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Abstract We calculate the inclusive production of a polar-
ized Λ or Λ̄ hyperon from the single longitudinally polarized
proton and proton (pp) collision at RHIC. By comparing the
data reported by the STAR Collaboration, we find that this
process is sensitive to the polarization of strange and anti-
strange quarks of the proton in the experimental range. By
introducing asymmetric coefficients with the minimization
of χ2, we further identify the asymmetry of the polarized
strange–antistrange quarks in the proton sea and find that the
first moment is Δs ≈ − 0.025±0.019 for strange quark and
Δs̄ ≈ − 0.001±0.012 for antistrange quark, with central val-
ues agreeing with the light-cone meson–baryon fluctuation
model prediction, the recent lattice QCD determination of
strangeness polarization and results from a global QCD anal-
ysis given by the Jefferson Lab Angular Momentum (JAM)
Collaboration.

1 Introduction

The spin content of the proton has received extensive atten-
tions since the so-called “proton spin crisis” [1,2]. There
have been significant progress on spin distributions of light
flavor valence quarks both experimentally and theoretically.
Recently, some efforts have been made on the polarization
of the light flavor sea quarks [3,4] and the quark–antiquark
asymmetry of helicity distributions in nucleon sea [5].
Studies of the momentum distribution asymmetry between
strange and antistrange [6–10] are of significance for the
study of nonperturbative quantum chromodynamics (QCD)
with fruitful progress [11–29]. However, the understanding
of helicity distributions for strange–antistrange quark pairs
Δs(x) and Δs̄(x) is far from satisfactory and needs fur-
ther studies. Researches show that studies of spin-transfer
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reactions [30–42] and measurements of the polarized struc-
ture function [1,2,43–48], can provide new insights into the
nucleon spin structure and yield a better understanding of
the hadronization process. The Λ baryon plays a special
role in this respect since it has a rather simple spin struc-
ture in the naive quark parton model [49], as well as that its
self-analyzing parity violating decays [50] make polarization
measurements experimentally feasible.

The STAR experiment at Relativistic Heavy Ion Col-
lider (RHlC) [51–53] is carrying out a spin physics pro-
gram in high-energy polarized proton–proton collisions at√
s = 200 GeV and

√
s = 500 GeV in order to gain a deeper

insight into the nucleon spin structure and dynamics of the
proton. Theoretical investigations [33,35,36,38–42] suggest
that the spin transfer process of the Λ/Λ̄ production in the
singly polarized proton–proton collision provides a platform
to extract polarized parton distribution functions of the pro-
ton and polarized quark fragmentation functions of quarks
into Λ/Λ̄ hyperon. The experiments measuring the polar-
ization of Λ hyperon produced in singly polarized pp col-
lisions [54,55] may provide information about not only the
inclusive production of hadrons but also the strange and anti-
strange quark polarizations inside the proton.

Compared to lepton-induced reaction experiments, the
corresponding cross section of the hadron–hadron collision
is larger and the luminosity of the incoming proton beams
can be made higher. Moreover, there are many subprocesses
that may lead to the final state Λ in singly polarized pp col-
lisions due to the rich internal structure of the proton, such
as qq → qq, qg → qg, gg → gg, etc., which may produce
large partonic spin asymmetries. Therefore productions of
Λ and Λ̄ are sensitive to polarized parton distributions in
the proton, making STAR ideal to explore quark and gluon
polarization.

In this work, we perform the calculation of longitudi-
nal spin transfers to Λ and Λ̄ hyperons produced in polar-
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ized proton–proton collisions at RHIC. By comparing recent
data [55] reported by the STAR Collaboration, we find that
this process is sensitive to the polarization of strange and anti-
strange quarks of the proton in the experimental range. Such
result agrees with the conclusions in previous studies [40–
42]. By introducing asymmetric coefficients with the mini-
mization of χ2 in fitting data, we further identify the asymme-
try of the polarized strange–antistrange quarks in the proton
and find that the first moment is Δs ≈ − 0.025 ± 0.019
for strange quark and Δs̄ ≈ − 0.001 ± 0.012 for antis-
trange quark, with central values agreeing with the light-cone
meson–baryon fluctuation model prediction [6], the recent
lattice QCD determination of strangeness polarization [56]
and results from a global QCD analysis given by the Jefferson
Lab Angular Momentum (JAM) Collaboration [57].

