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Abstract In this paper, we construct four-dimensional
charged black branes of a nonminimally coupled and self-
interacting scalar field. In addition to the scalar and Maxwell
fields, the model involves two axionic fields homogeneously
distributed along the two-dimensional planar base manifold
providing in turn a simple mechanism of momentum dissi-
pation. Interestingly enough, the horizon of the solution can
be located at two different positions depending on the sign
of the parameter associated to the axionic field, and in both
cases there exists a wide range of values of the nonminimal
coupling parameter yielding to physical acceptable solutions.
For a negative parameter that sustains the axionic fields, the
allowed nonminimal coupling parameters take discrete val-
ues and the solution turns out to be extremal since its has zero
temperature. A complete analysis of the thermodynamic fea-
tures of the solutions is also carried out. Finally, thanks to
the mechanism of momentum dissipation, the holographic
DC conductivities of the solutions are computed in terms of
the black hole horizon data, and we analyze the effects of the
nonminimal coupling parameter on these conductivities. For
example, in the purely electric case, we notice that as long as
the nonminimal coupling parameter takes the discrete values
associated to the extremal solution, the DC conductivity van-
ishes identically reproducing in turn an insulator behavior. In
the non extremal case, we point out the existence of a partic-
ular value of the nonminimal coupling parameter (which is
greater than the conformal one in four dimensions) yielding
an infinite conductivity; this is due to the fact that the transla-
tion invariance is restored at this point. Finally, in the dyonic
case, we show that the conductivity matrix for the extremal
solution has a Hall effect-like behavior.
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1 Introduction

In the last decades, the ideas underlying the anti de-
Sitter/conformal field theory (AdS/CFT) correspondence
have been applied to get a better understanding of phenomena
that occur in the condensed matter physics as the quantum
Hall effect, the superconductivity or the superfluidity, see e.g.
[1,2]. As a significative example, we can mention the case of
charged hairy black holes with a planar horizon that may be
relevant to describe the behavior of unconventional supercon-
ductors [3]. In this scenario, the nonzero condensate behavior
of the unconventional superconductors is mimicked by the
existence of a hair at low temperature that must disappear in
the high temperature regime [3]. Nevertheless, finding black
holes with such features is a highly nontrivial problem that
is rendered even more difficult by the various no-hair theo-
rems with scalar fields existing in the current literature, see
e.g. [4]. Fortunately, the precursor works of Refs. [5,6] have
established that scalar fields nonminimally coupled seem to
be an excellent laboratory in order to escape the standard
scalar no-hair theorems. Indeed, as shown independently in
Refs. [5,6], conformal scalar field nonminimally coupled to
Einstein gravity can support black hole configuration with a
nontrivial scalar field. These black hole solutions have been
dubbed BBMB solution in the current literature. However,
the BBMB solution suffers from some pathology essentially
because of the divergence of the scalar field at the event hori-
zon. This inconvenient makes its physical interpretation and
the problem of its stability a subject of debate. A way of
circumventing this pathology consists in introducing a cos-
mological constant whose effect is to precisely push the sin-
gularity behind the horizon, and as a direct consequence, the
scalar field becomes well-defined at the event horizon [7].
It is important to stress that for the BBMB solution or its
extensions with cosmological constant dubbed as the MTZ
solution [7,8], the parameter ξ that couples nonminimally
the scalar field to the curvature is always the conformal one
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in four dimensions, namely ξ = 1
6 , and the horizon topology

of the black hole solutions is either spherical or hyperbolic
depending on the sign of the cosmological constant. There
also exist examples of black hole solutions with the confor-
mal coupling ξ = 1

6 but with a potential term that breaks the
conformal invariance of the matter source, see e.g. [9,10].
Nevertheless, charged black holes with planar horizon topol-
ogy for a scalar field nonminimally coupled to Einstein grav-
ity with or without a cosmological constant are not known.1

It seems that extra matter source is needed in order to sustain
planar charged black hole with a nonminimal scalar field.
This intuition is based on the works done in [14,15] where
a planar version of the MTZ solution was rendered possible
thanks to the introduction of two 3-forms that were originated
from two Kalb-Raimond potentials. Interestingly enough,
this construction was also extended for arbitrary nonmini-
mal coupling in [16]. Very recently, it has also been shown
that (charged) planar AdS black holes can arise as solutions
of General Relativity with a source composed by a confor-
mal scalar field together with two axionic fields depending
linearly on the coordinates of the planar base manifold [17].
The existence of these planar black holes is mainly due to
the presence of the axionic scalar fields which, in addition of
inducing an extra scale, allow the planar solutions to develop
an event horizon. More precisely, as proved in [17], the black
hole mass is related to the parameter associated to the axionic
fields, and hence these axionic (charged) black branes can be
interpreted as extremals in the sense that all their Noethe-
rian charges are fixed in term term of the axionic intensity
parameter. Many other interesting features are inherent to the
presence of axionic fields for planar solutions. Among oth-
ers, axionic fields depending linearly on the coordinates of
the planar base manifold provide a very simple mechanism
of momentum dissipation [18]. From an holographic point of
view, this feature has a certain interest since, as established
in Refs. [19,20], the computation of the DC conductivities
can be uniquely expressed in term of the black hole horizon
data. Mainly because of these results, the study of axionic
black hole configurations in different contexts has consider-
ably grow up the last time, see e.g. [21–28].

