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Abstract We propose to generate a realistic soft SUSY
breaking spectrum for Next-to-Minimal Supersymmetric
Standard Model (NMSSM) with a generalized deflected
mirage mediation scenario, in which additional Yukawa
and gauge mediation contributions are included to deflect
the renormalization group equation trajectory. Based on the
Wilsonian effective action obtained by integrating out the
messengers, the NMSSM soft SUSY breaking spectrum can
be given analytically at the messenger scale. We find that
additional contributions to m2

S can possibly ameliorate the
stringent constraints from the electroweak symmetry break-
ing and 125 GeV Higgs mass. Constraints from dark mat-
ter and fine-tuning are also discussed. The Barbieri–Giudice
fine-tuning measure and electroweak fine-tuning measure in
our scenario can be as low as O(1), which possibly indicates
that our scenario is natural.
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1 Introduction

Low energy supersymmetry (SUSY), which can solve ele-
gantly the gauge hierarchy problem of the Standard Model
(SM) and provide a viable dark matter (DM) candidate, has
been regarded by many physicists as one of the most appeal-
ing candidates for the TeV-scale new physics. However, the
reported data of the Large Hadron Collider (LHC) agree quite
well with the SM predictions and no significant deviations
have been observed in the electroweak precision measure-
ments and the flavor physics. Besides, the lack of SUSY
signals at the LHC [1–3] and the difficulty to accommodate
the discovered 125 GeV Higgs [4,5] seem to indicate that
the low energy SUSY spectrum should display an intricated
structure. As the low energy soft SUSY breaking spectrum is
determined by the SUSY breaking mechanism, it is interest-
ing to survey the phenomenology related to the SUSY break-
ing and mediation mechanism from a top-down approach.

SUSY breaking mechanism from flux compactification of
type IIB string theory can lead to interesting consequences.
In the generalized Kahler-modulus dominated scenarios, the
dilaton and complex structure moduli fields can be stabilized
by the background NS and RR 3-form fluxes. Such super-
heavy modes will be integrated out and eliminated from the
low energy effective theory. The remaining Kahler moduli
fields can be stabilized by non-perturbative effects, such as
the gaugino condensation. To generate SUSY breaking in
the observable sector and tune the cosmological constant to
a tiny positive value, Kachru et al. propose to add an anti-D3
brane at the tip of the Klebanov–Strassler throat to explicitly
break SUSY and lift the AdS universe to obtain a dS one [6].
Consequently, the F-component of the light Kahler moduli
field could mediate the SUSY breaking effects to the visi-
ble sector and result in a mixed modulus-anomaly mediation
SUSY breaking scenario [7,8]. It is interesting to note that the
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involved modulus mediated SUSY breaking contributions
can be comparable to that of the anomaly mediation [9,10].
With certain assumptions on the Yukawa couplings and the
modular weights, the change of the SUSY breaking contribu-
tions (from the inputs) by the renormalization group equation
(RGE) evolution and the anomaly mediation contributions
could cancel each other at a ‘mirage’ scale, leading to an
apparent pure modulus mediation scenario at such a mirage
scale [11]. Such a mixed modulus-anomaly mediation SUSY
breaking mechanism is dubbed as ‘mirage mediation’.

Anomaly mediation contribution is a crucial ingredient
of such a mixed modulus-anomaly mediation mechanism. It
is well known that purely anomaly mediation mechanism is
bothered by the tachyonic slepton problem [12–18]. One of
its non-trivial extensions with a messenger sector, namely
the deflected anomaly mediation SUSY breaking (AMSB)
scenario, can elegantly solve such a tachyonic slepton prob-
lem through the deflection of the RGE trajectory [19–25]
by additional gauge [26–32] or Yukawa mediation contri-
butions. Such a messenger sector can also be present in the
mirage mediation scenarios and play an important role in gen-
erating a preferable low energy SUSY spectrum. In fact, the
‘mirage’ unification of gaugino masses at TeV scale can be
possible in deflected mirage mediation scenarios, even with
the simplest minimal KKLT set-up [33–35]. In the mixed
modulus-anomaly mediation mechanism, a straightforward
extension of μ sector to predict a small Bμ term needs some
fine tuning [11]. Such a μ− Bμ problem can be solved natu-
rally in the framework of Next-to-Minimal Supersymmetric
Standard Model (NMSSM). The realization of NMSSM in
TeV mirage mediation scenarios had already been discussed
in the literature [36–39]. However, it was found that only a
small portion of the parameter space can be consistent with
the electroweak symmetry breaking (EWSB) conditions and
at the same time accommodate the 125 GeV Higgs [36,37].
So it is rather interesting to seek new ways to generate a
realistic NMSSM spectrum.

Additional gauge or Yukawa mediation contributions in
the mirage mediation [33–35] can deflect the RGE trajectory
and change the low energy soft SUSY predictions. Analyti-
cal expressions for the soft SUSY breaking parameters at the
messenger scale are given in the Wilsonian effective action
approach [40] by one of the authors. Based on the general dis-
cussions in [40], we propose to generate the NMSSM spec-
trum by a generalized deflected mirage mediation mechanism
[41] with additional gauge and Yukawa mediation contribu-
tions. We find that the inclusion of the messenger sector and
non-trivial interactions can possibly alleviate the stringent
constraints from the 125 GeV Higgs and the EWSB condi-
tions.

This paper is organized as follows. We briefly review the
mirage mediation mechanism in Sect. 2. We state our model
and present the analytical expressions for the soft SUSY

parameters in Sect. 3. The numerical results are discussed
in Sect. 4. Section 5 contains our conclusions.

2 Brief review of the mirage mediation mechanism

In Type IIB string theory compactified on a Calabi–Yau ori-
entifold, the presence of background fluxes can fix the dilaton
and the complex structure moduli, leaving only the Kahler
moduli in the four-dimensional Wilsonian effective super-
gravity action (defined at the boundary scale�) after integrat-
ing out the superheavy complex structure moduli and dilaton.
The low energy effective Lagrangian in terms of compen-
sator field and a single Kahler modulus that parameterizes
the overall size of the compact space [11] is given as

e−1L =
∫

d4θ
[
φ†φ

(
−3e−K/3

)
− (φ†φ)2θ̄2θ2Pli f t

]

+
∫

d2θφ3W +
∫

d2θ
fi
4
Wa

i W
a
i , (2.1)

with a holomorphic gauge kinetic term

fi = 1

g2
i

+ i
θ

8π
. (2.2)

The Kahler potential involves the ‘no-scale’ kinetic form
for the Kahler modulus while the superpotential involves the
KKLT setup

W =
(
ω0 − Ae−aT

)
+ W0, (2.3)

where the first term is generated from the fluxes and the
second term from non-perturbative effects, such as gaugino
condensation from the non-abelian gauge sector or D3-brane
instantons. W0 denotes the superpotential terms involving
the MSSM (NMSSM) sector as well as a possible messenger
sector. The modulus T , which is not fixed by the background
flux, can be stabilized by such a KKLT-type superpotential
with

a �〈T 〉 ≈ ln

(
A

ω0

)
≈ ln

(
MPl

m3/2

)
≈ 4π2, (2.4)

up to O(ln[MPl/m3/2]−1). Note that in the KKLT setup, the
flux-induced SUSY breaking is dynamically canceled by the
non-perturbative SUSY breaking that stabilizes the Kahler
modulus T , leading to a SUSY-preserving AdS solution. In
order to obtain a vacuum with a positive cosmological con-
stant and break SUSY, KKLT proposed to add an D̄3 brane
to provide an uplifting operator given by

Pli f t = D(T + T †)nP , (2.5)

with a positive constant D ∼ O(m2
3/2M

2
pl). The uplifting

operator, which represents the low energy consequence of the
sequestered SUSY-breaking brane, is independent of visible
matter fields and T (with nP = 0) in the minimal KKLT
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set-up. Explicit SUSY breaking via anti-D3 branes can be
replaced by typical D-term or F-term uplifting mechanisms
[42–44].

