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Abstract This letter is based on a kinetic theory approach
to anisotropic hydrodynamics. We derive the sound wave
equation in anisotropic hydrodynamics and show that a cor-
responding wave front is ellipsoidal. The phenomenon of
Mach cone emission in anisotropic hydrodynamics is stud-
ied. It is shown that Mach cone in anisotropic case becomes
asymmetric, i.e., in this limit they’re two different angles,
left and right with respect to the ultrasonic particle direction,
which are determined by the direction of ultrasonic particle
propagation and the asymmetry coefficient.

1 Introduction

One of the universal features of highly excited matter cre-
ated at the early stages of heavy ion collisions is its momen-
tum space anisotropy, extreme at its birth point and, pre-
sumably, gradually disappearing in the course of its expan-
sion. Of significant interest are therefore physical phenom-
ena that are directly related to this anisotropy. A natural styl-
ized framework for discussing such phenomena is the so-
called anisotropic relativistic hydrodynamics [1,2] in which
the momentum anisotropy of evolving “liquid” is built in
explicitly. One of the most important phenomena in hydro-
dynamics is its sound excitation modes and, in particular, the
related phenomenon of Mach cone. In this letter we analyze
sound propagation and Mach cone emission in anisotropic
relativistic hydrodynamics.

The interest to the Mach cone emission in the context of
ultra relativistic heavy ion collisions [3–5] was sparked, in
particular, by the results on two particle correlations at RHIC
[6,7]. An alternative explanation of the two-humped struc-
ture observed was in terms of Cherenkov radiation of a parton
moving with velocity exceeding the speed of gluon propaga-
tion in the hot dense medium formed in heavy ion collisions
[8,9]. However, subsequent studies at LHC did not confirm
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the existence of the visible two-bump structure in a fragmen-
tation of away side jets [10,11] and, in addition, arguments
for significant effects from background suppression at RHIC
results were spelled out (see, e.g., a detailed review in [12]).
It should also be noted that a two-hump structure may be
explained by taking into account geometric fluctuations of
initial state in heavy ion collisions [13,14]. Despite the fact
that at present there is no direct experimental evidence for
the Mach cone emission phenomenon, there is still a sig-
nificant theoretical interest in adjusting a description of this
universal phenomenon to the realistic stylized properties of
the matter created at the early stages of heavy ion collisions,
in particular, its momentum anisotropy. Moreover, there are
other observables that could be affected by the Mach cone
emission, i.e. the enhancement of low-pt particles away from
the quenched jets [15–17].

The analysis in this letter is based on a kinetic theory
approach to anisotropic hydrodynamics [2]. In Sect. 2 we
derive a sound wave equation in anisotropic hydrodynamics
and show that a corresponding wave front becomes ellip-
soidal. In Sect. 3 we analyze the phenomenon of Mach cone
emission in anisotropic hydrodynamics and show that the
cone becomes asymmetric, i. e. there are two different angles,
left and right with respect to the ultrasonic particle direction,
which are determined by the direction of ultrasonic particle
propagation and the asymmetry coefficient.

2 Sound in anisotropic hydrodynamics

The phenomenon of sound propagation is analyzed by study-
ing the excitation modes in the linear approximation in
fluctuations. Let us perform this analysis for the formula-
tion of anisotropic hydrodynamics based on kinetic theory
approach and use the Romatschke–Struckland ansatz [18–
20] for massless gas:

f (x, p) = fiso

(√
pμ�μν pν

�(x)

)
, (1)
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where (pμ�μν pν = p2 + ξ(x)p2‖) in the Landau rest frame
(LRF) and ξ is an anisotropy parameter which is, generally
speaking, a function of the coordinates x .

