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Abstract In the framework of the QCD effective action
the vertices of gluon emission in interaction of reggeons are
studied in the limit of small longitudinal momenta of the
emitted gluon. It is found that the vertices drastically simplify
in this limit, so that the gluon becomes emitted from a single
reggeon coupled to the projectile and target via multireggeon
vertices. The contribution from this kinematical region is
studied for double and 2 × 2 elementary collisions inside the
composite projectile and target.

1 Introduction

One of the main observables in high-energy collisions of
heavy nuclei is the inclusive cross-section for production
of secondaries. In the perturbative approach it reduces to
production of gluons, which subsequently transform into
observed secondary hadrons. The study of gluon produc-
tion in the central rapidity region with transverse momenta
much smaller than the longitudinal momenta of the collid-
ing particles (”Regge kinematics”) has a long history, start-
ing from the pioneer work on the production of minijets
from the BFKL pomeron [1]. Later this problem was stud-
ied in the framework of the dipole picture for the inclusive
cross-section in deep-inelastic scattering (DIS) on the heavy
nucleus [2], where it was shown that the inclusive cross-
section was related to the so-called unintegrated gluon den-
sity in the nucleus. Still later in the formalism of reggeized
gluons (”BFKL-Bartels” or the BFKLB framework [3–5]) it
was demonstrated that the same cross-section consists of a
sum of two contributions coming from the BFKL pomeron
and the cut triple pomeron vertex [6]. In collisions of two
heavy nuclei (”AB collisions”) the situation is not so straight-
forward with the results obtained only in the framework of
the JIMWLK formalism (see [7] and the references therein).
However, the lack of connection with the actual gluon pro-
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duction in a collision of composite targets and the absence
of the confirmation in the BFKLB framework leave certain
open questions, which are waiting for their solution.

In the BFKLB framework gluon production is based on
the vertices obtained by the dispersive technique which uses
multiple discontinuities at poles corresponding to interme-
diate particles. Such vertices depend only on the transver-
sal momenta of gluons and reggeons. In this form the rela-
tion to the scattering on composites is poorly understood.
To describe it one rather has to study the vertices with the
dependence on all 4-momenta included, both transversal and
longitudinal. Such vertices can be found by means of the
Lipatov Effective Action (LEA) for QCD [8], which intro-
duces the reggeons as independent dynamical variables and
describes their interaction with the gluons apart from the
standard QCD action. The simplest vertex for gluon emission
from a single reggeon �R→RG was constructed in the origi-
nal BFKL paper [3,4]. In our previous papers we have found
higher vertices for gluon production in the interaction of one
and two reggeons, �R→RRG, �R→RRRG and �RR→RRG. They
are quite complicated and the derivation of the full inclusive
cross-section in hA and especially AA collisions seems to
require an extraordinary effort, also taking into account that
apart from the contribution from the vertices one has to cal-
culate numerous contributions from rescattering.

One has to take into account that LEA only describes
the interaction of gluons and reggeons at a given rapidity y
(or rather within a finite interval of rapidities �y). Slices of
the total rapidity region separated by large rapidity intervals
interact via the exchange of reggeons. So one has to divide
the total rapidity into different number of large intervals con-
necting different slices of effective action and one obtains
different diagrams made of effective vertices and reggeon
propagators. Neglecting the restriction imposed on the width
of each slice may lead to divergencies in the integrals over
rapidities in the loop integrals. The practical realization of
this picture was first achieved by the separation from the
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whole y-integration parts of small intervals �y in the cal-
culation of the NLO BFKL kernel in [9] where clusters of
real gluons were produced in the intermediate state. Later it
was found that in loop calculations the introduction of such
a direct slicing in rapidity by �y was inconvenient. Instead
a different method to avoid divergencies due to the limited
validity of the LEA vertices was developed based on the
so-called tilted Wilson lines (or tilted light-cone variables).
Within this method all different divergencies coming from
the loop integrations in vertices and propagators cancel [10–
13].

Vertices studied in this paper refer to a fixed value of
rapidity. They do not contain internal integrations nor any
divergencies. So their calculation can be safely done within
the rules of LEA for a given rapidity, without any cutoff �y
or tilted light-cone technique. We shall find that when the
longitudinal momenta of the emitted gluon become small
our vertices acquire a simple limiting form, which actually
corresponds to quite different diagrams of the LEA contain-
ing the internal reggeon exchange. These limiting diagrams
do not appear in LEA normally and exist only as limits of
the standard contributions. However, their simple structure
greatly simplifies the calculation of the contribution to the
cross-section in the limiting domain of momenta of the emit-
ted particles.