With the uplifting low energy effective potential, we have
the leading order F-terms of compensator field Fφ and Kahler
modulus FT [11]

Fφ ≈ m3/2 ≈ ω0

M2
Pl(T + T ∗)3/2

, (2.6)

M0 ≡ FT
T + T ∗ ≈ 2

a(T + T ∗)
m3/2 ≈ m3/2

ln
(

MPl
m3/2

) . (2.7)

The non-zero F-term VEV of the heavy moduli H are given
approximately by FH ∼ m2

3/2/mU 	 m3/2. Therefore, it
gives negligible contributions to SUSY breaking [45].

In the mirage mediation, we have m3/2 ≈ (4π2)M0

numerically, which means that the loop induced anomaly
mediation contributions are comparable to the modulus
mediation contributions. The importance of the anomaly
mediation contributions relative to the modulus mediation
contributions can be parameterized by

α′ ≡ m3/2

M0 ln
(
MPl/m3/2

) . (2.8)

So α′ 	 1 corresponds to the limit of pure modulus medi-
ation, while α′ � 1 corresponds to the pure anomaly medi-
ation. Although the minimal KKLT predicts α′ ≈ 1, other
values of α′ ∼ O(1) can be obtained by assuming proper
uplifting operator and proper forms for the potential of Kahler
modulus [11]. So we leave the value α′ as a free parameter
in the following discussions.

3 NMSSM with deflected mirage mediation

The general form of the low energy effective action Eq. (2.1)
can be amended to include new ingredients, for example, the
NMSSM sector and a messenger sector. The Kahler poten-
tial will include not only the ‘no-scale’ kinetic form for the
Kahler modulus but also additional kinetic terms for messen-
ger fields

K = −3 ln(T + T †) + ZX (T †, T )X†X + Z�(T †, T )�†�

+
∑
i

Z Pi ,P̄i
(T †, T )

[
P†
i Pi + P̄†

i P̄i
]
, (3.1)

with P̄i , Pi the messenger superfields and � the NMSSM
superfield. The Kahler metric for matter fields and mes-
sengers as well as holomorhic gauge kinetic functions are
assumed to depend non-trivially on the Kahler modulus T

ZX (T †, T ) = 1

(T † + T )nX
, Z�(T †, T ) = 1

(T † + T )n�
,

fi (T ) = T li , ZPi ,P̄i
(T †, T ) = 1

(T † + T )nP
. (3.2)

The values of nX , n�, nP , li depend on the location of the
fields on the D3/D7 branes. Besides, universal li = 1 are
adopted in our scenario so that the gauge fields reside on
the D7 brane and the gauge coupling unification can be pre-
served.

The W0 term within the superpotential Eq. (2.3) is given
as

W0 = WNMSSM + WM , (3.3)

with

WNMSSM = λSHuHd + 1

3
κS3 + WMSSM , (3.4)

the (Z3 symmetric) NMSSM sector and

WM =
∑
m

[
λT
X X X̃m Xm + λD

X XỸmYm
]

+λT
P S X̃1X2 + λD

P SỸ1Y2 + W (X), (3.5)

the messenger sector. The ‘2m’ family of messengers can be
fitted into 5, 5̄ representation of SU (5) gauge group

Pm(5) = Xm(3, 1)−1/3 ⊕ Ym(1, 2) 1/2,

P̃m(5̄) = X̄m(3̄, 1) 1/3 ⊕ Ȳm(1, 2̄)−1/2. (3.6)

The VEV of the pseudo-modulus superfield X , which can
be determined by W (X) and other SUSY breaking effects,
can set the messenger thresholds through the X Pm P̃m type
couplings. The deflection parameter ‘d’, which characterizes
the relative size of contributions between the gauge (Yukawa)
mediation and anomaly mediation, can be readily obtained

dFφ ≡ FX

X
− Fφ. (3.7)

Similar to the deflected AMSB, a positive deflection parame-
ter in the deflected mirage mediation, which can be generated
by a carefully chosen superpotential etc. [21–25], may be
preferable because less messenger species are needed so that
the problem of strong gauge couplings below the GUT scale
can be evaded. The purpose to introduce even number of mes-
senger species is to forbid possible kinetic mixing between
X and S, otherwise the tadpole term for S would destabilize
the weak scale [46]. The discrete Z3 breaking by EWSB may
generate domain walls in the early universe which may lead
to an unacceptably large anisotropy of CMB. To avoid such a
problem, the Z3 symmetry is assumed to be broken by some
higher dimensional operators.

There are two approaches to obtain the low energy SUSY
spectrum in the deflected mirage mediation:
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• In the first approach, the deflected mirage mediation soft
SUSY spectrum is given by the expressions in [11] at the
boundary scale. Such a spectrum will receive additional
contributions towards its RGE running to low energy
scale, especially the threshold corrections related to the
appearance of messengers [47].

• In the second approach which we will adopt, the soft
SUSY spectrum at low energy scale is derived directly
from the (low energy) effective action. The SUGRA
description in Eq. (2.1) can be seen as the Wilsonian
effective action after integrating out the superheavy com-
plex structure moduli and dilaton field. After the pseudo-
modulus X acquires a VEV and determines the messen-
ger threshold, the messengers can be integrated out to
obtain a low energy effective action below the messen-
ger threshold scale. So we anticipate that the Kahler met-
ric Z� and gauge kinetic fi should depend non-trivially
on the messenger threshold M2

mess/φ
†φ and Mmess/φ,

respectively. The resulting soft SUSY spectrum below
the messenger threshold can be derived from the wave-
function renormalization approach [48–54]. The analyt-
ical expressions for the soft SUSY breaking parameters
in the most general form of deflected mirage mediation
scenarios are given in [40] by one of the authors.

3.1 The modular weight choices for NMSSM superfields

We need to specify the modular weights ni ≡ 1 − mi for
NMSSM superfields before we can carry out numerical anal-
ysis. In the NMSSM, successful EWSB and the solution to
the μ-problem in general require a large VEV for the singlet
S. So it is preferable to introduce a negative m2

S and/or large
trilinear terms Aλ, Aκ for the singlet superpotential interac-
tions. As a negative m2

S prefers vanishing modulus contri-
butions, we set the modular weight mS = 0. The choice
of modulus weight for Hu, Hd can be understood from the
EWSB conditions in NMSSM. From

M2
Z

2
= m2

Hd
− m2

Hu
tan β2

tan2 β − 1
− μ2, (3.8)

we can see that m2
Hu

should be light to avoid a too large fine-

tuning. On the other hand, m2
Hu

	 m2
Hd

for tan β � 1. So
we can set m(Hd) = 1 or 1/2 and mHu = 0.