From this simple model one can derive analytical expres-
sions for particle number density n and components of
energy-momentum tensor Tμν in the LRF using their stan-
dard definitions as the first and second moments of the dis-
tribution function [18–20]

T 00 = ε(�, ξ) = R(ξ)εiso(�), (2)

T 11 = T 22 = P⊥(�, ξ) = R⊥(ξ)Piso(�), (3)

T 33 = P‖(�, ξ) = R‖(ξ)Piso(�), (4)

n(�, ξ) = niso(�)√
1 + ξ

, (5)

where εiso(�), Piso(�) and niso(�) are isotropic energy
density, pressure and particle number density respectively
obtained from isotropic distribution function fiso and the
dependence on the anisotropy parameter is factored out for
all the variables considered. The dependence of the factors
R ,⊥,‖ on the anisotropy parameter ξ is given by [20,21]:

R(ξ) = 1

2

(
1

1 + ξ
+ arctan

√
ξ√

ξ

)
, (6)

R⊥(ξ) = 3

2ξ

(
1 + (ξ2 − 1)R(ξ)

1 + ξ

)
, (7)

R‖(ξ) = 3

ξ

(
(ξ + 1)R(ξ) − 1

1 + ξ

)
. (8)

In what follows it turns out convenient to introduce the fol-
lowing parametrization for the quantities involved in describ-
ing the properties of an anisotropic fluid in terms of a four-
vector uμ(x) and a rapidity ϑ(x):

Uμ = (u0 cosh ϑ, ux , uy, u0 sinh ϑ), (9)

Xμ =
(
u⊥ cosh ϑ,

u0ux
u⊥

,
u0uy

u⊥
, u⊥ sinh ϑ

)
, (10)

Yμ =
(

0,− uy

u⊥
,
ux
u⊥

, 0

)
, (11)

Zμ = (sinh ϑ, 0, 0, cosh ϑ), (12)

where Uμ is the 4-velocity vector that describes the hydro-
dynamic flow, Zμ defines the direction of the longitudinal
axis and Xμ and Yμ define axes in the transverse plane and
the four-vector uμ satisfies uμ(x) u2

0 = 1 + u2
x + u2

y (4-
vectors U are normalized so that UμUμ = 1, the same holds
for X,Y and Z ), ϑ is the fluid rapidity. In the LRF one has
Uμ = (1, 0, 0, 0), Zμ = (0, 0, 0, 1).

Assuming conservation of energy–momentum tensor Tμν

and particle current jμ one gets:

∂μT
μν = 0 (13)

∂μ jμ = 0. (14)

where

Tμν = (ε + P⊥)UμU ν − P⊥gμν − (P⊥ − P‖)ZμZν,

(15)

jμ = nUμ. (16)

Linearization of (13, 14) leads to equations describing
propagation of sound [22]. To derive sound equation for the
case under consideration let us expand the 4-velocities U ,
Z , particle number density, energy and momentum densities
with respect to a temperature parameter �(x) = �(0) +
�(1)(x) to the leading order in gradients:

Uμ = U (0)μ +U (1)μ(x), (17)

Zμ = Z (0)μ + Z (1)μ(x), (18)

ε = ε(0) + ε(1)(x), (19)

P⊥,‖ = P(0)
⊥,‖ + P(1)

⊥,‖(x), (20)

n = n(0) + n(1)(x). (21)

Let us now move to the frame in whichU (0) = (1, 0, 0, 0)

and Z (0) = (0, 0, 0, 1). That gives us, through UμZμ = 0,
same relations between components of U (1) and Z (1). Let us
also introduce the following notations:

ε(1)(x) = cεn
(1)(x), (22)

P(1)
⊥ (x) = c⊥n(1)(x), (23)

P(1)
‖ = c‖n(1)(x). (24)

Assuming smallness of the gradients of the anisotropy
parameter ξ and limiting our consideration to transverse fluc-
tuations with respect to u(0)

μ we obtain, using (1), (13) and
(14), the following sound equation
(
c⊥∂2

x + c⊥∂2
y + c‖∂2

z − cε∂
2
t

)
n(1) = 0. (25)

From (25) one can see that it leads to an ellipsoidal front
of a sound wave. Coefficients c‖,⊥... may be obtained obtain
from representation of (22)–(24) as a series of anisotropy-
dependent density parameter (taking � = �0 +�(1)), using
(2) and keeping terms of order of �(1).

cε = √
1 + ξ R(ξ)A(�0)

c⊥ = 1

3

√
1 + ξ R⊥(ξ)A(�0),
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Fig. 1 κ(ξ)

c‖ = 1

3

√
1 + ξ R‖(ξ)A(�0), (26)

where A(�0) = ∂εiso(�0)/∂�
∂niso(�0)/∂�

Introducing a notation κ = c‖/c⊥ and using a relation
cε = 2c⊥ + c‖ valid in the ultra-relativistic case , we can
rewrite (25) in the following form:

(
∂2
x + ∂2

y + κ∂2
z

)
n(1) = (κ + 2)∂2

t n
(1). (27)

In the isotropic limit κ = 1 equation (27) reduces to the stan-
dard isotropic ultrarelativistic sound equation. Let us note
that κ may be written as κ = P‖

P⊥ and, therefore, κ is the
anisotropy-related quantity that is, in principle, observable.
A dependence of κ on the anisotropy parameter is shown in
Fig. 1.

