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Abstract The quark condensate and quark number density
are commonly used to determine the QCD phase transition.
However, the usually defined quark condensate is divergent
in the case of non-chiral limit, and the quark number density
suffers from the superficial divergence in numerical calcula-
tion. In order to address these issues, we redefine the quark
condensate at finite temperature and density and propose a
technique to deal with the divergence of the quark condensate
and the superficial divergence of the quark number density
in numerical calculations. Based on these improvements, we
further discuss various susceptibilities as criteria to deter-
mine the critical points in the phase transition. It is found
that different susceptibilities give different locations of the
critical points in the crossover region, which suggests us to
define a critical band, instead of some exclusive line in the
phase diagram.

1 Introduction

Quantum Chromodynamics (QCD) is the fundamental the-
ory of strong interaction, which describes the interactions
between quarks and gluons. Asymptotic freedom [1,2] is
the crucial property of QCD, which makes the process of
high energy perturbatively calculable. On the other hand,
at low temperature and density, the QCD systems have
two significant features, i.e., dynamical chiral symmetry
breaking (DCSB) and color confinement. As the temper-
ature and (or) density increases, the energy per hadron
becomes larger and larger, and the interactions between
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quarks and gluons become weaker and weaker because of
the asymptotic freedom. It is expected that the confinement
is relieved and a so-called deconfinement phase transition
happens.

Chiral symmetry restoration is another phase transition,
which is expected at low and moderate temperature and high
density. The quark condensate, 〈ψ̄ψ〉, is a good indicator
for the chiral phase transition and a strict order parameter
in the case of chiral limit. The chiral symmetry restoration
occurs if the temperature and (or) the density increases so
that the condensate, 〈ψ̄ψ〉, vanishes in the chiral limit. At
the same time the effective quark mass also goes to zero.
While in the case of finite current quark mass, the usually
defined 〈ψ̄ψ〉 is not a strict order parameter, since it will
not go to zero no matter how high the temperature rises. On
the other hand, it is believed that there is a crossover region
instead of a phase transition at high temperature and low
density.

In real QCD, the chiral symmetry is explicitly broken by
the finite current quark mass. Thus the quark condensate can-
not be regarded as the exact order parameter anymore. But the
quark condensate still reflects some important information on
QCD phase structure. On the other hand, the temperature sus-

ceptibility ( ∂〈ψ̄ψ〉
∂T ), the chiral susceptibility ( ∂〈ψ̄ψ〉

∂m ) as well

as the quark number susceptibility ( ∂〈ψ†ψ〉
∂μ

) are commonly
used to determine the critical line in the crossover region of
the QCD phase diagram. The peaks of such susceptibilities
with respect to the temperature or chemical potential are seen
as the critical point. The question whether all these suscepti-
bilities give the same critical line in the QCD phase diagram
is often overlooked. In practice, many other susceptibilities,
such as topological susceptibility, magnetic susceptibility,
spin susceptibility, isospin susceptibility, and charge suscep-
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tibility have been studied in thermal and dense QCD systems
[3–9].

There are various theoretical tools and phenomenological
models that can be used to study the thermal and dense QCD
systems, such as the lattice QCD [10–12], the renormaliza-
tion group method [13–16], the QCD sum rules [17,18], the
NJL model and the Polyakov-loop extended NJL model [19–
22]. Compared to other effective models, Dyson-Schwinger
equations (DSEs) treat the quarks and gluons as the funda-
mental degrees of freedom, and feature both the confinement
and the DCSB effects. It has provided many insights into
the QCD phase diagram [23–29] and hadron properties [30–
34]. In this paper, we will use DSEs approach to investigate
the chiral phase transition in the strong interaction. As seen
below, the commonly defined quark condensate is ultraviolet
(UV) divergent, thus a renormalization process is necessary.
We will redefine the quark condensate to eliminate UV diver-
gence and be self-consistent with the quark condensate in the
case of chiral limit. Various susceptibilities are investigated
within the framework of DSEs to determine the critical lines
in the crossover region.

The rest of this paper is organized as follows. In Sect. 2,
we give a basic introduction to the tools of DSEs at finite tem-
perature and chemical potential and the employed effective
interaction model. In Sect. 3, we redefine the quark conden-
sate at finite temperature and chemical potential and propose
a new technique to eliminate the (superficial) divergence of
the quark condensate and quark number density. We discuss
the details of six kinds of susceptibilities in T −μ plane and
compare their peaks in the crossover region. Finally, we give
a brief summary in Sect. 4.