The electroweak (EW) naturalness prefers relatively light
stops. In the MSSM, light stops below 1 TeV are disfavored
because it is difficult to accommodate the observed 125 GeV
Higgs. However, large loop corrections involving stops are
not necessarily required to interpret the 125 GeV Higgs in
NMSSM. So light stops, which is preferable from the crite-
rion of a low EW fine-tuning, are still allowed in NMSSM.
Squarks of the first two generations should be heavy to avoid
various SUSY CP and flavor constraints. We note that even

pure AMSB contributions can guarantee the heaviness of
colored SUSY particles. Besides, it is preferable to ame-
liorate the gμ − 2 discrepancy in the framework of SUSY
with light sleptons and electroweakinoes. With the modular
weight li = 1 for gauge fields, a positive deflection parameter
‘d’ can possibly guarantee the lightness of the electroweaki-
nos.

The notorious tachyonic slepton problem in AMSB can
be solved in our scenario. Positive slepton masses can be
obtained by introducing a proper deflection parameter ‘d’
or by adding extra modulus mediation contributions. So we
chose the following mi in our scenario:

• Modular weights for sleptons are given by m(LL )1,2,3 =
m(Ec

L )1,2,3 = 1/2.
• Modular weights for other matter and messenger fields

are given by

mHu = mS = mQ3
L

= mtcL
= mbcL

= 0,

ma = 1

2
, (a = Q1,2

L , (Uc
L)1,2, (Dc

L)1,2),

mHd = mX = mX̃ = mY = mỸ = 1. (3.9)

• Double messenger species with m = 1 are adopted in
our subsequent numerical study.

Note that the messenger modular weights also play a role
and contribute to m2

S . The modular weights ni = 0 corre-
spond to matter fields on D7 branes while ni = 1 on D3
branes. Modular weights ni = 1/2 corresponds to fields on
the intersections of the D3–D7 branes.

3.2 Analytical expressions for soft SUSY breaking
parameters

Now we use the second Wilsonian approach in our anal-
ysis. From the analytical expressions for the generalized
mirage mediation [40], the soft SUSY breaking parameters
in NMSSM at the messenger scale Mmess after integrating
out the messenger fields can be given explicitly. The gaugino
masses are given as

Mi = li M0
g2
i (μ)

g2
i (GUT )

+ Fφ

αi

4π
(bi − d�bi ) , (3.10)

with li = 1 and

(b1, b2, b3) =
(

33

5
, 1,−3

)
, (3.11)

�(b1, b2, b3) = (2, 2, 2). (3.12)

Within the expression, the relative size between the anomaly
and modulus mediation contribution at the messenger scale
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is determined by the free parameter

α = Fφ

(16π2)M0
. (3.13)

We define the modular weight qyi jk as

qyt = mQL ,3 + mHu + mtcL
,

qyb = mQL ,3 + mHd + mbcL
,

qyτ = mLL ,3 + mHd + mτ cL
,

qλ = mS + mHd + mHu ,

qκ = 3mS . (3.14)

The trilinear soft terms at the messenger scale are given by

At = qyt M0 − M0

8π2

[
6y2

t
qyt
2

+ y2
b
qyb
2

+ λ2 qλ

2

−
(

16

3
g2

3 + 3g2
2 + 13

15
g2

1

)]
ln

(
MGUT

Mmess

)

+ Fφ

16π2

[
6y2

t +y2
b+λ2 −

(
16

3
g2

3 +3g2
2 + 13

15
g2

1

)]
,

(3.15)

Ab = qybM0 − M0

8π2

[
y2
t
qyt
2

+ 6y2
b
qyb
2

+ λ2 qλ

2

−
(

16

3
g2

3 + 3g2
2 + 7

15
g2

1

)]
ln

(
MGUT

Mmess

)

+ Fφ

16π2

[
y2
t +6y2

b+λ2 −
(

16

3
g2

3 +3g2
2 + 7

15
g2

1

)]
,

(3.16)

Aτ = qyτ M0 − M0

8π2

[
3y2

b
qyb
2

+ λ2 qλ

2

−
(

3g2
2 + 9

5
g2

1

)]
ln

(
MGUT

Mmess

)

+ Fφ

16π2

[
3y2

b+λ2−(3g2
2 + 9

5
g2

1)

]
, (3.17)

Aλ = qλM0 − M0

8π2

[
3y2

t
qyt
2

+ 3y2
b
qyb
2

+ 4λ2 qλ

2

+2κ2 qκ

2
−

(
3g2

2 + 3

5
g2

1

)]
ln

(
MGUT

Mmess

)

+ Fφ

16π2

[
4λ2 + 2κ2 + 3y2

t + 3y2
b −

(
3g2

2 + 3

5
g2

1

)]

+�Aλ, (3.18)

Aκ = qκM0 − M0

8π2

[
6λ2 qλ

2
+ 6κ2 qκ

2

]
ln

(
MGUT

Mmess

)

+ Fφ

16π2

[
6λ2 + 6κ2

]
+ �Aκ , (3.19)

with new contributions due to non-vanishing �GS

�Aλ = −d
Fφ

16π2

[
3(λT

P )2 + 2(λD
P )2

]
, (3.20)

�Aκ = −3d
Fφ

16π2

[
3(λT

P )2 + 2(λD
P )2

]
. (3.21)

The soft SUSY breaking parameters for the scalars can be
parameterized by

m2
so f t = δm + δd + δI , (3.22)

with each part given as follows

• The pure modulus contribution part

δm
Q̃L;3

= mQL;3 M
2
0

− M2
0

8π2 ln

(
MGUT

Mmess

) {
(q2

yt + qyt )y
2
t + (q2

yb

+qyb )y
2
b − 16

3
g2

3 − 3g2
2 − 1

15
g2

1

+ 1

8π2

[
−y2

t qyt Kyt − y2
bqyb Kyb

]

+ 1

8π2

[
8

3
b′

3g
2
3 + 3

2
b′

2g
2
2 + 1

30
b′

1g
2
1

]

× ln

(
GUT

Mmess

)}
, (3.23)

δm
Ũc
L;3

= mUc
L;3 M

2
0 − M2

0

8π2 ln

(
MGUT

Mmess

) {
2(q2

yt +qyt )y
2
t

−16

3
g2

3 − 16

15
g2

1

+ 1

8π2

[
−2y2

t qyt Kyt

]

+ 1

8π2

[
8

3
b′

3g
2
3 + 8

15
b′

1g
2
1

]
ln

(
GUT

Mmess

)}
,

(3.24)

δm
D̃c
L;3

= mDc
L;3 M

2
0 − M2

0

8π2 ln

(
MGUT

Mmess

) {
2(q2

yb +qyb )y
2
b

−16

3
g2

3 − 4

15
g2

1

+ 1

8π2

[
−2y2

bqyb Kyb

]

+ 1

8π2

[
8

3
b′

3g
2
3 + 2

15
b′

1g
2
1

]
ln

(
GUT

Mmess

)}
,

(3.25)

δm
L̃L;a

= mLL;a M
2
0

− M2
0

8π2 ln

(
MGUT

Mmess

) {
− 3g2

2 − 3

5
g2

1

+ 1

8π2

[
3

2
b′

2g
2
2 + 3

10
b′

1g
2
1

]
ln

(
GUT

Mmess

)}
,

(3.26)