The reminder of this paper is organized as follows.
Sect. 2.1 provides general formulae for production cross
section. As the Λ/Λ̄ hyperon production process in singly
polarized pp collisions contains many different hard subpro-
cesses, Sect. 2.2 elucidates kinematic regions and identifies
the major subprocess. We then calculate fragmentation func-
tions for quarks to Λ in Sect. 2.3. Numerical results of the
spin transfer to Λ/Λ̄ are shown in Sect. 3.1 with consid-
erations of the asymmetry of polarized strange–antistrange
quarks in the proton, together with discussions and conclu-
sions. A brief summary is given in Sect. 4.

2 Theoretical calculation

2.1 The general formulae for cross section

We consider the single inclusive production process −→p p →−→
Λ X , where a polarized Λ/Λ̄ is produced from the single
longitudinally polarized pp collision at RHIC. The longitu-
dinal spin transfer to Λ/Λ̄ hyperon produced in polarized
proton–proton collisions is defined as [30]

AΛ/Λ̄ = E
d3Δσ

d3 p
/E

d3σ

d3 p
,

where dΔσ and dσ stand for the polarized and unpolarized
cross sections, respectively. The definition and derivation
of the parton–parton scattering contribution to the single-
particle inclusive cross section can be found in Refs. [58,59].
By using factorization theorem [60], the differential cross-
section for high-transverse momentum distributions has been
computed to next-to-leading order accuracy in perturba-
tive QCD [61–63]. In this way, such cross sections can be
expressed as convolutions of perturbatively calculable par-
tonic spin-transfer cross sections [30,31,35] with certain sets
of parton distributions and fragmentation functions at the

scale Q, just as follows,

E
d3Δσ

d3 p
(AB → C + X)

=
∑

abcd

∫ 1

x̄a
dxa

∫ 1

x̄b
dxbΔ f A

a (xa, Q
2)

f B
b (xb, Q

2)ΔDC
c (zc, Q

2)
1

π zc
dΔσ̂

dt̂
(ab → cd),

(1)

with

zc = xT

2xb
e−η + xT

2xa
eη,

x̄b = xaxTe−η

2xa − xTeη
,

x̄a = xTeη

2 − xTe−η
,

(2)

here η and pT are rapidity and transverse momentum, and
xT = 2pT/

√
s is the transverse momentum counterpart. We

denote the momenta of incoming protons and the produced
hyperon by PA, PB and PC, respectively. xa , xb and zc are
corresponding momentum fractions carried by partons a, b
and c, and x̄a and x̄b are corresponding lower limits of inte-
gration.

In Eq. (1), Δ f A
a (xa, Q2) represents the polarized distri-

bution function of parton a in proton A and f B
b (xb, Q2) the

unpolarized one of parton b in proton B, at the scale Q.
ΔDC

c (zc, Q2) is the polarized fragmentation function of par-
ton c into baryon C, and in our case C = Λ. Δdσ̂ /dt̂ , the
difference of cross sections at the parton level between the
two processes a↑ + b → c↑ + d and a↓ + b → c↑ + d,
can be found in, for example, Ref. [30]. The summation in
Eq. (1) runs over all possible parton–parton subprocesses,
qq → qq, qg → qg, qq̄ → qq̄ , etc. An analogous expres-
sion for unpolarized cross section is obtained by Eq. (1)
with the Δ symbol dropped throughout. In the calculation
we adopt de Florian–Sassot–Stratmann–Vogelsang (DSSV)
polarized parton distribution functions (PDFs) [64,65] as
inputs to spin-dependent parton distributions of proton A
directly. With sufficient statistics, this set of PDFs not
only provides the total up and down quarks distributions,
Δu + Δū and Δd + Δd̄, and light sea quark polarizations,
Δū, Δd̄ , Δs̄= Δs, but also gives an important constraint
on the gluon polarization Δg. Considering that this set of
PDFs adopts Martin–Stirling–Thorne–Watt (MSTW) unpo-
larized PDFs [66] as a reference set to avoid problems with
the fundamental positivity constraint, we adopt the MSTW
parametrization as unpolarized PDFs for proton B in order
to maintain self-consistency. The non-perturbative fragmen-
tation functions for Λ are given by the revised Gribov–
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Lipatov relation [67–71] and the light-cone SU(6) quark–
spectator–diquark model [72,73] adjusted by the Albino–
Kniehl–Kramer (AKK) parametrization [74,75] based on
considerations following Ref. [29].