2 Dyson–Schwinger equations at finite temperature and
density

We first give a brief introduction to DSEs at finite temperature
and density. The DSEs are the equations of motion of Green
functions in quantum field theory, with the two-point quark
propagator being one of the most basic and important Green
functions in QCD. In order to study QCD at finite density, one
usually introduces a baryon chemical potential μB , which is
the canonical variable of the baryon number density, based
on the law of baryon number conservation. It is convenient
to define a quark chemical potential by

μ := μB

3
. (1)

At finite temperature and density, the DSE for quark propa-
gator is [30]

S−1( �p, ω̃n) = S−1
0 ( �p, ω̃n) + �( �p, ω̃n), (2)

S−1
0 ( �p, ω̃n) = i �γ · �p + iω̃nγ4 + m, (3)

�( �p, ω̃n) =
∑

�,�q

∫
g2Dμν( �p − �q,	n�; T, μ)

×λa

2
γμS(�q, ω̃�)

λa

2
�ν(�q, ω̃�, �p, ω̃n), (4)

where

∑

�,�q

∫
:= T

∞∑

�=−∞

∫
d3 �q

(2π)3 . (5)

S0( �p, ω̃n) is the tree-level quark propagator and �( �p, ω̃n)

is the self energy of quark. m is the current quark mass,
and we use a typical value m = 5 MeV in this work.
Dμν( �p − �q,	n�; T, μ) is the dressed gluon propagator and
�ν(�q, ω̃�, �p, ω̃n) is the dressed quark-gluon vertex. We fur-
ther have ω̃n = ωn + iμ with ωn = (2n + 1)πT being the
Matsubara frequency for fermion and 	n� = ωn − ω� for
boson. In the following, we will use a super-renormalizable
interaction model and therefore the renormalization is unnec-
essary.

The inverse of dressed quark propagator can be expressed
as

S−1( �p, ω̃n) = i �/pA( �p, ω̃n) + IB( �p, ω̃n) + iω̃nγ4C( �p, ω̃n)

+�/pγ4ω̃nD( �p, ω̃n). (6)

where �/p := �γ · �p, �γ = (γ1, γ2, γ3), and the four scalar
functions F = A, B,C, D are complex and satisfy

F( �p2, ω̃2
n)

∗ = F( �p2, ω̃2−n−1). (7)

The function D is usually negligible since it is power-law
suppressed as discussed in Ref. [35]. In particular, D vanishes
at T = μ = 0 since it violates the time reversal invariance
of quark propgator [36]. The dressed gluon propagator used
in this work is

g2Dμν(�k,	n�) = PT
μνDT (�k2,	2

n�)+PL
μνDL(�k2,	2

n�), (8)

where �k = �p − �q . PT and PL are transverse and longitu-
dinal projection operators respectively. Generally speaking,
DT and DL are not equal at finite temperature and chemical
potential, but we take DT = DL as an approximation in the
region T < 200 MeV [37]. We adopt the following ansatz
for the scalar function of the gluon propagator

DT = DL = D0
κ

σ 6 exp− κ

σ2 . (9)

where κ = �k2 + 	2
n�. D0 and σ are model parameters and

we use the typical values D0 = 0.93 GeV2, σ = 0.4 GeV
[38]. For the quark-gluon vertex, we employ the rainbow
truncation

�ν(�q, ω̃�, �p, ω̃n) = γν, (10)
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which is extensively used in hadron physics and QCD phase
diagram study [28,29,38–40].