The bulk of the paper is devoted to the behavior of the pro-
duction vertices at small longitudinal moments (Sects. 2 and
3). In Sect. 4 we study the double inclusive cross-section in
the kinematic region where it is determined by the degener-
ate vertices found. Section 5 contains conclusions and some
discussion.

2 Vertices �R→RRG and �R→RRRG at small p−

To clearly see the problem we start with the simplest (“Lipa-
tov”) vertex �R→RG for the production of the gluon from
a reggeon, shown in Fig. 1. The incoming reggeon with
momentum q has q+ = p+ and q− = 0, the outgoing
reggeon with momentum r has r+ = 0 and r− = −p−.

Fig. 1 Vertex �R→RG

As a result the energy square for the vertex s0 = (q − r)2 =
p2 = 0 and partial energies s1 = (q− p)2 and s2 = (p+r)2

have orders p2⊥ considered small relative to the total energy
squared s (|p⊥|2/s << 1). This means that the vertex has
a finite dimension in rapidity characterized by the logarithm
of these partial energies.

Now consider a more complicated vertex �R→RRG which
corresponds to the production of the gluon when a single
reggeon goes into two reggeons. This vertex enters the ampli-
tude for the gluon production on a composite state composed
of two elementary targets, as we shall see later. The vertex
�R→RRG is illustrated in Fig. 2a. It was derived in the effec-
tive action approach in [15,16]:

�R→RRG = W + R +
(

1 ↔ 2
)
. (1)

Here

W = −i f ab1c f cb2d 2q+q2

(q − r1)2 + i0
B(p, r2, r1), (2)

R = i f ab1c f cb2d q2

r1−
L(p, r2). (3)

Notations for momenta are indicated in Fig. 2a; L and B are
the Lipatov and Bartels vertices,

L(p, r2) = (pe)⊥
p2⊥

− (p + r2, e)⊥
(p + r2)

2⊥
, (4)

B(p, r2, r1) = L(p + r2, r1). (5)

Fig. 2 Reduction of the vertices R→RRG and R→RRRG for the emis-
sion of a particle (gluon) with a small ”-” component of its momentum
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Here e is the polarization 4-vector with e+ = 0. Finally,
(1 ↔ 2) means the interchange of outgoing reggeons.

We are going to study the vertex in the limiting region
p− << r1,2− (region of small p−). In this case r1− � −r2−,
so that the “-” momenta of the two outgoing reggeons are
large and opposite. The ’-’ momentum comes along one of
the outgoing reggeons and goes back along the other.

The part W contains a pole at (q − r1)
2 � −q+r1− = 0

that is at r2− = p− = ε. Its contribution to the vertex con-
tains δ(p− − r2−) = δ(p− − ε). It is this contribution which
is the only one taken into account in the BFKLB approach,
in which discontinuities in energies are studied. As we move
to lower values of p− << r2− this δ function disappears
and only the principal value part of the pole remains. So at
p− << |r1,2−| the denominator of (2) simplifies as

(q − r1)
2 = (p + r2)

2 = r2
2 + 2(pr2)⊥ + 2p+r2−

= r2
2 + 2(pr2)⊥ − p2⊥

r2−
p−

.

Since r2
2 = r2

2⊥ and p⊥ are assumed to have the same order
of magnitude characteristic for all transverse momenta, at
p− << |r2−| one can neglect the first two terms, so that W
becomes

W = i f ab1c f cb2d 2q+q2 p−
r2− p2⊥

B(p, r2, r1)

= −i f ab1c f cb2d q2

r2−
B(p, r2, r1), (6)

where we usedq+ = p+ and 2p+ p=−p2⊥. Finally, at p− <<

|r1,2−| we have r1− + r2− = 0 and

W = i f ab1c f cb2d q2

r1−
B(p, r2, r1). (7)

In the sum W + R we find

W + R = i f ab1c f cb2d q2

r1−
(B(p, r2, r1) + L(p, r2)) . (8)

We have

B(p, r2, r1) + L(p, r2) = (p + r2, e)⊥
(p + r2)2⊥

− (p + r1 + r2, e)⊥
(p + r1 + r2)2⊥

+ (pe)⊥
p2⊥

− (p + r2, e)⊥
(p + r2)2⊥

= L(p, r1 + r2),

so that

W + R = i f ab1c f cb2d q2

r1−
L(p, r1 + r2). (9)

Adding (1 ↔ 2) we get

�R→RRG = i
q2

r1−
L(p, r1 + r2)

(
f ab1c f cb2d − f ab2c f cb1d

)
,

(10)

where we once again used r2− = −r1−. Using the Jacoby
identity

f ab1c f cb2d − f ab2c f cb1d = f dac f cb1b2

we finally obtain

�R→RRG = i f dac f cb1b2
q2

r1−
L(p, r1 + r2). (11)

This expression corresponds to the reduction of the vertex
�R→RRG as illustrated in the upper part of Fig. 2.