The Mandelstam variables at the parton level are given by

ŝ = xaxbs,

t̂ = −xa pT
√
se−η/zc,

û = −xb pT
√
seη/zc,

(3)

here s is the total center of mass energy.
It is obvious from Eq. (2) that the lower limits of momen-

tum fraction of the initial state, x̄a and x̄b, depend mainly on
experimental conditions, namely rapidity η and transverse
momentum pT. The momentum fraction carried by the final
state baryon, zc, is also related to the momentum fraction of
the initial state. Note that the magnitude of momentum frac-
tions represents different regions of momentum distributions,
that is, the region where the momentum fraction is smaller is
mainly the sea region, and the region where the momentum
fraction is larger is the valence region. Such general rela-
tionships can help us to analyze the dynamic range of pp
collisions in the calculation and to obtain an understanding
of the spin transfer in this process.

2.2 Elucidate the kinematic regions and major subprocess

The main aim of the spin transfer process to Λ/Λ̄ hyperon
produced in pp collisions is to extract the polarized quark
and gluon distributions. However, in the case of pp collisions
where many subprocesses can lead to final state hyperons, we
need to identify out the most contributing channel related to
the polarized parton distributions.

We first check the relation between x̄a , the integral lower
limit of xa , and pT using Eq. (2). The small value of pT

is associated with xa in the sea part of the polarized proton
whereas typical values of xa corresponding to the valence
region correspond to a high pT, where the quarks are polar-
ized much more strongly, resulting in an asymmetry increase
with pT. Information about contribution from parton distribu-
tions of the polarized proton can also be tracked from looking
at the xa dependence of η. Similarly, if there is a large positive
η, this can be used to extract the large xa part parton content
of the proton. The high pT and large η lead to dominating
contribution to the spin transfer to final state hyperons with
the valence part of the polarized proton. Hence it is reason-
ably to conclude that in large pT region in pp collisions, the
fragmentation of quarks from the subprocesses qg → qg
and qq → qq dominates. We expect that u and d, particu-
larly u, quark fragmentation dominates the Λ production in
high pT and large rapidity region, as supported by previous
studies [33,35,36,38]. The connection between xb and xa

allows us to further determine the dynamic behavior. It can
be seen from Eq. (2) that when xa is small, xb is relatively
large and mainly corresponds to the valence region, and as
xa increases, the integral lower limit of xb gradually expands
to the sea region. Considering that the gluon is distributing
much greater over the sea region of the proton than quarks,
the sum of valence and sea quark contributions is suppressed
at small xa and xb. It means that the subprocess qg → qg
plays a major role than qq → qq case [35,36]. It is also
argued in Ref. [35] that the contribution from gg → gg falls
off faster than that from qg → qg with increasing rapidity,
since g(xa) decreases faster than q(xa) with increasing xa .
Therefore we can conclude that the qg → qg subprocess
plays the most important role in the Λ/Λ̄ hyperon produc-
tion of proton–proton collisions [33,35,36,38], so we only
consider the spin transfer of this subprocess.

Based on the above considerations, the process of our cal-
culation can be expressed as:

[Δq p(xa)g
p(xb) + Δgp(xa)q

p(xb)]
→ [ΔDΛ

q (zc) + ΔDΛ
g (zc)]. (4)

Specifically, this contains four subprocesses:

(1) Δq pAgpB → ΔqΛg;
(2) Δq pAgpB → ΔgΛq;
(3) ΔgpAq pB → ΔqΛg;
(4) ΔgpAq pB → ΔgΛq.

We write the detailed expressions in the following way:

Δq pA(xa)g
pB(xb)

dσ

dt
(t̂, û)[ΔDΛ

q (zc) + T
−→q g→q−→g (y)ΔDΛ

g (zc)],
ΔgpA(xa)q

pB(xb)

dσ

dt
(û, t̂)[T q−→g →−→q g(y)ΔDΛ

q (zc) + ΔDΛ
g (zc)],

(5)

where q = u, d, s, with T
−→q g→−→q g(y) = 1 omitted and

T q−→g →−→q g(y) = T
−→q g→q−→g (y) = (1 − (1 − y)2)/(1 + (1 −

y)2) being the polarization transfer factor for the two subpro-
cesses, see Ref. [38] for details. Due to that the fragmentation
mechanism of the polarized gluon into Λ is unclear, we take
ΔDΛ

g = 0 in our calculation. Likewise, we use correspond-
ing expressions analogy to Eq. (5) for the longitudinal spin
transfer to Λ̄, by replacing q with q̄ . There are several differ-
ences in the calculation of Λ̄ compared to Λ. For Λ̄ hyperon,
the dominant subprocess should be Δq̄g → Δq̄g, where we
take ΔDΛ̄

q̄ = ΔDΛ
q according to CP symmetry. Due to the

lack of fragmentation functions for polarized sea quarks to
Λ, we set ΔDΛ̄

q = ΔDΛ
q̄ = 0 in the calculation, based on

same considerations as the gluon case. Different from the Λ
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Fig. 1 The polarization transfer factor T (η) versus rapidity η of the
process qg → qg. The solid curve represents the longitudinal polariza-
tion transfer factor of the process Δg → Δq. The polarization transfer
factor for TΔq→Δq (η) = 1 is not presented in the picture

case, the polarized sea quarks play a main role in the process
of spin transfer to Λ̄, in which distributions of polarized sea
quarks are relatively important.