δm
Ẽc
L;a

= mEc
L;a M

2
0

− M2
0

8π2 ln

(
MGUT

Mmess

) {
− 12

5
g2

1

+ 1

8π2

(
6

5
b′

1g
2
1

)
ln

(
GUT

Mmess

)}
, (3.27)
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δm
H̃u

= mHu M
2
0

− M2
0

8π2 ln

(
MGUT

Mmess

) {
3(q2

yt + qyt )y
2
t

+(q2
λ + qλ)λ

2 − 3g2
2 − 3

5
g2

1

+ 1

8π2

[
−3y2

t qyt Kyt − λ2qλKλ

]

+ 1

8π2

[
3

2
b′

2g
2
2 + 3

10
b′

1g
2
1

]
ln

(
GUT

Mmess

)}
,

(3.28)

δm
H̃d

= mHd M
2
0 − M2

0

8π2 ln

(
MGUT

Mmess

){
3(q2

yb + qyb )y
2
b

+(q2
λ + qλ)λ

2 − 3g2
2 − 3

5
g2

1

+ 1

8π2

[
−3y2

bqyb Kyb − λ2qλKλ

]

+ 1

8π2

[
3

2
b′

2g
2
2 + 3

10
b′

1g
2
1

]
ln

(
GUT

Mmess

)}
,

(3.29)

δmS = mSM
2
0 − M2

0

8π2 ln

(
MGUT

Mmess

) {
2(q2

λ + qλ)λ
2

+2(q2
κ + qκ)κ2

+ 1

8π2

[
−2λ2qλKλ − 2κ2qκKκ

]}
, (3.30)

with b′
i = bi + �bi being the beta function upon the

messenger thresholds and

Kyt =
[

6y2
t qyt + y2

bqyb + λ2qλ

−
(

16

3
g2

3 + 3g2
2 + 13

15
g2

1

)]
ln

(
GUT

Mmess

)
,

(3.31)

Kyb =
[
y2
t qyt + 6y2

bqyb + λ2qλ

−
(

16

3
g2

3 + 3g2
2 + 7

15
g2

1

)]
ln

(
GUT

Mmess

)
,

(3.32)

Kλ =
[

3y2
t qyt + 3y2

bqyb + 4λ2qλ + 2κ2qκ

−
(

3g2
2 + 3

5
g2

1

)]
ln

(
GUT

Mmess

)
, (3.33)

Kκ =
[
6λ2qλ + 6κ2qκ

]
ln

(
GUT

Mmess

)
. (3.34)

Expressions for the first two generations can be obtained
by setting yt = yb = 0.

• The deflected anomaly mediation part

δd
Q̃L;1,2

= F2
φ

16π2

[
8

3
G3α

2
3 + 3

2
G2α

2
2 + 1

30
G1α

2
1

]
,

(3.35)

δd
Ũc
L;1,2

= F2
φ

16π2

[
8

3
G3α

2
3 + 8

15
G1α

2
1

]
, (3.36)

δd
D̃c
L;1,2,3

= F2
φ

16π2

[
8

3
G3α

2
3 + 2

15
G1α

2
1

]
, (3.37)

δd
L̃L;1,2,3

= F2
φ

16π2

[
3

2
G2α

2
2 + 3

10
G1α

2
1

]
, (3.38)

δd
Ẽc
L;1,2,3

= F2
φ

16π2

6

5
G1α

2
1, (3.39)

δdHu
= F2

φ

16π2

[
3

2
G2α

2
2 + 3

10
G1α

2
1

]

+ F2
φ

(16π2)2

[
λ2Gλ + 3y2

t Gyt

]

−2d
F2

φ

(16π2)2 λ2
[
3(λT

P )2 + 2(λD
P )2

]
,

(3.40)

δdHd
= F2

φ

16π2

[
3

2
G2α

2
2 + 3

10
G1α

2
1

]

+ F2
φ

(16π2)2

[
λ2Gλ + 3y2

bGyb

]

−2d
F2

φ

(16π2)2 λ2
[
3(λT

P )2 + 2(λD
P )2

]
,

(3.41)

with

Gyt = 6y2
t + y2

b + λ2 − 16

3
g2

3 − 3g2
2 − 13

15
g2

1,

Gyb = y2
t + 6y2

b + λ2 − 16

3
g2

3 − 3g2
2 − 7

15
g2

1,

Gλ = 4λ2 + 2κ2 + 3y2
t + 3y2

b − 3g2
2 − 3

5
g2

1,

Gκ = 6λ2 + 6κ2, (3.42)

and N = 2 in our scenario for

Gi = Nd2 + 2Nd − bi , (3.43)

(b1, b2, b3) =
(

33

5
, 1,−3

)
. (3.44)

For the third generation Q̃L ,3, Ũ c
L , we need to include

the ‘yt , yb’ Yukawa contributions

δd
Q̃L ,3

= δd
Q̃L;1,2

+ F2
φ

1

(16π2)2

[
y2
t Gyt + y2

bGyb

]
,

(3.45)
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δd
Ũc
L ,3

= δd
Ũc
L;1,2

+ F2
φ

1

(16π2)2 2y2
t Gyt , (3.46)

δd
D̃c
L ,3

= δd
D̃c
L;1,2

+ F2
φ

1

(16π2)2 2y2
bGyb . (3.47)

The contributions to δ I
S̃

can be divided into three parts

δd
S̃

= �A
P + �G

P + �I
P . (3.48)

We have the pure anomaly mediation part

�A
P = F2

φ

(16π2)2

[
2λ2Gλ + 2κ2Gκ

]
. (3.49)

Besides, the m2
S̃

term receives new contributions involv-
ing λP because GS is not continuous across the messen-
ger threshold

�GS = − 1

8π2

[
3(λT

P )2Z−1
XX Z

−1
X̄ X̄

+2(λD
P )2Z−1

YY Z
−1
Ȳ Ȳ

]
.

(3.50)

So the Yukawa mediation contribution is

�G
P = − d2F2

φ

4(8π2)

[
3(λT

P )2
(
G+

λTP

)
+ 2(λD

P )2
(
G+

λD
P

)]

+d2F2
φ

16π2

(
λ2�Gλ + κ2�Gκ

)
, (3.51)

with

G+
λTP

= − 1

8π2

[
5(λT

P )2 + 2(λD
P )2 + 2λ2 + 2κ2

+2(λT
X )2 −

(
16

3
g2

3 + 4

15
g2

1

)]
, (3.52)

G+
λD
P

= − 1

8π2

[
3(λT

P )2 + 4(λD
P )2 + 2λ2 + 2κ2

+2(λD
X )2 −

(
3g2

2 + 3

5
g2

1

)]
, (3.53)

�Gκ = − 1

8π2 3
[
3(λT

P )2 + 2(λD
P )2

]
, (3.54)

�Gλ = − 1

8π2

[
3(λT

P )2 + 2(λD
P )2

]
. (3.55)

The anomaly-gauge (Yukawa) mixing term is given by

�I
P = − 2dF2

φ

(16π2)2

{
2λ2

[
3(λT

P )2 + 2(λD
P )2

]

+6κ2
[
3(λT

P )2 + 2(λD
P )2

]}
. (3.56)

• The interference terms involving the Kahler modulus ‘T ’:

δ I
Q̃L

= M0Fφ

8π2

[
y2
t

(
qyt − 1

8π2 Kyt

)

+y2
b

(
qyb − 1

8π2 Kyb

)

−
(

8

3

g4
3

g2
3(GUT )

+ 3

2

g4
2

g2
2(GUT )