In the chiral limit, the quark condensate is the exact order
parameter for the chiral phase transition. It can be defined as,

〈ψ̄ψ〉 = −
∑

n, �p

∫
Tr[S( �p, ω̃n)]. (11)

with the trace over Dirac, color and u-d-flavor indices. Unfor-
tunately, this definition suffers from UV-divergence in the
case of finite current quark mass. A commonly used general-
ization is to renormalize Eq. (11) by subtracting a tree-level
quark condensate at finite temperature and chemical potential
[41], e.g,

〈ψ̄ψ〉r = −
∑

n, �p

∫
Tr[S( �p, ω̃n) − S0( �p, ω̃n)]. (12)

〈ψ̄ψ〉r goes back to 〈ψ̄ψ〉 in the chiral limit. However, the
drawback of such a definition is that the subtracted term,
S0( �p, ω̃n), brings some additional T (μ)-dependence into the
original definition, which will inevitably alter the relevant
susceptibilities. In the meantime, there are some other defi-
nitions of quark condensate, for instance, authors in Ref. [42]
define the quark condensate as

〈ψ̄ψ〉r (T ) = m f

m4
π

(〈ψ̄ψ〉(T ) − 〈ψ̄ψ〉(T = 0)
)
, (13)

where m f and mπ are current quark and pion masses respec-
tively. It is useful to study the susceptibilities related to con-
densate, but has no direct physical interpretation as the orig-
inal 〈ψ̄ψ〉 or 〈ψ̄ψ〉r . Based on the above considerations, we
propose a definition of quark condensate as

〈ψ̄ψ〉R(T, μ) = 〈ψ̄ψ〉(T, μ) − 〈ψ̄0ψ0〉(0, 0)

= −
∑

n, �p

∫
tr [S( �p, ω̃n)] +

∫
d4 p

(2π2)4 tr [S0(p)], (14)

where the subscript 0 refers to the quark condensate obtained
from a tree-level quark propagator. Here S0(p) is the tree-
level quark propagator at T = 0 and μ = 0. One advantage of
this definition is that it coincides with the definition Eq. (11)
whilem goes to zero, rendering the same meaningful physical
interpretation. The other advantage is that Eq. (14) introduces
no additional T (μ)−dependence to the quark condensate. So
its derivative with respect to T and μ, namely the tempera-
ture and vector-scalar susceptibilities which will be defined
in the next section, are unchanged by this renormalization
procedure. Note that the two terms on the right-hand side
of Eq. (14) are individually divergent, but their difference is
finite. We develop a calculation technique, which is detailed
in Appendix A. In the following, we directly refer to 〈ψ̄ψ〉R
as 〈ψ̄ψ〉 for simiplicity.

Another quantity of interest is the quark number density,
which is defined as

〈ψ†ψ〉 = −
∑

n, �p

∫
Tr[S( �p, ω̃n)γ4]

= −4NcN f

∑

n, �p

∫
ω̃nC

�p2A2 + ω̃2
nC

2 + B2 . (15)

The quark number density is well defined even in the case
of finite current quark mass, but this formula confronts a
numerical computation difficulty. We can see from Eq. (15)
that the UV-behavior of integrand is 1

�p2 and 1
ω̃n

, hence the
summation and integration are superficially divergent. By
the way, the lattice QCD has also investigated this problem
in studying the quark number susceptibility recently [43].
The non-interacting fermion quark number susceptibility is
subtracted so that the numerical calculation converges. In this
connection, we develop a novel technique, which is detailed
in Appendix A, to handle the numerical computation without
trouble.

3 Susceptibilities and crossover region

In the chiral limit, the quark condensate is the exact order
parameter for the chiral phase transition. It still plays an
important role beyond the chiral limit, since it is the first
order derivative of the pressure with respect to the current
quark mass m

〈ψ̄ψ〉 = − T

V

∂ lnZ
∂m

. (16)

Its discontinuity is a criterion of the first order phase tran-
sition. The quark number density, on the other hand, is pro-
portional to the derivative of pressure with respect to the
chemical potential

〈ψ†ψ〉 = T

V

∂ lnZ
∂μ

, (17)

which is another important quantity in thermal and dense
QCD systems. For the sake of comparison, we display 〈ψ̄ψ〉
and 〈ψ†ψ〉 varying with μ at different T in Fig. 1. At
T = 120 MeV, both 〈ψ̄ψ〉 and 〈ψ†ψ〉 show discontinuities
at a critical chemical potential, namely, μc = 160 MeV. It
implies that a first order phase transition happens, and these
two different criteria give the same phase transition point,
which is consistent with the model independent study in Ref.
[44]. It is interesting that the quark number density is almost
zero below μc at low temperature. As temperature increases,
the discontinuities of both 〈ψ̄ψ〉 and 〈ψ†ψ〉 disappear at
T = 129 MeV, and a very rapidly changing area occurs.
As the temperature increases further, the 〈ψ̄ψ〉 and 〈ψ†ψ〉

123



399 Page 4 of 7 Eur. Phys. J. C (2019) 79 :399

Fig. 1 The quark condensate and quark number density varying with
μ at T = 110 MeV, T = 120 MeV, T = 129 MeV and T = 140 MeV,
respectively

vary smoothly with μ. In order to have a deeper insight into
these transition behaviors, we resort to susceptibilities in the
following.