For hadron–hadron collisions, each of the parton sub-
process has its own polarization transfer factor. For the
polarization transfer factor T (y), the variable y = pB ·
(pA − pC)/(pA · pB), and in the center-of-mass frame
y = (1 − cos(θ))/2, where θ = 2 arctan(exp(−η)) is
the angle between the incoming parton a and the outgo-
ing parton c. Figure 1 shows the polarization transfer fac-
tor T (η) versus rapidity η of the process qg → qg. It
can be seen that for the process q−→g → −→q g the longi-
tudinal polarization transfer factor T q−→g →−→q g(η) gradually
tends to zero, as rapidity increases. There is no dependence
on rapidity for the longitudinal process −→q g → −→q g with
T

−→q g→−→q g(η) = 1.

2.3 Fragmentation functions and AKK parametrization

Fragmentation functions (FFs) describe phenomena of hadro-
nization, i.e., how quarks or gluons transform into hadrons.
The improvement in the knowledge of fragmentation func-
tions is an important ingredient in the global analysis of the
nucleon spin structure. PDFs and FFs cannot be computed
perturbatively, but they can be measured from a limited set
of data over a limited range of Q. Because it is easier to
extract PDFs from experiment than FFs, it would be very use-
ful if there exists simple connection [69–71] between PDFs
and FFs, so that one can predict the poorly known Dq(z)
from the rather well known q(x). We adopt a revised form
of the Gribov-Lipatov “reciprocity” relation [67–71], i.e.,

D(z) ∝ zq(z), (6)

to obtained fragmentation functions for Λ, with PDFs
described by the SU(6) quark–diquark model [72,73].

Gribov and Lipatov [67,68] provided a connection between
distinct physical situations in deep inelastic electron scatter-
ing in perturbation theory. Brodsky and Ma [69] have shown
that the fragmentation functions DH

q (z, Q2) measured in
quark and jet hadronization at z � 1 are related by crossing
to the quark distributions q(x, Q2) measured in deep inelas-
tic scattering processes at x � 1, a limit with both sides in
physical regions is also proved by Barone et al. [70]. Ma et
al. [71] further studied the relation between the quark dis-
tribution function q(x, Q2) and the fragmentation function
DH
q (z, Q2). Their work supports the revised Gribov–Lipatov

relation D(z) = zq(z) at z → 1, as an approximate relation
for the connection between distribution and fragmentation
functions. In fact, most other theoretical estimates [32,76–
79] on the quark fragmentation functions are also based
on some knowledge of quark distributions. Note that such
a relation provides successful descriptions of the available
Λ polarization data in several processes [25,29,36,73,80],
despite the crudeness of the model and the limited range of
the Gribov–Lipatov reciprocity relation, we still expect that
the above estimate can serve as a reasonable guide to the size
of the expected effects.

As an explanation to understand proton spin puzzle [81,
82], one can construct the light-cone SU(6) quark–spectator–
diquark model of the proton [83,84] by taking into account
the relativistic effect of the quark transversal motions, i.e.,
the Melosh–Wigner rotation effect [85–88], to calculate the
valence quark spin distributions in the light-cone formalism,
which provides a convenient framework for the relativistic
description of hadrons in terms of quark degree of freedom.
The Melosh–Wigner rotation is one of the most important
ingredients of the light-cone formalism, and it helps to built
up the quark helicity distributions of the nucleon [83,84].

The light-cone SU(6) quark–spectator–diquark model can
be extended from the nucleon to the Λ hyperon [72,73].
The unpolarized valence quark distributions uv(x), dv(x) and
sv(x) for Λ are given in this model by

dΛ
v (x) = uΛ

v (x)

= 1

4
aV (x) + 1

12
aS(x),

sΛ
v (x) = 1

3
aS(x),

(7)

where aD(x) (D = S for scalar spectator or V for axial
vector spectator) denotes the amplitude for quark q to be
scattered while the spectator is in the diquark state D(qq).
To obtain an estimate of aD(x), we employ the Brodsky-
Huang-Lepage (BHL) prescription [89,90] of the light-cone
momentum space wave function
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ϕD(x,k⊥)

= AD exp

{
−1

8
α2
D

[
(m2

q + k2⊥)

x
+ (m2

D + k2⊥)

(1 − x)

]}

with parameters (in units of MeV) αD = 330, and mq =
330, mS(ud) = 750, mV(ud) = 950 for q = u and d,
mq = 480, mS(s) = 600, mV(s) = 800 for q = s [72,73].
When expressed in terms of the light-cone momentum space
wave function ϕD(x,k⊥), aD(x) reads aD(x) ∝ ∫ [d2k⊥] |
ϕD(x,k⊥) |2 and is normalized such that

∫ 1
0 dxaD(x) = 3.