+ 1

30

g4
1

g2
1(GUT )

)]
, (3.57)

δ I
Ũ c
L

= M0Fφ

8π2

[
2y2

t

(
qyt − 1

8π2 Kyt

)

−
(

8

3

g4
3

g2
3(GUT )

+ 8

15

g4
1

g2
1(GUT )

)]
, (3.58)

δ I
D̃c
L

= M0Fφ

8π2

[
2y2

b

(
qyb − 1

8π2 Kyb

)

−
(

8

3

g4
3

g2
3(GUT )

+ 2

15

g4
1

g2
1(GUT )

)]
, (3.59)

δ I
L̃ L

= −M0Fφ

8π2

(
3

2

g4
2

g2
2(GUT )

+ 3

10

g4
1

g2
1(GUT )

)
,

(3.60)

δ I
Ẽc
L

= −M0Fφ

8π2

(
6

5

g4
1

g2
1(GUT )

)
, (3.61)

δ IHu
= M0Fφ

8π2

[
3y2

t

(
qyt − 1

8π2 Kyt

)

+λ2
(
qλ − 1

8π2 Kλ

)

−
(

3

2

g4
2

g2
2(GUT )

+ 3

10

g4
1

g2
1(GUT )

)]
, (3.62)

δ IHd
= M0Fφ

8π2

[
3y2

b

(
qyb − 1

8π2 Kyb

)

+λ2
(
qλ − 1

8π2 Kλ

)

−
(

3

2

g4
2

g2
2(GUT )

+ 3

10

g4
1

g2
1(GUT )

)]
, (3.63)

δ I
S̃

= M0Fφ

8π2

[
2λ2

(
qλ − 1

8π2 Kλ

)

+2κ2
(
qκ − 1

8π2 Kκ

)]
+ �T X

P (mS̃2). (3.64)

Note that the expressions for sfermions are hold for the
third generation, the first two generation can be obtained
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by setting yt , yb → 0. Within the expressions, modular
weight li = 1 for gauge couplings are used.
The previous contributions are just the anomaly-modulus
interference part. Possible modulus-gauge interference
part will also appear in our scenario. The anomalous
dimensions for all fields except S are continuous across
the messenger threshold, so their modulus-gauge inter-
ference contributions vanish. As noted previously, the
anomalous dimension for S is discontinuous across the
messenger threshold, so we have the new T, X interfer-
ence contributions to m2

S̃

�T X
P (mS̃2) = −dM0Fφ

8π2

[
3(λT

P )2
(
qλTP

− 1

8π2 KλTP

)

+2(λD
P )2

(
qλD

P
− 1

8π2 KλD
P

)]
, (3.65)

with

KλTP
=

[
5(λT

P )2qλTP
+ 2(λD

P )2qλD
P

+ 2λ2qλ + 2κ2qκ

+2(λT
X )2qλTX

−
(

16

3
g2

3 + 4

15
g2

1

)]
ln

(
GUT

Mmess

)
,

KλD
P

=
[

3(λT
P )2qλTP

+ 4(λD
P )2qλD

P
+ 2λ2qλ + 2κ2qκ

+2(λD
X )2qλD

X
−

(
3g2

2 + 3

5
g2

1

)]
ln

(
GUT

Mmess

)
.

(3.66)

Here

qλTP
= mS + mX̃1

+ mX2 ,

qλD
P

= mS + mỸ1
+ mY2 ,

qλTX
= mX + mX̃m

+ mXm ,

qλD
X

= mX + mỸm
+ mYm . (3.67)

4 Numerical results

After fixing the modular weights, the remaining free param-
eters in our scenario are

d, α, Mmess, M0, λ, κ, λD
P , λT

P , λD
X , λT

X (4.1)

with Fφ/(16π2) ≈ αM0 and the simplest choice λD
P = λT

P =
λD
X = λT

X = λ0 in our numerical study. Note that for later
convenience, the definition of α is four times smaller than α′
that appears in Eq. (2.8). The ratio α between Fφ/(16π2) and
M0 holds in the messenger scale and in general is different
from its value at the GUT scale. We choose a positive α in our
numerical study. For a negative α, virtual mirage unification
at a super-GUT energy scale will appear.

We need to check if successful EWSB conditions are
indeed fulfilled. In fact, the soft SUSY mass m2

Hu
,m2

Hd
,m2

S

can be reformulated into μ, tan β, M2
Z by the minimum con-

ditions of the scalar potential. Usually, MA can be used to
replace Aκ

M2
A = 2μe f f

sin 2β
Bef f , μe f f ≡ λ〈s〉, Bef f = (Aλ + κ〈s〉).

(4.2)

In order to transform m2
Hu

,m2
Hd

,m2
S into μ, tan β, M2

Z , we
use the following approximation

|μe f f |2 = −M2
Z

2
− m2

Hu

+ 1

tan2 β
(m2

Hd
− m2

Hu
) + O(1/ tan4 β), (4.3)

sin 2β = 2Bef f μe f f

m2
Hu

+ m2
Hd

+ 2|μe f f |2 + λ2v2
, (4.4)

to obtain μ and tan β iteratively.
We use NMSSMTools5.2.0 [55,56] to scan the whole

parameter space. The parameters are chosen to satisfy:

1015 GeV > Mmess > 105 GeV,

100 TeV > M0 > 0.1 TeV, (4.5)

16 > α > 0, 5 > d > 0, 0.7 > λ, κ > 0,√
4π > λ0 > 0. (4.6)

In our scan, we impose the following constraints:

(I) The conservative lower bounds on SUSY particles [57–
60] from the LHC

– Gluino mass: mg̃ � 1.8 TeV .
– Light stop mass: mt̃1 � 0.85 TeV .
– Light sbottom mass mb̃1

� 0.84 TeV.
– Degenerated first two generation squarks mq̃ �

1.0 ∼ 1.4 TeV.

(II) The CP-even component S2 in the Goldstone-‘eaten’
combination of Hu and Hd doublets corresponds to the
SM Higgs. The S2 dominated CP-even scalar should
lie in the combined mass range for the Higgs boson:
122 GeV < Mh < 128 GeV from ATLAS and CMS
data [4,5]. Note that the uncertainty is 3 GeV instead
of the default 2 GeV because a large λ may induce an
additional 1 GeV correction to mh at two-loop level
[61], which is not included in the NMSSMTools.

(III) The relic density of the neutralino dark matter should
satisfy the Planck data �DM = 0.1199 ± 0.0027 [62]
in combination with the WMAP data [63] (with a 10%
theoretical uncertainty).

(IV) The electroweak precision observables [64] and the
lower bounds on neutralinos and charginos, including
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the invisible decay bounds for Z -boson. The most strin-
gent constraints of LEP require mχ̃± > 103.5GeV and
the invisible decay width �(Z → χ̃0χ̃0) < 1.71 MeV,
which is consistent with the 2σ precision EW measure-
ment �non−SM

inv < 2.0 MeV [65].
(V) Flavor constraints [66] from B-meson rare decays

1.7 × 10−9 < Br(Bs → μ+μ−) < 4.5 × 10−9,

(4.7)

0.85 × 10−4 < Br(B+ → τ+ν) < 2.89 × 10−4,

(4.8)

2.99 × 10−4 < Br(BS → Xsγ ) < 3.87 × 10−4. (4.9)

(VI) The tension between the theoretical prediction and the
experimental value for the muon anomalous magnetic
moment should be ameliorated by additional positive
SUSY contributions. The E821 experimental result for
the muon g−2 at the Brookhaven AGS [67] was given
by

aexpt
μ = 116592089(63) × 10−11, (4.10)

which is larger than the SM prediction [68,69]

aSM
μ = 116591834(49) × 10−11. (4.11)

The deviation is about 3σ

�aμ(expt − SM) = (255 ± 80) × 10−11. (4.12)

We adopt a conservative estimation 4.7 × 10−10 �
�aμ � 52.7 × 10−10 in our numerical results.