In the present, we plan to extend the work done in the
conformal situation [17] to the case of a four-dimensional
scalar field with an arbitrary nonminimal coupling with two
axionic fields. The model also involves a parameter b that
enters in the scalar potential and in the function that min-
imally couples the scalar and the axionic fields, see below
(2.3a–2.3b). The range of this extra parameter will be fixed
by some reality conditions as well as by demanding the solu-
tions to have positive entropy. Asymptotically AdS planar

1 In higher dimensions D > 4, it has been shown that locally AdS
black hole solutions with planar base manifold can emerge for scalar
field nonminimally coupled to Lovelock gravity [11–13].

dyonic black hole solutions will be presented with axionic
fields homogeneously distributed along the orthogonal pla-
nar coordinates of the base manifold for a priori any positive
value of the nonminimal coupling parameter ξ . However, the
positive entropy condition will considerably reduce the range
of the permissible values of the nonminimal coupling param-
eter. As in the conformal case [17], the solutions only contain
an integration constant denoted by ω. Interestingly enough,
the location of the event horizon can be at two different posi-
tions depending on the sign of the parameter ω. Moreover,
for ω < 0, the range of permissible values of the nonminimal
coupling parameter is discrete, and the solution is shown to
be extremal since its has zero temperature. Finally, the full
DC conductivities associated to the charged black brane solu-
tions will be computed following the recipes given in [19,20].
One of our motivations is precisely to identify the impact on
the conductivities of the nonminimal coupling parameter.

The plan of the paper is organized as follows. In the next
section, we present the model which consists of the Einstein
gravity action with a negative cosmological constant with a
source given by a self-interacting and nonminimally scalar
field coupled to two axionic fields. In Sect. 3, the asymptot-
ically AdS planar dyonic solutions are presented. In Sect. 4,
a detailed analysis of the thermodynamic properties of the
solutions through the Hamiltonian method is provided allow-
ing to identify correctly the mass of the dyonic solutions. In
the next section, following the perturbative method presented
in [19,20], the full DC conductivities of the (non) extremal
solutions are computed and the effects of the nonminimal
coupling parameter are analyzed. The last section is devoted
to our conclusions.

2 Model, field equations and black brane solutions

We consider a four-dimensional Einstein-Maxwell model
with a negative cosmological constant, a nonminimally cou-
pled and self-interacting scalar field φ together with two
axionic fields ψi for i = 1, 2 whose action is given by

S =
∫

d4x
√−g

(
κ(R − 2�) − 1

4
FμνF

μν − 1

2
∂μφ∂μφ

−ξ

2
Rφ2 −Ub(φ) − εb(φ)

2

2∑
i=1

∂μψi ∂μψi

)
. (2.1)

Here the Maxwell field strength is Fμν = ∂μAν − ∂ν Aμ, the
nonminimal coupling parameter is denoted by ξ while the
potentialUb and the coupling εb will be given below. For lat-
ter convenience, we shall opt for the following parametriza-
tion of the nonminimal coupling parameter ξ

ξ = n − 1

4n
, (2.2)
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which maps the region ξ > 0 to n ∈ R\[0, 1].2 Note that
the particular value ξ = 1

4 which corresponds to the limit
n → ∞ will be treated separately. The potential Ub(φ) and
the coupling εb(φ) associated to the axionic fields depend
on a positive constant denoted by b whose range will be
conditioned by some reality conditions as shown below

Ub(φ) = 1 − n

8n
(

1 − bφ
2

n−1

)4

(
4b3(n − 3)(n − 4)φ

2n+4
n−1

−3b2(n − 4)(3n − 7)φ
2n+2
n−1 + 6b(n − 3)2φ

2n
n−1

−(n − 3)(n − 4)φ2 − 6b5−nφ
8

n−1

)
, (2.3a)

εb(φ) = 1 + n − 1

8nκ

×
(

(n−2)φ2−(n−3)bφ
2n
n−1 − b3−nφ

4
n−1

(1−bφ
2
n−1 )2

)
.

(2.3b)

It is also important to stress that in order to ensure a
mechanism of momentum dissipation as well as a cor-
rect sign for the axionic kinetic term, the minimal cou-
pling function εb(φ) must be strictly positive everywhere.
Before proceeding, we would like to stress that the mini-
mal case ξ = 0 or equivalently n = 1 which has been
fully treated in [18] is clearly excluded from our anal-
ysis because of the form of the expressions Ub(φ) and
εb(φ). Also, we may note that for the conformal situation
ξ = 1

6 or equivalently n = 3, the potential vanishes iden-
tically and the axionic minimal coupling εb(φ) = 1, and
this situation corresponds to the case already studied in
[17].

The field equations obtained by varying the action (2.1)
with respect to the metric, the Maxwell field Aμ, the scalar
field φ and the axionic fields ψi read respectively

κ(Gμν + �gμν) = 1

2
T φ

μν + 1

2
Tψ

μν + 1

2
T em

μν ,

∇μF
μν = 0,

�φ = n − 1

4n
Rφ + dUb

dφ
+ 1

2

dεb

dφ

2∑
i=1

gμν∂μψi∂νψi ,

∇α

(
εb(φ)∇αψi

) = 0, i = 1, 2, (2.4)

where the different energy–momentum tensors are given by

T φ
μν = ∂μφ∂νφ − gμν

(
1

2
∂αφ∂αφ +Ub(φ)

)

+n − 1

4n

(
gμν� − ∇μ∇ν + Gμν

)
φ2,

2 A simple calculation shows that the range of values ξ < 0 is not
compatible with the reality condition as defined by Eq. (2.6).