The quark helicity distributions for uv(x), dv(x) and sv(x)
quarks for Λ can be written as

ΔdΛ
v (x) = ΔuΛ

v (x)

= − 1

12
aV (x)MV

q (x) + 1

12
aS(x)M

S
q (x),

ΔsΛ
v (x) = 1

3
aS(x)M

S
q (x),

(8)

in which MS
q (x) and MV

q (x) are Melosh–Wigner correction
factors for scalar and axial vector spectator–diquark cases.
They are obtained by averaging MD

q (x,k⊥) = ((k+ +m)2 −
k2⊥)/((k+ +m)2 + k2⊥) over k⊥ with k+ = xM and M2 =
(m2

q +k2⊥)/x+(m2
D +k2⊥)/(1−x), where mD is the mass of

the diquark spectator. From Eq. (7) we get aS(x) = 3sΛ
v (x),

aV (x) = 4uΛ
v (x) − sΛ

v (x) and then have

ΔdΛ
v (x) = ΔuΛ

v (x)

= 1

4
sΛ
v (x)MS

q (x) − 1

12
(4uΛ

v (x) − sΛ
v (x))MV

q (x),

ΔsΛ
v (x) = sΛ

v (x)MS
q (x).

(9)

Thus we arrive at simple relations between the polarized and
unpolarized quark distributions for the valence uv(x), dv(x)
and sv(x) quarks.

According to Eqs. (6–9), we obtain not only the unpolar-
ized but also the polarized fragmentation functions of valence
quarks of Λ with parton distribution functions and helic-
ity distributions calculated by the SU(6) quark–spectator–
diquark model [72,73]. The helicity distributions for valence
quarks of Λ calculated by the SU(6) quark–diquark model,
are shown in Fig. 2 (the solid curves), with the distributions
for uv and dv quarks being identical.

In order to reproduce the experimental data in a reason-
able form, we adjust the fragmentation functions obtained
by theoretical calculations with AKK parametrization [75]
as an input. The sea quark distribution functions for the
proton can take the parametrization directly, with the other
octet baryons such as Λ obtained from the SU(3) symme-
try [91]. Considering that AKK FFs for Λ production are
defined to be sum of those for Λ and Λ̄, and according to

Fig. 2 The helicity distributions for valence quarks of Λ obtained by
SU(6) quark–diquark model [72,73], in which distributions for uv and
dv quarks are identical. The thick solid curve and the thin solid curve
represent the helicity distributions of uv and sv quarks, respectively

DΛ+Λ̄
q = DΛ

q+q̄ = DΛ̄
q+q̄ , we modify the fragmentation

functions obtained by the light-cone model as Ref. [29]:

DΛ
q (z, Q2) =

(
DΛ
q (z)

DΛ
q+q̄(z)

)th

DΛ
q+q̄(z, Q

2)AKK,

DΛ
q̄ (z, Q2) =

(
DΛ
q̄ (z)

DΛ
q+q̄(z)

)th

DΛ
q+q̄(z, Q

2)AKK,

ΔDΛ
q (z, Q2) =

(
ΔDΛ

q (z)

DΛ
q+q̄(z)

)th

DΛ
q+q̄(z, Q

2)AKK,

(10)

where q = u, d, s.
Considering that the light-cone model does not provide

information on gluon fragmentation, we take DΛ
g (z, Q2) =

DΛ
g (z, Q2)AKK directly. So far, there is no clear under-

standing of the polarized fragmentation function of the
gluon into Λ. For simplicity, but without loss of gen-
erality, we may take ΔDΛ

g (z, Q2) = 0 in our calcula-
tion at first. In Sect. 3.2, we consider ΔDΛ

g (z, Q2) =
DΛ
g (z, Q2)(ΔgΛ(z, Q2)/gΛ(z, Q2)) by assuming that the

gluon polarization behaves in a similar way between the octet
baryons. The two cases may assess how big is the impact of
neglecting ΔDΛ

g (z, Q2). In this way of parametrization, the
unpolarized sea distributions and gluon distributions may be
included as those of the input parametrization, thus the sea
part and the valence part of quark distributions are consis-
tent with each other. The fragmentation functions are also
reasonably scale dependent as they are mainly based on the
parametrization set. Therefore we construct a set of polar-
ized fragmentation functions for quark to Λ in consistent
with available parametrization of unpolarized fragmentation
functions, with additional separation between quark and anti-
quark fragmentation functions [29].
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(a) Longitudinal spin transfer to Λ . (b) Longitudinal spin transfer to Λ̄ .