We should note that the numerical results depend crucially
on whether the 125 GeV Higgs is the lightest CP-even scalar
(Type A) or the second lightest CP-even scalar (Type B). We
have the following discussions

• The low energy soft SUSY breaking spectrum of NMSSM,
determined from a top-down approach by a UV-completed
theory, is always bothered by the requirement to achieve
successful EWSB. As noted previously, EWSB condi-
tions in NMSSM in general require a large VEV for
the singlet and consequently prefer a negative m2

S and/or
large Aλ, Aκ for the singlet potential. However, ordinary
mirage mediation scenarios always predict large positive
values for m2

S and not very large Aλ, Aκ , suppressing the
singlet VEV. In our scenario, because of possible nega-
tive contributions to m2

S from new Yukawa interactions,
stringent constraints from successful EWSB can be ame-
liorated. The observed 125 GeV Higgs mass, whether it
is the lightest or the second-lightest CP-even scalar in

NMSSM, can also be successfully accommodated in our
scenario.
We can see from Fig. 1 that many samples of (λ, κ) can
survive the EWSB conditions in NMSSM. In contrast to
the numerical results of TeV mirage mediation in [36,37]
within which the allowed (λ, κ) only take values near
(0.7,0.1), some portion of (λ, κ) parameter space can sur-
vive all constraints in Type A.
We should note that such a difference has the following
reasons

– The choices of the modular weights in [36,37], for
example, the values of mQ3

L
and mtcL

etc, are different

to ours which are given in Eq. (3.9).
– New ingredients, such as the messenger sector which

can cause additional deflection of the RGE trajec-
tory, will introduce new free parameters. After all, the
mirage mediation scenario can be seen as a special
case of our scenario with gauge couplings (Yukawa
couplings) being switched off.

– The mirage unification scale is set to lie at TeV
scale in [36,37]. It is known that simple mirage
unification for soft parameters would in general be
spoiled in deflected mirage mediation scenario. How-
ever, ‘mirage’ unification for gaugino masses per-
sists which can be proven in our Wilsonian approach
(see Appendix A for details).
In our scenario, the mirage unification scale for gaug-
ino masses is not constrained to lie at TeV scale. How-
ever, we can see from the mirage unification scales
shown by different colors in Fig. 1 that even if such
scales are required to lie at TeV scale, vast param-
eter space, which is larger than the numerical result
of Refs. ([36,37]), can survive the constraints from
(I–V).

Note that the vacuum stability bounds are also taken into
account in our numerical studies, which impose stringent
constraints on scenario in [36,37]. In Type B in which the
125 GeV Higgs is the second lightest CP-even scalar, the
allowed (λ, κ) parameter space is also much bigger than
that in [36,37]. The Higgs mass can be increased by 8
GeV through the mixing with the singlet component for
large tan β and λ � 0.04.
It can be seen from Fig. 2 that the modulus mediation
contribution M0 is bounded to lie between 1 and 8.5 TeV
for Type A. A small M0 always prefers a low messen-
ger scale Mmess . A large M0, which controls the whole
soft SUSY breaking parameters to be heavy, can easily
accommodate the SM-like Higgs mass because of large
loop corrections from heavy stops in addition to the tree-
level contributions involving λ. The value of M0 is upper
bounded to be less than about 5.5 TeV for Type B, which
sets an upper bound for the soft SUSY breaking param-
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Fig. 1 The values of (λ, κ) that can satisfy the EWSB conditions and
at the same time accommodate the 125 GeV Higgs boson as the lightest
(left panel) or second lightest (right panel) CP-even scalar are shown.

The mirage unification scales for gaugino masses are also shown in
different colors. All points satisfy the constraints (I–V)

eters, especially for the gluino masses. The gluino mass,
which is determined by the scale of M0, is bounded to
below 16 TeV for Type A and below 8 TeV for Type B,
respectively.

• The Barbieri–Giudice fine-tuning (BGFT) [70] measure
is defined as

�BG ≡ max
i

∣∣∣∣∣
∂ ln M2

Z

∂ ln ai

∣∣∣∣∣ , (4.13)

where ‘ai ’ stands for the set of parameters defined at the
input scale.
There are two mass scales for the soft SUSY parame-
ters in our scenario, one is the scale that characterize the
modulus contributions M0 and the other is the scale that
characterize the anomaly contribution Fφ . The latter one
is rewritten into a dimensionless quantity α by Eq. (3.13).
We can also calculate the electroweak fine-tuning (EWFT)
measure �EW of the survived points defined in [71,72]

�EW ≡ max
i

(Ci )/

(
m2

Z

2

)
, (4.14)

with the relevant terms (see [71,72])

CHu =
∣∣∣∣∣−

m2
Hu

tan2 β

tan2 β − 1

∣∣∣∣∣ , CHd =
∣∣∣∣∣

m2
Hd

tan2 β − 1

∣∣∣∣∣ ,

Cμ =
∣∣∣−μ2

e f f

∣∣∣ ,
C�u

u (t̃1,2)
= tan2 β

tan2 β − 1

∣∣∣∣ 3

16π2 F(m2
t̃1,2

)

×
[
y2
t − g2

Z ∓ y2
t A

2
t − 8g2

Z ( 1
4 − 2

3 xw)�t

m2
t̃2

− m2
t̃1

]∣∣∣∣∣ ,

C�d
d (t̃1,2)

= 1

tan2 β − 1

∣∣∣∣ 3

16π2 F(m2
t̃1,2

)

×
[
g2
Z ∓ y2

t μ
2
e f f + 8g2

Z ( 1
4 − 2

3 xw)�t

m2
t̃2

− m2
t̃1

]∣∣∣∣∣ , (4.15)

where xw = sin2 θW and

�t =
(m2

t̃L
− m2

t̃R
)

2
+ M2

Z cos 2β(
1

4
− 2

3
xw),

F(m2) = m2
(

log
m2

mt̃1mt̃2

− 1

)
. (4.16)

We can see from Fig. 2 that the BGFT measure in our
scenario can range from O(1) to O(1000). In fact, the
lowest BGFT can reach O(1) for Type B. Such a low
fine-tuning possibly indicates that our scenario is natu-
ral. We also compare the BGFT measure of the survived
points with their corresponding EWFT measure in the
last two panels of Fig. 2. It can be seen that the calcu-
lated EWFT measure is positively correlated to the corre-
sponding BGFT measure. In most of allowed parameter
space, the EWFT and BGFT measures take values of the
same order. Besides, the EWFT measure, which can be
thought of as providing a lower bound on the electroweak
fine-tuning, is always smaller than that of the BGFT mea-
sure [73].
In some of the allowed region, the EWFT measure as
well as BGFT measure is rather low (being O(1)). As
emphasized in [73], EWFT measure is a necessary, albeit
not sufficient, measure of electroweak fine-tuning. Low
�EW need not necessarily mean the model is not fine-
tuned. Rather, it may indicate the possibility that some
model might exist with low fine-tuning which might be
hidden by the naive application of �BG .
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Fig. 2 Scatter plots of the SM-like Higgs mass mh versus the modulus
mediation parameter M0 and gluino mass mg̃ for Type A (left panels)
or Type B (right panels). The fine-tuning measures given in the middle
of the panels (mh vs mg̃) are the Barbieri–Giudice fine tuning (BGFT)

measures. The comparisons between the BGFT measure versus the elec-
troweak fine tuning (EWFT) measure for Type A and Type B are shown
in the last two panels, respectively. All samples satisfy the constraints
(I–V)

It is known that low fine-tuning needs light stops as well
as a small effective μ, which are naively determined by
the dimensional parameter M0 that controls the whole
soft SUSY spectrum with moderate values of α. The
lower the M0 (consequently the lower gluino mass), the
lower value of the BGFT(EWFT) measure.