Tψ
μν = εb(φ)

2∑
i=1

(
∂μψi∂νψi − 1

2
gμν∂αψi∂

αψi

)
,

T em
μν = Fμσ F

σ
ν − 1

4
gμνFρσ F

ρσ .

Dyonic black brane solutions of the field equations for
� = − 3 and with axionic fields homogeneously dis-
tributed along the two-dimensional planar base manifold can
be found, and are given by

ds2 = − f (r)dt2 + dr2

f (r)
+ r2(dx2 + dy2),

f (r) = 1

r2

(
r − 3ω√

12κ

) (
r + ω√

12κ

)3

,

ψ1(x) = ωx, ψ2(y) = ωy

φ(r) =
[

ω

b
(√

12κr + ω
)
] n−1

2

,

Aμdx
μ = −qe

r
dt + qm

2
(x dy − y dx), (2.5)

where the intensity of the axionic fields ω is tied to the electric
and magnetic charges by the relation

ω = ±
(96 bn−1 n κ2(q2

e + q2
m)

n − 1 − 8 n κ bn−1

) 1
4
. (2.6)

We will now be as exhaustive as possible to enumerate
the properties of these dyonic black brane solutions. For a
nonminimal coupling parameter ξ as parameterized by (2.2),
we have to distinguish between the case n > 1 corresponding
to ξ ∈]0, 1

4 [, and the case n < 0, i.e. ξ ∈] 1
4 ,∞[. For n > 1,

in order to deal with a real constant ω as defined by (2.6),
the parameter b of the model must belong to the interval
b ∈ ]0, b0[ with

b0 =
(
n − 1

8nκ

) 1
n−1

, (2.7)

while for n < 0, one must have b ∈ ]b0,∞[. Also, the con-
straint (2.6) allows both sign for the intensity of the axionic
fields ω. This remark has an interesting consequence con-
cerning the location of the horizon r+ since for ω > 0,
we have r+ = 3ω√

12κ
while for ω < 0, the event horizon

is located at r+ = − ω√
12κ

. In this latter case, because of

the form of the metric function (2.5), the temperature of the
solution vanishes identically and the black brane configura-
tion can be interpreted as an extremal solution. It remains to
ensure that the scalar field (2.5) is well-defined in the region
outside the horizon, namely for r ∈ [r+,∞[. For ω > 0,
the scalar field is regular everywhere in the region r > 0.
On the other hand, for a negative axionic intensity param-
eter ω < 0, the reality condition on the scalar field on the
region r ∈ [r+ = − ω√

12κ
,∞[ restricts the parameter n to
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Table 1 Range of the
permissible values of the
nonminimal coupling parameter
ξ depending on the sign of the
axionic parameter ω ensuring a
real solution

Sign of ω horizon r+ Permissible values of n or equivalently of ξ and range of b

ω > 0 r+ = 3ω√
12κ

n > 1 i.e. ξ ∈ ]0, 1
4 [ b ∈]0, b0[

ω > 0 r+ = 3ω√
12κ

n < 0, i.e. ξ ∈ ] 1
4 ,∞[, b ∈]b0,∞[

ω < 0 r+ = − ω√
12κ

n = 1 − 2k, i.e. ξ = k
2(2k−1)

, k ∈ N\{0}, b ∈]b0,∞[

be an odd negative integer n = 1 − 2k with k ∈ N\{0} or
equivalently the nonminimal coupling parameters is forced
to take the discrete values given by ξ = k

2(2k−1)
. All these

details are summarized in the Table 1. It is also interesting
to stress that for ω < 0, even if the scalar field vanishes at
the horizon, the expressions of the potential (2.3a) and the
coupling (2.3b) remain finite once evaluated on the solution
at the horizon, i.e.

Ub(φ)|r+ = 3(n − 1)b1−n

4n
,

εb(φ)|r+ = 1 − (n − 1)b1−n

8nκ
. (2.8)

This remark will be of importance for the finiteness of the DC
conductivities of the extremal solutions. Finally, we would
like to make a comment concerning the neutral configuration
qe = qm = 0. In this case, the reality condition on ω given
by Eq. (2.6) is replaced by a constraint on b given by b = b0

where b0 is defined in (2.7).
To conclude this section, we briefly report the solution

for the special coupling ξ = 1
4 which was excluded from the

previous study. In contrast with the other couplings, the black
brane solution can not be charged, and the neutral solution is
given by

ds2 = −
(
r2 − ω2

2κ
− ω3

2κr

)
dt2

+ dr2

(
r2 − ω2

2κ
− ω3

2κr

) + r2(dx2 + dy2), (2.9)

φ(r) = e
r
ω , ψ1(x) = ωx, ψ2(y) = ωy, (2.10)

for a potential U and a coupling ε free of any couplings that
read

U (φ) = φ2

4κ ln(φ)
(2κ ln(φ)3

+6κ ln(φ)2 + (3κ − 1) ln(φ) − 2), (2.11)

ε(φ) = 1 − φ2

4κ
(ln(φ) + 2). (2.12)

One can easily see that for ω > 0, the metric solution admits
a single root located at r+ ∈]ω2

3κ
,∞[.