Fig. 3 The calculated spin transfers to Λ and Λ̄ of quarks and gluon
for positive η versus pT at

√
s = 200 GeV. The thick solid curves rep-

resent the total contributions from the polarized quarks/antiquarks and
gluon, and the thin solid curves represent the spin transfer of the s quark

for the channel Δsg → ΔDΛ
s . The channels for the polarized u (the

dashed curves) and d (the dashed dot dot curves) quarks, and g (the
dashed dot curves) are also shown in the plots

3 Results

3.1 The symmetric case for Δs = Δs̄

We calculate the spin transfer of the inclusive production
process of a polarized Λ/Λ̄ from single longitudinally polar-
ized −→p p collision under the qg → qg subprocess at√
s = 200 GeV. The final results for the spin transfer to

Λ/Λ̄ with integration over η ∈ (0, 1.2) and renormaliza-
tion scale Q = pT are presented in Fig. 3. A conventional
range of variation is pT/2 < Q < 2pT. In this work, the
hard scale, Q, is set equal to the transverse momentum pT.
According to Refs. [33,35], for instance, there is only a very
weak dependence on the scale by calculating the polarization
using Q = pT/2 and Q = 2pT. We show various contri-
butions from the polarized quarks/antiquarks and gluon in
Fig. 3a for Λ and Fig. 3b for Λ̄ and also their total contribu-
tions (the thick solid curves). Clearly, the difference between
Λ and Λ̄ is significant for the total spin transfer, whereas the
contributions from the polarized strange–antistrange quarks,
where we take Δs(x) = Δs̄(x) from the DSSV set of the pro-
ton polarized PDFs [64,65], are similar for Λ and Λ̄ cases.
The spin transfers of the s quark (the thin solid curves) for the
channel Δs → ΔDΛ

s , become large around pT ∼ 5–10 GeV
and gradually decrease with pT increasing. Note that chan-
nels for the polarized u quarks (the dashed curves), including
also d quarks (the dashed dot dot curves), contribute signif-
icantly in large pT region, thus it is reasonable to conclude
that the difference mainly comes from the valence part of
quarks between Λ and Λ̄, due to the zero contribution from
valence quark to Λ̄ fragmentation because of ΔDΛ̄

q = 0 in
our calculation. In addition, in spite of the suppression from
polarization transfer factor T q−→g →−→q g (see the solid curve in
Fig. 1), we also find a sizeable contribution due to the gluon

polarization (the dashed dot curves) transferred to the quark
polarization in the longitudinal spin transfers to Λ and Λ̄

in Fig. 3b. This indicates that the measurement of the spin
transfer to Λ and particularly Λ̄ may provide additional infor-
mation concerning the gluon polarization.

We compare the calculated results, as shown in Fig. 4 with
the dashed curves, with experimental data [55] reported by
the STAR Collaboration. The STAR Collaboration extracted
the longitudinal spin transfers to Λ and Λ̄ hyperons in

√
s =

200 GeV polarized proton–proton collisions for extended pT

up to 7 GeV/c with mid-rapidity |η| < 1.2 covered during the
2009 RHIC run. Figure 4 reveals that our calculated results
can reasonably fit the data points within err-bars.

3.2 The asymmetric case for Δs �= Δs̄

Since the spin transfer of strange quark to Λ/Λ̄ dominates
within the experimental range, based on previous analysis, it
is interesting to further explore the effect on the behaviour of
strangeness. This may provide more information about the
polarized strange quark in the proton through the spin trans-
fer process. The strange quark distribution in the nucleon is
usually obtained from analyses of the deep inelastic lepton-
nucleon scattering data by assuming identical momentum
distribution for the strange and antistrange quark distribu-
tions, i.e., s(x) = s̄(x). According to Refs. [6–10], how-
ever, the distributions of sea quarks and antiquarks, which
are intrinsic to the nucleon bound state wave function, need
not be identical.

To investigate the contribution to the spin transfer differ-
ence between Λ and Λ̄ hyperons from the nucleon asymmet-
ric strange–antistrange sea distribution, we need an asym-
metric strange sea input. The light-cone meson–baryon fluc-
tuation model [6], where the nucleon wave function at low
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(a) Longitudinal spin transfer to Λ. (b) Longitudinal spin transfer to Λ̄ .