Let’s introduce six kinds of susceptibilities in thermal and
dense QCD systems: the chiral susceptibility χs , the quark
number susceptibility χq , the thermal susceptibility χT , the
frequently used vector-scalar susceptibility χμ, and two addi-
tional χvT , χm for completeness. They are defined as

χs = −∂〈ψ̄ψ〉
∂m

, (18)

χμ = ∂〈ψ̄ψ〉
∂μ

, (19)

χT = ∂〈ψ̄ψ〉
∂T

, (20)

χm = −∂〈ψ†ψ〉
∂m

, (21)

χq = ∂〈ψ†ψ〉
∂μ

, (22)

χvT = ∂〈ψ†ψ〉
∂T

. (23)

Actually the χμ and χm are identical since

χμ = ∂〈ψ̄ψ〉
∂μ

= − T

V

∂2 lnZ
∂m∂μ

= −∂〈ψ†ψ〉
∂m

= χm . (24)

Fig. 2 Five different susceptibilities at T = 120 MeV

Fig. 3 Five different susceptibilities at T = 129 MeV

We first display the five susceptibilities at T = 120 MeV
in Fig. 2. Apparently, all the susceptibilities share the same
discontinuity point at μ = 119 MeV. Their behaviors around
the critical point are very similar. One can see that the values
at both sides for them are finite and unequal to each other,
which reflects the discontinuity of the quark condensate and
quark number density. It is the typical feature of the first order
phase transition.

In Fig. 1, both 〈ψ̄ψ〉 and 〈ψ†ψ〉 have a continuous but
rapidly changing area at T = 129. Whether this is the second
order phase transition point can be confirmed with the help of
susceptibilities. Figure 3 shows the susceptibilities varying
with μ at T = 129 MeV, all of which tend to infinity for both
sides at μ = 85 MeV. Since Fig. 1 has already shown that the
〈ψ̄ψ〉 and 〈ψ†ψ〉 are both continuous at μ = 85 MeV and
T = 129 MeV, this is actually the second order phase tran-
sition point. We now conclude that various susceptibilities
give the same location of the first order and the second order
phase transition points in thermal and dense QCD system.
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Fig. 4 Five different susceptibilities at T = 145 MeV. χs is plotted
with right vertical axis, and χμ, χT , χq , χvT are plotted with left vertical
axis

While T > 129 MeV, the system enters the continuous
transition region, namely, the crossover region. The five sus-
ceptibilities varying with μ at T = 145 MeV are displayed in
Fig. 4. At low chemical potential region, two of the suscepti-
bilities, namely, χμ and χvT , vanish at μ = 0 since the quark
number density vanishes at μ = 0 at any temperature and
current quark mass, which can be partially seen from Fig. 1.
In terms of the critical behavior, they behave very similarly,
they all contain a peak at some critical chemical potential.
However, the peaks of different susceptibilities are located at
different points, which have been marked in Fig. 4. We can
see from Fig. 4 that for T = 145 MeV the peaks of χs , χμ,
χT , χq , χvT are located at μc = 51 MeV, μc = 55 MeV,
μc = 43 MeV, μc = 58 MeV, μc = 51 MeV, respectively.
We extract all such critical points for all the temperatures in
the crossover region and plot the phase diagram in Fig. 5. We
can see from Fig. 5 that the critical lines of χs and χμ are
very close, and their critical temperatures for certain μ are
larger than those of χT and χvT . The χT poses the lowest
critical temperature for certain μ and the critical line of χvT

is located between them. It is worth noting that the critical
line of χq ends at (T, μ) = (45, 146) MeV because the χq is
monotonically increasing with μ and T in the region of high
temperature and low chemical potential. We display a band
spanned by these critical lines, which implies that the critical
band is more suitable for the crossover region.