3 Thermodynamics of the solutions by means of the
Hamiltonian method

We now study the thermodynamic properties of the non-
extremal solution (2.5) with ω > 0 whose event horizon
is located at r+ = 3ω√

12κ
with n ∈ R\[0, 1] or equivalently

ξ ∈]0, 1
4 [∪] 1

4 ,∞[. In order to achieve this task, we will pro-
ceed using the Euclidean approach where the time is imagi-
nary and periodic with period β = T−1. Here, T stands for
the temperature which is fixed by requiring regularity at the
horizon. The temperature of the non-extremal solution (2.5)
reads

T = 16ω

9π
√

12κ
. (3.1)

The Euclidean action IEuc is related to the Gibbs free energy
F by

IEuc = βF = β

(
M − TS −

∑
i

μiQi

)
,

where M is the mass, S the entropy and μi are the extra
potentials with their corresponding charges Qi [29].

In order to construct a well-defined Euclidean action, we
will consider a mini superspace where the metric is static and
given by

ds2 = N (r) f (r)dτ 2 + dr2

f (r)
+ r2(dx2 + dy2),

with τ ∈ [0, β]. The radial coordinate r ranges from the
horizon to infinity, i.e. r ≥ r+, and the planar coordinates
both are assumed to belong to a compact set, that is x ∈
�x and y ∈ �y with

∫
dx dy = �x�y . We also assume

a specific ansatz for the scalar, axionic and electromagnetic
fields, i.e. φ = φ(r), Aμdxμ = Aτ (r)dτ + Ax (y)dx +
Ay(x)dy, and ψ1 = ψ1(x), and ψ2 = ψ2(y). In doing so,
the reduced Euclidean action takes the form

IEuc =
∫

d4x(NH + Aτ p
′) + B, (3.2)

where B is a boundary term that will be properly fixed
below. Here p is the conjugate momentum of Aτ , p =
− r2

N (r)
Aτ (r)′, and the reduced Hamiltonian H is given by
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H = (2κ − ξφ(r)2)(r f ′(r) + f (r)) − 1

2
f (r)r2

× (−1 + 4ξ)φ′(r)2 − rξφ(r)(r f ′(r) + 4 f (r))φ′(r)

− 2r2 f (r)ξφ(r)φ′′(r) + εb(φ)

2

2∑
i=1

(∂iψi )
2

+ (∂x Ay − ∂y Ax )
2

2r2 + 2p2

r2 + r2Ub(φ) + 2κr2�.

The boundary term B is fixed by requiring that the reduced
action has an extremum, that is δ IEuc = 0, yielding to

δB =
[
(−Aτ δp − N (r)[(2rκ − rξφ(r)2r2ξφ(r)φ′(r))δ f

− r2( f ′(r)ξφ(r) + f (r)φ′(r) − 2 f (r)ξφ′(r))δφ
+ 2r2 f (r)ξφ(r)δφ′])Rr+
−

∫ R

r+
dr εb(φ(r))

{[∫
�y

dy ∂xψ1δψ1

]

x∈�x

+
[∫

�x

dx ∂yψ2δψ2

]
y∈�y

}

−
∫ R

r+
dr

N (r)

r2

{[∫
�x

dx (∂y Ax − ∂x Ay)δAx

]
y∈�y

−
[∫

�y

dy (∂y Ax − ∂x Ay)δAy

]

x∈�x

} ]
β�x�y,

(3.3)

where this expression has to be evaluated at the limit R →
∞. The field equations obtained from varying the Euclidean
action (which do not depend on the boundary term B) imply
that N is a constant, and this latter can be chosen without any
loss of generality to be N (r) = 1. On the other hand, Gauss
law implies that p = cst = qe. For the axionic fields, we
note that their contribution strongly depends on the integral∫ r
r+ εb(φ(r)) dr , which in our case can be computed yielding

to
∫ r

r+
εb(φ(r))dr = r − (n − 1)b1−n

96κ2nr

(
ωn−1(

√
12κr

+ ω)3−n − ω2
)

− (r ←→ r+). (3.4)

The final variation of δB at the infinity is finite and given by

δB(∞) = β�x�y

(
4ω2

√
12κ

+ η
(n − 3)(n − 1)

√
12κb1−nω2

48nκ2

)
,

where η is defined as

η = δ2
n + δ−k

n , where k ∈ N\{0}. (3.5)

The emergence of this extra contribution proportional to η

which is effective only forn = 2 and for any nonzero negative
integer can be explained from the fact that the “binomial”
expression appearing between the large brackets in (3.4) will
contribute with a linear term in the radial coordinate only for
integer values n ∈ N less or equal to three.3 Working in the
grand canonical ensemble, where β and all the potentials are
fixed, the boundary term at the infinity can be integrated as

B(∞) = β�x�y

(
4ω3

3
√

12κ

+ η
(n − 3)(n − 1)

√
12κb1−nω3

144nκ2

)
. (3.6)

For the contribution at the horizon of the Euclidean action,
we require the following variations