Fig. 4 Comparison of the measured spin transfer data with theory pre-
dictions AΛ and AΛ̄ for positive η versus pT at

√
s = 200 GeV. Markers

with error bars are the data collected by the STAR Collaboration [55].
The vertical bars and boxes indicate the sizes of the statistical and
systematical uncertainties, respectively. The solid curve represents the
result with the asymmetric input of the polarized strange and antistrange

quarks, and the dashed curve, with cuts to a much smaller range in pT
compared to Fig. 3, represents the result with the symmetric input of the
polarized strange and antistrange quarks. The asymmetric coefficients
αi for corresponding process are presented with errors. The shadow
region covers the error band. More details about the fitting results of αi
are presented in Table 1

Table 1 Fitting results of αi and
calculated results of Δs and Δs̄

Coefficient Value Δs Δs̄ χ2
min

α1 − 1.20 ± 1.31 − 0.014 ± 0.015 0.37

α2 − 0.24 ± 0.49 − 0.003 ± 0.005 2.48

resolution can be viewed as a fluctuating system coupling
to the intermediate baryon–meson Fock state p(uudss̄) =
Λ(uds)+K+(us̄), predicts the nucleon asymmetric strange–
antistrange sea distributions: the intrinsic s quarks in the
proton sea are negatively polarized, whereas the intrinsic s
antiquarks give zero contributions to the proton spin. From
previous results, we see that under the present experimen-
tal conditions, the spin transfer process from proton to Λ

is sensitive to the polarized strange and antistrange quarks.
The results in Fig. 4 also illustrate this point well. In order
to further explore the influence of the polarized strange and
antistrange quarks, a strange–antistrange asymmetry is given
in the following way.

To test the asymmetry of the polarized strange–antistrange
quarks in the proton, based on the assumption Δs(x) =
Δs̄(x) provided by the DSSV parametrization [64,65], we
take an asymmetric coefficient on the polarized strange
quark with Δsth = α1ΔsDSSV, and antistrange quark with
Δs̄th = α2Δs̄DSSV, respectively. To insure that the value
of the asymmetric coefficients αi are in a reasonable phys-
ical range, we adopt the relation |Δsth| = |αiΔsDSSV| ≤
sMSTW to satisfy the constraint condition in energy scale
pT < 7 GeV. By making a χ2 test with the simplest form
χ2 = ∑

n(A
Λ,th
n − AΛ,data

n )2/σ 2
n on the value of αi between

range (αi,min, αi,max), we obtain the fitting results of αi with
corresponding χ2

min and errors in Table 1. We also calculate
the first moment of the modified polarized strange quark,

∫ 1
x̄a
dxΔs(x, Q2)th = α1

∫ 1
x̄a
dxΔs(x, Q2)DSSV, and the

corresponding antiquark counterpart
∫ 1
x̄a
dxΔs̄(x, Q2)th =

α2
∫ 1
x̄a
dxΔs̄(x, Q2)DSSV. We then compare the calculated

results with the light-cone meson–baryon fluctuation model
prediction. According to the calculated results presented in
Table 1, where the first moment is Δs ≈ −0.014 ± 0.015
for strange quark and Δs̄ ≈ −0.003 ± 0.005 for antistrange
quark, we see that the central values of the fitting results are
basically consistent with the model prediction Δs ≈ − 0.05
to − 0.01 and Δs̄ ≈ 0.

We also compare our results of spin transfers AΛ and AΛ̄

with the experiment data in Fig. 4, with the solid curves repre-
senting the results with the asymmetric input of the polarized
strange and antistrange quarks. The asymmetric coefficients
αi for corresponding processes are presented with errors.
The shadow region covers the error band. One can see that
the spin transfer to Λ/Λ̄ in the polarized pp collision is sen-
sitive to the polarization of strange–antistrange quarks and
the fitting results can describe the experimental data within
a reasonable error range.

