initial
velocity toward the positive radial direction. This behavior
has not been noticed before in the context of the linear sta-
bility analysis.

DataAvailability Statement This manuscript has no associated data or
the data will not be deposited. [Authors’ comment: This is a theoretical
research work and no experimental data has been considered.]
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