δ f
∣∣r+ = − f ′(r+)δr+, δφ

∣∣r+ = δ(φ(r+)) − φ′(r+)δr+
δp

∣∣r+ = δqe, δAy

∣∣∣r+ = x

2
δqm, δAx

∣∣∣r+ = − y

2
δqm

δψ1
∣∣r+ = xδω, δψ2

∣∣r+ = yδω

For reason that will become clear, see below Eq. (3.10b), we
define

G̃ = 1

16πκ − 2(n − 1)

n
πφ(r+)2

, (3.7)

and we finally get

δB(r+) = δ

(
A+
4G̃

)
+ β[�eδqe

+ �mδqm − �1δω − �2δω]�x�y, (3.8)

where A+ = �x�yr2+ is the horizon area, �e = qe
r+

, �m =
qm
r+

and �1 and �2 correspond to the axionic potentials,

defined as ω times the horizon term of (3.4), i.e.,

�1 = �2 ≡ ω

(
r+ − (n − 1)b1−n

96κ2nr+

(
ωn−1(

√
12κr+

+ ω)3−n − ω2
)

− η
(n − 3)(n − 1)

√
12κb1−nω

96nκ2

)
.

Therefore, the boundary term at the horizon is

B(r+) = A+
4G̃

+ β [�eqe + �mqm − �1ω

− �2ω] �x�y . (3.9)

Plugging (3.6) and (3.9) we obtain our boundary term, B =
B(∞)− B(r+). The relation between the boundary term and
the Gibbs free energy allows us to identify the mass M, the

3 We may remember that the values n = 0 and n = 1 were excluded
from the very beginning, and for n = 3 the expression multiplying η

vanishes identically.
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entropy S, the electric charge Qe, the magnetic charge Qm

and the axionic charges Q1 and Q2,

M = �x�y

(
4ω3

3
√

12κ

+ η
(n − 3)(n − 1)

√
12κb1−nω3

144nκ2

)
, (3.10a)

S = A+
4Ḡ

, (3.10b)

Qe = �x�yqe, Qm = �x�yqm,

Q1 = Q2 = − �x�yω. (3.10c)

It is reassuring to check that in the conformal case n = 3,
these thermodynamic quantities reduce to those obtained in
[17]. On the other hand, even if the first law is satisfied by
means of the constraint (2.6), the signs of the entropy and
the mass must be analyzed carefully. Firstly, the positivity of
the entropy imposes a lower bound for the parameter b; this
is because the constant G̃ as defined by (3.7) must be strictly
positive, and this leads to

b >
1

4

(
n − 1

8nκ

) 1
n−1 = 1

4
b0,

for n > 1, and b <
1

4
b0, for n < 0.

Referring to the Table 1, one can see that the reality con-
dition imposed by (2.6) for ω > 0 make possible to deal
with solutions with positive entropy only if n > 1 or equiv-
alently ξ ∈]0, 1

4 [ and the range of the parameter b must then
be reduced to b ∈] 1

4b0, b0[. For the other values of the non-
minimal coupling parameter n < 0 or equivalently ξ > 1

4 ,
the entropy of the solutions turns out to be always negative
because of the reality condition (2.6). Concerning the mass,
it is interesting to note that the mass is always positive for
η = 0 as defined by (3.5) or for the conformal case n = 3. On
the other hand, for n = 2, the positivity of the mass requires
b > 1

2b0, and hence our static solution with n = 2 can have
positive entropy and mass by demanding the parameter b to
belong to the set b ∈] 1

2b0, b0[. Finally, for the remaining val-
ues for which η = 1, namely n = −1,−2, . . ., the solutions
will always have negative mass and entropy.

For the extremal solution corresponding to ω < 0 and ξ

taking discrete values (cf. Table 1) with a scalar field van-
ishing at the horizon φ(r+) = 0, it is not safe to consider
the Euclidean approach since the inverse of the temperature
is infinite. Nevertheless, one can compute the entropy of the
extremal solution by means of the Wald’s formula [30] yield-
ing

Sextremal = 4πκ �x �y r
2+. (3.11)

It is interesting to note that this result matches with the non
extremal expression (3.10b) with (3.7) by taking φ(r+) = 0.

In addition, as it can be seen from Eq. (3.11), the entropy
of the extremal solution is always positive and given by the
Hawking formula, S = Area

4G , after restoring correctly the
value of κ in term of the Newton gravitational constant, i.e.
κ = 1

16πG . On the other hand, the mass of the extremal
solution is given by

Mextremal = �x�y

(
4ω3

3
√

12κ

+ (n − 3)(n − 1)
√

12κb1−nω3

144nκ2

)
, (3.12)

and it is easy to see that for the permissible discrete values
of the nonminimal coupling parameters n = 1 − 2k with
k ∈ N\{0} this expression is always positive for b > b0 (cf.
Table 1) even if ω < 0.