3 Mach cone

One of the characteristic phenomena in hydrodynamics is the
appearance of the Mach cone, an expanding shock wave that
is generated by an ultrasonic body propagating in a medium.
Its properties depend on the ratio of the local flow veloc-
ity v and the speed of sound in the medium cs - the Mach
Number (MN). The Mach cone appears for MN > 1. For
isotropic theories there is a well known formula for Mach
angle, an angle with respect to the direction of propagation
of ultrasonic particle at which the shock wave is emitted:
sin θM0 = cs/v, in ultrarelativistic case θM0 = arcsin 1/3.
Obviously, in anisotropic theory there is no such simple rela-
tion. First, the base of the cone is no longer a circle, but
an ellipse, i.e. the shape of the sound wave front is ellip-
soidal (see Eq. 25). Second, the front is symmetric in a plane
transversal to direction of anisotropy, in the wave equation
(27) it is Oxy plane. Thus, one may consider 2D-problem
instead of 3D-problem and fix any axis in the transverse plane

Fig. 2 Representation of the Mach cone

(say Ox). In Fig. 2 we plot a 2-D slice of a full 3-D picture
and show a particle moving with velocity v from O in the
plane Oxz at an angle α to the Ox axis. With v/cs > 1 there
appears a Mach cone, which is formed by tangents to the
ellipsoid. In Fig. 2 the particle is at point B and AB, CB are
tangents to the ellipsoid, θMR, θML are the Mach angles.

Having an anisotropic sound with cz = √
κ/

√
κ + 2, cx =

1/
√

κ + 2 we get the following formula for the ellipse (say,
upper part z > 0 ) and tangent AB as functions of x :

f1(x) = cz

√
1 − x2

c2
x
, (28)

f2(x) = v sin α + (x − v cos α) tan
(
α − θM

)
. (29)

and thus obtain a quadratic equation for x , so that description
of the Mach cone is fixed as the condition of existence of its
roots. We get:

θML =arctan

[
sin α cos α(κ−1)+

√
(κ cos2 α+sin2 α)(κ + 2)−κ

(κ+2)−κ sin2 α−cos2 α

]
,

(30)

θMR = arctan

[
sin α cos α(1 − κ) +

√
(κ cos2 α + sin2 α)(κ + 2) − κ

(κ + 2) − κ sin2 α − cos2 α

]
.

(31)

Here we define two different Mach angles θML , θMR

which characterize the whole Mach cone (not only its 2D-
slice). It should be noted that if κ = 1 (no anisotropy) then
θML = θMR = arctan 1/

√
2, the standard expression for the

Mach angle in the relativistic isotropic hydrodynamics (Figs.
3, 4).
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Fig. 3 Mach angles θML and
θMR as functions of α, θM0 is a
Mach angle in isotropic case. a
κ = 0.01, b κ = 0.1, c κ = 0.5,
d κ = 0.9

Fig. 4 Mach angles θML and
θMR as functions of κ , θM0 is a
Mach angle in isotropic case. a
α = π/12, b α = arcsin 1/3, c
α = π/6, d α = π/3

4 Conclusions

In this letter we have developed an analytical description of
the Mach cone in relativistic anisotropic hydrodynamics. We
derived sound wave equation in anisotropic hydrodynamics
and demonstrated that in anisotropic case a wave front turns
out to be ellipsoidal. For Mach cone emission as it was shown
there are two different angles, left and right with respect to
ultrasonic particle direction.

In future we plan to develop a model for isotropization
using the combination of analytical and numerical methods

and it’s relation to observables in ultrarelativistic heavy ion
collisions (angular flow asymmetry, for instance).
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