Since the polarization of gluon is not negligible, it is unrea-
sonable to take ΔDΛ

g (z, Q2) = 0 in an oversimplified and
crude way. As before, due to the lack of the knowledge of the
polarized gluon fragmentation into Λ, it makes sense to con-
sider ΔDΛ

g (z, Q2) = DΛ
g (z, Q2)(ΔgΛ(z, Q2)/gΛ(z, Q2))

assuming that the gluon polarization behaves in a similar way
between the octet baryons, i.e.,
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Table 2 Fitting results of αi and
calculated results of Δs and Δs̄

Coefficient Value Δs Δs̄ χ2
min

α3 − 2.17 ± 1.65 − 0.025 ± 0.019 0.42

α4 − 0.087 ± 1.08 − 0.001 ± 0.012 2.24

Longitudinal spin transfer to Λ . Longitudinal spin transfer to Λ̄ .(a) (b)

Fig. 5 Comparison of the measured spin transfer data with the-
ory predictions AΛ and AΛ̄ for positive η versus pT at

√
s =

200 GeV, including the contribution from the polarized gluon frag-

mentation. The symbols and curves are identical with Fig. 4.
More details about the fitting results of αi are presented in
Table 2

Longitudinal spin transfer to Λ .(a) Longitudinal spin transfer to Λ̄ .(b)

Fig. 6 The calculated spin transfers AΛ and AΛ̄ for positive η ver-
sus pT at

√
s = 200 GeV, including the contribution from the polar-

ized gluon fragmentation. The solid curve represents the result with the
asymmetric input of the polarized strange and antistrange quarks, and

the dashed curve represents the result with the symmetric input of the
polarized strange and antistrange quarks. The asymmetric coefficients
αi for corresponding process are presented with errors. The shadow
region covers the error band

ΔgΛ(z, Q2)/gΛ(z, Q2) = Δgp(z, Q2)/gp(z, Q2).

As already remarked, we take the spin-dependent parton dis-
tribution functions for the proton from DSSV set [64,65],
the spin-averaged parton distribution functions for the pro-
ton from MSTW set [66], and the unpolarized fragmentation
functions for Λ from AKK set [74,75], respectively.

We compute also the longitudinal spin transfer to Λ/Λ̄

including the fragmentation from polarized gluon, and find
that the cross section for pp collisions is sensitive to the
ΔDΛ

g contribution owing to a large, positive gluon polariza-

tion of the proton. In the following, we denote α3 and α4

as the asymmetric coefficients, and present the calculated
results in Table 2 and compare in Fig. 5 the results with
data. As one can see, it is worth mentioning that the asym-
metry between the strange/antistrange quark is enhanced in
this case, with the first moment is Δs ≈ −0.025 ± 0.019
for strange quark and Δs̄ ≈ − 0.001 ± 0.012 for antistrange
quark. It is interesting to notice that the central value of our
new results Δs+ = Δs+Δs̄ = − 0.026±0.022 agrees with
the recent lattice QCD determination of strangeness polariza-
tion, Δs+ = − 0.02±0.01 at Q2 ≈ 7 GeV2 [56], and a more
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negative value, Δs+ = − 0.03±0.10, given by the Jefferson
Lab Angular Momentum (JAM) Collaboration [57].

We finally compare in Fig. 6 the results for the symmet-
ric and asymmetric cases of polarized strange–antistrange
quarks, including the contribution from the polarized gluon
fragmentation. The solid curve represents the result with the
asymmetric input of the polarized strange and antistrange
quarks, and the dashed curve represents the result with the
symmetric input of the polarized strange and antistrange
quarks. We note that there is significant difference between
asymmetric and symmetric cases, thus further improvement
of the precision in experiments can distinguish the two cases
to shed light on the strange–antistrange polarization asym-
metry of the nucleon sea.

4 Summary

In summary, we study the inclusive production process of
polarized Λ/Λ̄ from a single longitudinally polarized pp
collision at

√
s = 200 GeV. Based on the analysis of kine-

matic regions, the qg → qg subprocess plays a major
role in proton–proton collision processes. By comparing
calculated results with data reported by the STAR Collab-
oration [55], we find that this process is sensitive to the
polarization of strange and antistrange quarks within the
experimental range η ∈ (0, 1.2) and pT < 7 GeV. By
introducing asymmetric coefficients with the minimization
of χ2, we further identify the asymmetry of the polarized
strange–antistrange quarks in protons. We find that the first
moment is Δs ≈ − 0.025 ± 0.019 for strange quark and
Δs̄ ≈ − 0.001 ± 0.012 for antistrange quark, which agrees
with the light-cone meson–baryon fluctuation model predic-
tion [6], the recent lattice QCD determination of strangeness
polarization [56] and results from a global QCD analysis
given by the Jefferson Lab Angular Momentum (JAM) Col-
laboration [57]. The significant difference between symmet-
ric and asymmetric cases suggests that the spin transfer pro-
cess of −→p p → −→

Λ X is feasible to study strange–antistrange
polarizations. The large statistical errors of data are also the
reason why fitting errors are large, and high precision exper-
iments are expected to shed light on the strangeness spin
structure of the nucleon.
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