4 Holographic DC conductivities

In Refs. [19,20], it was established that the full DC con-
ductivities for black holes enjoying a momentum dissipation
can be computed in terms of the black hole horizon data. The
main idea is to construct some conserved currents indepen-
dent of the holographic radial coordinate r . To that end, we
follow the prescription as described in Refs. [19,20], and we
first turn on the following relevant perturbations on the black
brane solution (2.5)

δAx = −Ex t + ax (r), δAy = −Eyt + ay(r)

δgtx = r2htx (r), δgrx = r2hrx (r),

δgty = r2hty(r), δgry = r2hty(r)

δψ1 = χ1(r), δψ2 = χ2(r),

where Ex , Ey are two constants. Consequently, the two per-
turbed Maxwell equations read

f ′a′
x + f a′′

x + qeh
′
t x + qm( f ′hry + f h′

r y) = 0,

f ′a′
y + f a′′

y + qeh
′
t y − qm( f ′hrx + f h′

r x ) = 0,

which allow to define the following two conserved currents,

Jx := − f a′
x − qehtx − qm f hry, (4.1a)

Jy := − f a′
y − qehty + qm f hrx . (4.1b)

According to the AdS/CFT correspondence, the holographic
DC conductivities are determined by the conserved cur-
rents in the asymptotic boundary, and since the expressions
obtained above (4.1a) and (4.1b) are independent of the radial
coordinate, we can evaluate them at the horizon r+. The next
step is to impose boundary conditions on the linearized per-
turbations at the black hole horizon. In order to achieve this
task, it is convenient to use the Eddington-Finkelstein coor-
dinates (v, r) such that v = t+∫ dr

f (r) . In this case, the gauge
field will be well-defined by demanding
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Table 2 Signs of the entropy and mass of the dyonic solutions whose reality conditions are fixed by Table 1 and where b0 = ( n−1
8nκ

) 1
n−1

Sign of ω Permissible values of ξ Signs of entropy and mass

ω > 0 n > 1 and n �= 2 i.e. ξ ∈ ]0, 1
4 [\ 1

8 S > 0 andM > 0, for b ∈] 1
4b0, b0[

ω > 0 n = 2 i.e. ξ = 1
8 S > 0 andM > 0, for b ∈] 1

2b0, b0[
ω > 0 n < 0 i.e. ξ ∈ ] 1

4 ,∞[ S < 0 andM < 0, for b > b0

ω < 0 n = 1 − 2k, i.e. ξ = k
2(2k−1)

, k ∈ N\{0} S > 0 andM > 0, for b > b0

ax = −Ex

∫
dr

f (r)
, ay = −Ey

∫
dr

f (r)
, (4.2)

while we will require the axionic fields to be constant near
the horizon, and for the metric perturbations we will need to
impose

hrx = htx
f (r)

, hry = hty
f (r)

. (4.3)

All the previous conditions can be substituted into the r x and
r y components of the linearized Einstein equations, obtain-
ing a system of equations for htx (r+) and hty(r+), whose
solutions are given by

htx = −Eyq3
m − qmεb(φ)ω2r2Ey − qeεb(φ)ω2r2Ex − q2

e qmEy

16α2q4
m + 2q2

mεb(φ)ω2r2 + εb(φ)2ω4r4 + 16α2q2
e q

2
m

∣∣∣∣
r=r+

, (4.4a)

hty = q2
e qmEx + q3

mEx − qeεb(φ)ω2r2Ey + 4αqmεb(φ)ω2r2Ex

q4
m + 2q2

mεb(φ)ω2r2 + εb(φ)2ω4r4 + Q2
eq

2
m

∣∣∣∣
r=r+

. (4.4b)

Since the DC conductivities depend on the location of the
horizon, we will first consider the non extremal case ω > 0
where the horizon is at r+ = 3ω√

12κ
while the extremal situ-

ation ω < 0 and r+ = − ω√
12κ

will be treated at the end of
the section. Hence, the final step is to insert (4.2–4.4b) into
(4.1a), (4.1b) to obtain the conductivities through

σxx = ∂ Jx
∂Ex

= ε̃bω
4(12(q2

e + q2
m)κ + 9ε̃bω

4)

16q2
m(q2

e + q2
m)κ2 + 24q2

m ε̃bω4κ + 9ε̃b
2ω8

,

σxy = ∂ Jx
∂Ey

= qeqmκ(64(q2
e + q2

m)κ + 96ε̃bω
4)

64q2
m(q2

e + q2
m)κ2 + 96q2

m ε̃bω4κ + 36ε̃b
2ω8

,

σyx = ∂ Jy
∂Ex

= −σxy, σyy = ∂ Jy
∂Ey

= σxx , (4.5)

where we have defined

ε̃b ≡ εb(φ(r+)) = 1

+ (n − 1)(42−n(3n − 5) − 1)b1−n

72nκ
. (4.6)

The conductivity matrix is antisymmetric in accordance with
the invariance under the SO(2) symmetry. The purely electric
DC conductivity σDC is given by

σDC ≡ σxx (qm = 0) = 1 + 4q2
e κ

3ε̃bω4

= 1 + (n − 1) − 8nκbn−1

72nκbn−1 + (n − 1)(42−n(3n − 5) − 1)
,

(4.7)

where we have explicitly used the constraint (2.6). We are
now in position to analyze the effects of the parameter b and
the nonminimal coupling parameter n on the electrical DC

conductivity. We also recall that the parameter b is subjected
to some reality conditions (cf. Table 1) corresponding to the
mathematical range of b but also to physical constraints that
ensure the positivity of the mass and entropy (cf. Table 2)
that we will refer as the physical range of b.