• A positive deflection parameter ‘d’ is always favored
to solve the tachyonic slepton problem in the deflected
AMSB for fewer messenger species. In the deflected
mirage mediation scenarios, if the modulus contribution
is subdominant, a realistic model still prefers a positive
deflection parameter ‘d’ with less messenger species. As
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Fig. 3 The allowed regions for the deflection parameter ‘d’ versus α, which parametrize the relative size between the anomaly mediation and the
modulus mediation. All samples satisfy the constraints (I–V)

Fig. 4 The masses of the Higgs scalars with d ≈ 1.8. All samples satisfy the constraints (I–V)

the parameter α ≡ α′/4 determines the relative size of
the contributions between the anomaly mediation and
the modulus mediation, a large value of α, which indi-
cates small modulus mediation contributions, needs a
large positive deflection parameter ‘d’ to avoid tachy-
onic sleptons. We check that large negative values of ‘d’
are mostly ruled out by the EWSB condition and tachy-
onic sfermions. It is obvious in the left panel of Fig. 3 that
the deflection parameter is constrained to lie at about 1.8
to tune the tachyonic slepton masses to positive values
by additional gauge and Yukawa mediation contributions
in the region with a large α. It can be seen in Fig. 4 that
the corresponding lightest CP-even Higgs mass should
lie at a very narrow band centered at about 122.1 GeV
with d ≈ 1.8. Besides, the second-lightest CP-odd scalar
a2 is constrained to lie near 6000 GeV if the lightest CP-
odd scalar a1 is lighter than 5000 GeV while the lightest
CP-odd scalar is constrained to lie near 6000 GeV if the
second-lightest CP-odd scalar is heavier than 6000 GeV.

In our scenario, the quantity ‘4αd’ can approximately
measure the relative size of deflection contributions (by
gauge or Yukawa mediation) to the modulus mediation
contributions. We can see from Fig. 3 that the deflection
contributions can be dominant in a large portion of the
surviving parameter space.
Besides, it can also be seen from Fig. 3 that in the mod-
ulus mediation dominated regions, that is small α with
d = 0, realistic NMSSM spectrums can be possible. This
indicates that pure mirage mediation without deflection,
which is a special case of our scenarios, can lead to real-
istic NMSSM spectrum even though it is stringently con-
strained by EWSB conditions and 125 GeV Higgs. This
conclusion agrees with that of [36,37]. Additional deflec-
tion with d �= 0 from messenger sector can enlarge the
possible choice of α in mirage mediation, rendering the
mirage-type scenarios more natural.

• From Eq. (3.10) in the appendix, we can see the gaugino
ratio at the EW scale
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Fig. 5 The upper panels show the plots of DM mass vs the DM components for Type A (left panel) or Type B (right panel). Similarly, the lower
panels show the plots of DM mass versus the spin-independent (SI) direct detection bounds. All samples satisfy the constraints from (I–V)

M3 : M2 : M1 ≈ 6 ·
[

1

g2
3

+ α(−3 − 2d)

]
: 2

·
[

1

g2
2

+ α(1 − 2d)

]
:
[

1

g2
1

+ α(6.6 − 2d)

]
(4.17)

where g1, g2, g3 take values at the GUT scale. On the
other hand, the singlino mass is determined by κ and
〈s〉, which rescales the effective μe f f parameter by a
factor 2κ/λ. In general, a pure singlino-like LSP tends
to have a too large relic density due to a comparatively
small annihilation cross section because of its small cou-
plings to SM particles. Non-negligible higgsino contents
within singlino-dominated neutralino DM can open sev-
eral annihilation channels and be helpful to reduce the
DM relic density to right amount.
In TypeA, the neutralino DM is either singlino-dominant
or bino-dominant, each possibility contains non-neglig-
ible higgsino components. In the bino-dominant regions,
the LSP annihilate dominantly into pairs of gauge
bosons (W+W−, Z Z ) and (doublet-like) Higgs bosons
(W±H±, ZH, H A) via s-channel Z or Higgs exchange,
as well as through t-channel neutralino and chargino

exchange processes. In the singlino-dominant regions,
the singlino-like LSP (with the presence of non-negligible
higgsino components) can annihilates via the t-channel
χ0

1 exchange into pairs of mostly singlet-like H1 and A1

by enhanced χ0
1 χ0

1 H1(A1) couplings. Co-annihilation
with heavier χ0

2 (for �m � 10GeV) will also efficiently
reduce the singlino relic abundance to a proper �DM .
Besides, the annihilation channels χ0

1 χ0
1 → t t̄, bb̄ can

also be important. Similar DM annihilation channels exist
for TypeB in which the neutralino DM is mainly singlino-
like with non-negligible higgsino components.
We know that mixed bino-Higgsino DM is severely con-
strained by direct detection constraints. For a singlino-
dominant DM, the exchange of a light H1 can possibly
lead to a large direct detection cross section that will be
accessible in the present generation of detectors. It can
be seen from the lower panels of Fig. 5 that only a small
portion of DM parameter space can survive the spin-
independent (SI) DM direct detection constraints from
the LUX [74], PANDAX [75] and Xenon1T [76]. In fact,
direct detection constrained the DM mass to lie in the
range [120, 470] GeV for Type A and [50, 400] GeV for
Type B, respectively.
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Fig. 6 The upper panels show the SUSY contributions to the muon
anomalous magnetic moment �aμ for Type A (left) and Type B (right).
The lower panels show the corresponding masses of the lightest CP-

odd scalar ma1 , which can possibly give large two-loop contributions
to �aμ. All samples satisfy the constraints (I–V)

• Figure 6 shows the SUSY contributions to the muon
g − 2. It is known that the required SUSY contribu-
tions to �aμ can be achieved only if the relevant spar-
ticles( μ̃, ν̃μ, B̃, W̃ , H̃ ) are lighter than 600–700 GeV
for tan β ∼ 10 in the MSSM [77]. The inclusion of
the singlino in the NMSSM can not give sizable con-
tributions to �aμ because of the suppressed couplings
of singlino to MSSM sector. Although the two loop con-
tributions involving the Higgs are negligible in the SM,
new Higgs bosons in the NMSSM could have an impor-
tant impact on �aμ if the lightest neutral CP-odd Higgs
scalar is very light [78]. In fact, a positive two-loop contri-
bution is numerically more important for a light CP-odd
Higgs being a bit heavier than 3 GeV and the sum of both
one-loop and two-loop contributions is maximal around
ma1 ∼ 6 GeV. In our scenario, the lightest CP-odd Higgs
a1 is bounded to be heavier than 40 GeV and give negli-
gible two-loop contributions to �aμ in TypeA. The main
contribution to �aμ is thus similar to that in the MSSM.
In Type B, the lightest CP-odd Higgs a1 can lie near 10

GeV and will give important two-loop contributions to
increase �aμ to values favored by experiments.