4 Summary

We have studied the chiral phase transition with the help of
quark condensate and quark number density in the frame-
work of Dyson–Schwinger equations. A renormalized defi-
nition of the quark condensate in the case of beyond chiral
limit is proposed in a self-consistent way. And we suggest a

Fig. 5 The critical band of the QCD phase diagram

numerical technique to deal with the superficial divergence
in the calculation of the quark number density.

The first order phase transition is located at the same
points by these two different quantities, i.e, quark conden-
sate and quark number density, which is consistent with the
model independent study. Various susceptibilities are used to
determine the critical line in the crossover region. Five sus-
ceptibilities give different critical lines. The critical line of
quark number susceptibility ends at (T, μ) = (45, 146) MeV
because it monotonically increases with μ in the region of
μ < 45 MeV. The critical lines of χs and χμ are very close
and their Tc are larger than those of other susceptibilities at
a certain μ. The χT has the lowest Tc. Therefore we suggest
a critical band in the crossover region, where χs and χT give
the upper and lower boundaries respectively.
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Appendix A: Techniques to calculate condensate and
quark number density

The quark condensate in the case of non-zero quark mass is
divergent. Hence some subtraction is necessary. In our study,
we define the quark condensate as

〈ψ̄ψ〉R(T, μ) := 〈ψ̄ψ〉(T, μ) − 〈ψ̄0ψ0〉(0, 0). (A1)

If one calculates the two terms in Eq. (A1) respectively, they
are both divergent. Actually, We can make use of the con-
densate of free quark at finite temperature and finite chemical
potential 〈ψ̄0ψ0〉(T, μ) twice to eliminate their divergence.
Specifically,

〈ψ̄ψ〉R(T, μ)

= 〈ψ̄ψ〉(T, μ) − 〈ψ̄0ψ0〉(T, μ) + 〈ψ̄0ψ0〉(T, μ)

−〈ψ̄0ψ0〉(0, 0)

= −N f Nc

∑

n, �p

∫ (
4B

�p2A2 + ω̃2
nC

2 + B2 − 4m

�p2 + ω̃2
n + m2

)

− N f Nc

∫
d3 p

(2π)3

(
T

∞∑

n=−∞

4m

�p2 + ω̃2
n + m2

−
∫

dp4

2π

4m

�p2 + p2
4 + m2

)

= −N f Nc

∑

n, �p

∫ (
4B

�p2A2 + ω̃2
nC

2 + B2

− 4m

�p2 + ω̃2
n + m2

)

− N f Nc

∫
d3 p

(2π)3

(
tanh(

√ �p2 + m2

2T
) − 1

)
. (A2)

In this way, both numerical integrations can converge very
quickly.

The technique to calculate quark number density is similar.
By denoting 〈ψ†ψ〉(T, μ,m) as the quark number density
with T ,μ and m, we have

〈ψ†ψ〉(T, μ,m)

= 〈ψ†ψ〉(T, μ,m)−〈ψ†ψ〉(T, μ, 0)+〈ψ†ψ〉(T, μ, 0)

= 〈ψ†ψ〉(T, μ,m)−〈ψ†
0 ψ0〉(T, μ, 0)+〈ψ†

0 ψ0〉(T, μ,m)

−〈ψ†ψ〉(0, 0, 0) + 〈ψ†ψ〉(T, μ, 0)

= −N f Nc

∑

n, �p

∫ (
4ω̃nC

�p2A2 + ω̃2
nC

2 + B2 − 4ω̃n

�p2 + ω̃2
n + m2

)

− N f Nc

∑

n, �p

∫ (
4ω̃n

�p2 + ω̃2
n + m2 − 4ω̃n

�p2 + ω̃2
n

)

+ N f Nc

(
T 2μ

3
+ μ3

3π2

)

= −N f Nc

∑

n, �p

∫ (
4ω̃nC

�p2A2 + ω̃2
nC

2 + B2

− 4ω̃n

�p2 + ω̃2
n + m2

)

− N f Nc

∫
d3 p

(2π)3

[
tanh

(√�q2 + m2 − μ

2T

)

− tanh

(√�q2 − μ

2T

)

− tanh

(√�q2 + m2 + μ

2T

)
+ tanh

(√�q2 + μ

2T

) ]

+ N f Nc

(
T 2μ

3
+ μ3

3π2

)
. (A3)

These two numerical integrations can converge very quickly
too.
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