Firstly, it is straightforward to prove that there exists a
value of the nonminimal coupling parameter n0 ≈ 3.4681
corresponding to ξ0 ≈ 0.1779 (2.2) such that for each
n > n0, there exists a precise value of the parameter b
denoted by b1 with b0

4 < b1 < b0 (cf. Table 2) such that
the DC conductivity is strictly positive for b ∈]b1, b0[ and
σDC becomes infinite at (n, b1). In other words, this means
that for any coupling greater than n0, one can always choose
a parameter b ∈]b1, b0[ of the theory that yields to well-
defined physical solutions, namely solutions with positive
mass and entropy and having a positive conductivity. Addi-
tionally, for the choice b = b1, the DC conductivity becomes
infinite at the point (n, b1) with n > n0. This is due to the
fact that the minimal coupling function εb(φ) evaluated at
the horizon vanishes at this point. This is not surprising since
in order to ensure the mechanism of momentum dissipation
yielding to finite conductivity, the coupling function εb(φ)

must not vanish.
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(a) σDC vs b for n < n0 or equivalently ξ =
1
8

(b) σDC vs b for n = 4 > n0 or equivalently
ξ = 3

16

Fig. 1 The conductivity σDC in term of the parameter b for nonminimal couplings 0 < ξ < 1
4

Now, in order to visualize the influence on the electric
DC conductivity of the parameters b and n, we will plot the
graphics of σDC in function of b and n. In Fig. 1, we plot
the conductivity vs the parameter b for two distinct values
of the nonminimal coupling parameter, namely n = 2 < n0

and n = 4 > n0. The graphic given by Fig. 1a for n = 2
is in fact representative of all the cases 1 < n ≤ n0. One
can see that for the physical range of b, namely b ∈] 1

4b0, b0[
or b ∈] 1

2b0, b0[ for n = 2 (cf. Table 2), the conductivity is
strictly positive and finite.4 In fact, the positivity of the con-
ductivity is always ensured even for the full mathematical
range of b, i.e. b ∈]0, b0[. On the other hand, the graphic
represented in Fig. 1b for n = 4 will be similar for any value
n > n0. In this case, as mentioned before, one can see the
existence of a a vertical asymptote at b = b1 (for n = 4
we have b1 ≈ 0.66534) where the conductivity becomes
infinite. Nevertheless, in contrast with the previous case, the
conductivity is positive only for b ≥ b1, and hence part of
the physical range, namely b ∈] 1

4b0, b1[ yields to negative
conductivity. We also include a plot of the non extremal sit-
uation for n < 0 or equivalently ξ > 1

4 , see Fig. 2. The
mathematical range of b is located at the right of the blue
line while its physical range is at the left of the dotted line.
One can see that for a mathematically well-defined solution,
the electric conductivity is always positive even if it has neg-

4 It is worth mentioning that the values yielding negative conductivities
are those for which the minimal coupling function εb(φ) evaluated at
the horizon is negative. Hence, in order to have a kinetic axionic term
with the right sign to avoid ghost problems, the values associated to
negative conductivities must be ruled out.

ative mass and entropy. We can also appreciate the influence
of the nonminimal coupling parameter on σDC by drawing
the graphics of this latter in function of n, see Fig. 3. In order
to achieve this task, we must be careful with the election of
b since its range of permissible values depends explicitly on
n, see Tables 1 and 2 where we have defined b0 in (2.7). As
explained before, one can see that for n ≤ n0, the electric
conductivity is positive while for n > n0, one has σDC < 0.
Finally, we would like to mention that as in the conformal
case [17], the DC conductivity is temperature-independent.
To be more precise, on one hand we have seen that the tem-
perature depends on the axionic parameter ω. On the other
hand, in order to have solutions that respect the AdS sym-
metry at the boundary, the axionic charge must be related
with the electric and magnetic charges through the relation
(2.6). It is important to stress that this particular relation is
due to the fact that the fall off of the nominally coupled scalar
modifies the asymptotic behavior of our solutions. Moreover
this relation makes our thermodynamic analysis integrable.
However, as one uses the relation (2.6) in the conductivity
matrix, we notice that ω-dependence disappears as it can be
appreciated in the expression (4.7).

The remaining DC conductivities namely the thermoelec-
tric and the heat conductivities can also be obtained by turn-
ing on a more general time-dependent perturbation5

δAx = t (−E + ζa(r)) + ax (r),

δgtx = −tζ f (r) + r2htx (r), δgrx = r2hrx , δψi = χ(r),

5 For simplicity, we will only consider the DC conductivities along the
x-coordinate without magnetic charge.
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Fig. 2 σDC vs b for any nonminimal couplings n < 0 or equivalently
ξ > 1

4

where ζ can be shown to parameterize a time dependent
source for the heat current. As a consequence, in addition
to the conserved current Jx , the following quantity

Qx = f (r)2( f (r)r2htx )
′ − aJx

is also conserved along the radial coordinate [19]. Hence,
the thermoelectric conductivities α and ᾱ as well as the heat
conductivity κ̄ can be computed yielding

α = β
∂Qx

∂E
= 4πqe

ω2ε̃b
, ᾱ = β

∂ Jx
∂ζ

= 4πqe
ω2ε̃b

κ̄ = β
∂Qx

∂ζ
= 64πω

3ε̃bκ
√

12κ
, (4.8)

where β as usual is the inverse of the temperature.
Finally, for the extremal solutions, namely ω < 0 (cf.