• Before we finish our discussions on numerical results,
we note that the gauge-modulus interference contribu-
tion for soft scalar masses will play an important role in
phenomenological studies. In our scenario, such a con-
tribution is non-vanishing only for S which is given in
Eq. (3.65). This contribution will possibly change the
EWSB condition, the dark matter relic density and other
collider predictions. We show several benchmark points
which are affected by the contributions of �T X

P (mS̃2).
Table 1 shows several benchmark points, which should
not survive the various constraints if the gauge-modulus
interference contribution is absent. Table 2, in contrary,
shows several benchmark points which should survive
the various constraints if the gauge-modulus interference
contribution is absent.
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Table 1 Benchmark points, which should not survive the various con-
straints if the gauge-modulus interference contribution is absent. The
quantities with mass dimension are in unit of GeV. Without the gauge-
modulus interference contribution, the points will not survive the con-
straints because of the constraints shown in ‘Reasons’

Sample I Sample II Sample III

d 0.326 0.257 0.036

α 0.102 0.075 0.115

Mmess 1.420 × 109 4.823 × 106 4.724 × 107

M0 1278 1203 1222

λ 0.607 0.430 0.591

κ 0.205 0.147 0.193

λ0 2.389 1.012 2.597

mQ̃L;1,2
2041 1452 1479

mQ̃L ,3
1714 1081 1164

mŨL;1,2
2096 1558 1584

mŨc
L ,3

1640 1096 1236

mD̃c
L;12

2113 1565 1598

mD̃L ,3
1908 1322 1345

mL̃L;1,2,3
920.9 897.1 891.2

mẼL;1,2,3
761.7 691.0 661.4

Aλ 1823 1523 1807

Aκ −169.2 −163.2 −95.60

At −2360 −2821 −2401

Ab −3481 −3353 −3450

Aτ 1412 1453 1371

Mg̃ 2971 2889 2775

μe f f 646.3 200.9 635.2

mh1 125.8 125.7 126.9

gμ − 2 5.049 × 10−11 2.170 × 10−10 6.035×10−11

�χh2 0.114 0.118 0.120

mχ̃0
1

442.0 122.6 418.5

σ SI
P 1.172 × 10−11 pb 2.960 × 10−12 pb 1.701 ×

10−12 pb

Reasons EWSB EWSB Collider;
Higgs mass;
�h2

5 Conclusions

We propose to generate a realistic soft SUSY breaking spec-
trum for Next-to-Minimal Supersymmetric Standard Model
with a generalized deflected mirage mediation scenario, in
which additional Yukawa and gauge mediation contributions
are included to deflect the RGE trajectory. Based on the
Wilsonian effective action obtained by integrating out the
messengers, the NMSSM soft SUSY breaking spectrum can
be given analytically at the messenger scale. We find that
additional contributions to m2

S can possibly ameliorate the

Table 2 Benchmark points, which should survive the various con-
straints if the gauge-modulus interference contribution is absent. The
quantities with mass dimension are in unit of GeV. With the gauge-
modulus interference contribution, the points will not survive the con-
straints because of the constraints shown in ‘Reasons’

Sample I Sample II Sample III

d 1.114 0.307 1.102

α 0.056 0.102 2.804

Mmess 8.188 × 109 4.360 × 1012 3.880 × 1012

M0 5049 2034 938.1

λ 0.005 0.097 0.105

κ 0.553 0.354 0.231

λ0 1.597 2.279 0.381

mQ̃L;1,2
9087 3853 17,479

mQ̃L ,3
7478 3155 15,378

mŨL;1,2
9200 3836 17,234

mŨc
L ,3

6789 2756 12,746

mD̃c
L;12

9259 3867 17,223

mD̃L ,3
8366 3482 17,057

mL̃L;1,2,3
3648 1465 1377

mẼL;1,2,3
3249 1449 3455

Aλ 4657 1511 −2737

Aκ −6511 −3614 −4573

At −10,187 −3843 9530

Ab −11,949 −4828 6936

Aτ 6368 2267 −4347

Mg̃ 11, 819 4523 17,463

μe f f 439.2 288 4998

mh1 127.1 123.8 123.6

gμ − 2 1.580 × 10−11 1.096 × 10−10 −1.110 ×
10−11

�χh2 0.022 0.010 0.004

mχ̃0
1

458.3 294.5 421.0

σ SI
P 1.030 × 10−10 pb 7.316 × 10−10 pb 1.870 ×

10−12 pb

Reasons EWSB EWSB Collider;
Higgs mass;
�h2

stringent constraints from the EWSB and 125 GeV Higgs
mass. Constraints from dark matter and fine-tuning are also
discussed. The Barbieri–Giudice fine-tuning measure and
electroweak fine-tuning measure in our scenario can be as
low as O(1), which possibly indicates that our scenario is
natural.
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Appendix A: The mirage scale in deflected mirage medi-
ation mechanism

The gaugino mass at scale μ below the messenger scale can
be written as

Mi = M0
g2
i (μ)

g2
i (GUT )

+ Fφ

αi

4π
(bi − d�bi ) , (A.1)

with

1

g2
i (μ)

= 1

g2
i (GUT )

+ bi + �bi
8π2 ln

(
MG

M

)

+ bi
8π2 ln

(
M

μ

)
,

= 1

g2
i (MZ )

− bi
8π2 ln

(
μ

MZ

)
. (A.2)

Here MG, M denote the gauge coupling unification scale and
the messenger scale, respectively. We will show that appar-
ent ‘mirage’ unification for gaugino masses will still be pre-
served after the introduction of messenger sector in deflected
mirage mediation scenarios. Substituting �bi ≡ N and the
definition Fφ ≡ (16π2)αM0 into Eq. (A.1), the gaugino
masses can rewrite as

Mi = M0
g2
i (μ)

g2
i (GUT )

+ αM0 (bi − dN ) g2
i (μ),

=
[
M0 − αM0dNg2

i (GUT )
]

×
[

1 − bi + N

8π2 g2
i (μ) ln

(
MG

M

)

− bi
8π2 g

2
i (μ) ln

(
M

μ

)]
+ αM0bi g

2
i (μ),

≈
(
M0 − αM0dNg2

i (GUT )
)

×
[(

1 − N

8π2 g
2
i (MG) ln

(
MG

M

))

− bi
8π2 g

2
i (μ) ln

(
MG

μ

)]
+ αM0bi g

2
i (μ),

≡ K0

[
c0 − bi

8π2 g
2
i (μ) ln

(
MG

μ

)]
+ αM0bi g

2
i (μ),

(A.3)

with

K0 ≡ M0 − αM0dNg2
i (GUT ),

c0 = 1 − N

8π2 g
2
i (MG) ln

(
MG

M

)
. (A.4)

So we can see that mirage unification for gaugino masses
will be satisfied at the scale μ determined by

ln

(
MG

μ

)
= 8π2αM0

K0
. (A.5)

with the mirage unification values for gaugino masses as

Mi (μmirage) = K0c0. (A.6)
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