Tables 1, 2), the analysis is completely analogue. This is due
to the fact that, even if the scalar field vanishes at the event
horizon, the minimal coupling function ε̃b remains finite at
the horizon (2.8). As a direct consequence, the expressions
derived previously remain valid with the difference that in
the extremal case, the horizon is located at r+ = − ω√

12κ
.

Interestingly enough, the conductivity matrix becomes an
antisymmetric matrix given by

σ =
(

0 − qm
qe

qm
qe

0

)
. (4.9)

It is somehow appealing that for the extremal solution, the
conductivity matrix has a Hall effect-like behavior with a Hall
conductivity that looks like that B/ρ instead of ρ/B, (here ρ

is the density of charge and B the orthogonal magnetic field).
Indeed, in the AdS/CFT dictionary, (3+1)-dimensional AdS
dyonic black holes are conjectured to be dual to a (2 + 1)

CFT. In this picture, the electric bulk gauge field does not
have a counterpart in the dual field theory but instead it fixes
the electric charge density ρ to be proportional to the electric
charge of the black hole, i.e. ρ ∝ qe. On the other hand,
the magnetic bulk gauge field is in correspondence with an
external magnetic field in the CFT side with a field strength
B ∝ qm . Hence, the Hall conductivity in our case (4.9) is
proportional to the ratio between the magnetic field and the

(a) σDC vs n for b = 0.6 (b) σDC vs n for b = 0.95

Fig. 3 Influence of the nonminimal coupling parameter n on the electric conductivity

123



418 Page 10 of 11 Eur. Phys. J. C (2019) 79 :418

electric charge density, i.e. σxy ∝ B
ρ

. As a final comment, one
can notice that in the purely electric case qm = 0, the DC
conductivity for the extremal solution vanishes identically
reproducing in turn an insulator behavior.

5 Conclusion

Here, we have considered a self-interacting scalar field non-
minimally coupled to the four-dimensional Einstein gravity
with a negative cosmological constant. The matter source is
also supplemented by the Maxwell action with two axionic
fields minimally coupled to the scalar field. Our model is
specified from the very beginning by two parameters that
are the nonminimal coupling parameter denoted ξ or equiv-
alently n (2.2) and the constant b that enters in the mini-
mal coupling as well as in the potential. For this model, we
have obtained dyonic planar black holes with axionic fields
depending linearly on the coordinates of the planar base man-
ifold. We have noticed that these charged solutions depend
on a unique integration constant denoted by ω and the hori-
zon can be located at two different positions depending on
the sign of ω. Surprisingly, for ω < 0, the temperature of
the solution vanishes identically and hence one can interpret
the solution as an extremal black brane. We have also shown
that some reality conditions (cf. Table 1) supplemented by
the requirement of having solutions with positive entropy
and mass restrict considerably the permissible values of the
nonminimal coupling parameter and of the parameter b, see
Table 2. For a positive ω > 0, the set of physically accept-
able values of the nonminimal coupling parameter is given
by ξ ∈]0, 1

4 [ while for the extremal solution corresponding
to ω < 0, only discrete values of the nonminimal coupling
parameter given by ξ = k

2(2k−1)
with k ∈ N\{0} yield to

solutions with positive mass and entropy. These restrictions
on the nonminimal coupling parameter are to be expected
since, even for purely scalar field nonminimally coupled to
Einstein gravity, black hole configurations have been shown
to be ruled out for ξ < 0 and ξ ≥ 1

2 , see Ref. [31].
In the last part of this work, we have taken advantage of

the momentum dissipation ensured by the axionic fields to
compute the different conductivities by means of the recipes
given in Refs. [19,20]. Many interesting results can be high-
lighted from the study of the holographic DC conductivities
inherent to these dyonic solutions. For the non extremal solu-
tions, we have shown that for n ≤ n0 ≈ 3.4681 or equiva-
lently ξ ≤ ξ0 ≈ 0.1779, the dyonic solutions always enjoy
a positive conductivity for any mathematically permissible
value of b. On the other hand, for n > n0, the positive con-
ductivity condition restricts the interval of b to be ]b1, b0[
with b1 > 1

4b0. In other words, this means that the physical
solutions (in the sense of having positive mass and entropy)
for n > n0 with b ∈] 1

4b0, b1[ will have a negative conductiv-

ity. Also, we have shown that for n > n0 there always exist
a value of the parameter b denoted by b1 which restores the
translation invariance, in the sense that σDC (n, b1) → ∞.
Finally, for the extremal solution, we have shown that the
diagonal elements of the conductivity matrix precisely van-
ish and its off-diagonal elements are similar to those inherent
to the Hall effect.

An interesting extension of our model will be to consider
an additional k-essence term for the axionic part of the action
and to analyze the effects on the conductivities of the non-
minimal coupling parameter ξ conjugated with the k-essence
parameter, see Ref. [24]. In the same lines a natural gener-
alization of these solutions would be the extension to higher
dimensional scenarios following the lines of [32].

Finally, it will be very interesting to explore more deeply
some of the properties of our solutions such as the extremal-
ity, the perfect conductivity or the Hall effect-like behavior
of the extremal solutions. With this respect, in Ref. [33],
it was shown that the Reissner-Nordstrom at the extremal
limit experiences a sort of Meissner effect in the sense that
the magnetic flux lines are expelled. Hence, a work to be
done consists precisely in investigating the extremal solu-
tions found here can exhibit a kind of Meissner effect.
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