The diagram Fig. 2b by itself does not appear in LEA.
The central reggeon in it has both its two components of the
longitudinal momentum equal to zero and so this diagram lies
outside the standard Regge kinematics. It only appears as a
certain limit of the perfectly legitimate diagram Fig. 2a. One
may indicate some arguments to understand its appearance.
The initial diagram, Fig. 2a, refers to a given rapidity y. The
coupled reggeons correspond to virtual particles and cannot
be characterized by their rapidities by themselves. However,
we can instead consider different partial energies spanned
by the interacting gluon and reggeons: the overall energy
s0 = (q − r1 − r2)

2 = p2 = 0 and also s1 = (q − r1)
2 and

s2 = (q − r2)
2. Then s1 = −q+r1− + (q − r1)

2⊥, where we
take into account that q− = r1,2+ = 0. Since q+ = p+ =
−p2⊥/2p−, we have

s1 = r1−
2p−

p2⊥ + (q − r1)
2⊥.

This energy squared is finite if p− and r1− have the same
order. In this case the vertex has a finite dimension in energy.
The same is true for the energy squared, s2. However, if
p− → 0 energies s1 and s2 become large, then one may
think that this is equivalent to a large interval in rapidity
covered by the vertex in Fig. 2a, which appears outside the
allowed region in LEA. According to this logic in this region
one has to divide this interval in two large ones connected by
the reggeon. This will bring us to the diagram with two local
vertices shown in Fig. 2b. Continuing with this logic one is
supposed to introduce a rapidity cutoff �y, insert it in some
way into the diagrams, and for small p− give up the diagram
of Fig. 2a and use instead the diagram with the intermediate
reggeon and two vertices of Fig. 2b. However, this logic is in
fact dubious. There seems to be no clear way to introduce a
cutoff �y into the diagram Fig. 2a and the diagram Fig. 2b
does not exist in LEA. So the diagram Fig. 2a can be safely
used for any values of p−, and Fig. 2b emerges only as its
limit.

The same phenomenon occurs with the vertex �R→RRRG

for gluon emission in the splitting of a reggeon into three
reggeons, which is demonstrated in detail in Sect. 3.6 of [17].
In the kinematics p− << r1−, r2−, r3− it reduces to

�R→RRRG = g3
(
f adc f cb1b f bb3b2

1

r1−(r1− + r2−)
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Fig. 3 Diagrams for �RR→RRG

+ permutations of r1,2 and b1,2
)
L(p, r1 + r2 + r3),

(12)

which is illustrated in the lower part of Fig. 2.

3 Vertex RR→ RRG at small p±

The vertex RR→ RRG in the general kinematics was derived
in [18]. It is much more complicated than the vertices R→
RRG and R→ RRRG.

We shall demonstrate that at small p± the same reduc-
tion holds for this vertex as for �R→RRG and �R→RRRG dis-
cussed in the previous section, which drastically simplifies
the vertices expressing them via the simple BFKL vertex
�R→RG and multigluon vertices. This reduction is illustrated
in Fig. 11.

The vertex RR→ RRG consists of four terms, which are
shown in Fig. 3. Explicit expressions for them on the mass
shell and multiplied by the polarization vector ε are given in
[18]. Below we find expressions for them when

p− << |r1−|, |r2−|, and p+ << |q1+|, |q2+|. (13)

Some technical details can be found in the appendix.
1. Figure 3a. We find from this diagram

�1 = −C1
1

q1+r1−
(e, q1 + q2 + r1)⊥

= −C1
1

q1+r1−
(e, p + 2r1 + r2)⊥. (14)

We recall that here e is the polarization 4-vector with e+ = 0.
2. Figure 3b.
From this diagram in the kinematics (13) we find

�2 = C2

{
1

2
(pe)⊥

1

p+r1−
− 1

q1+r1−
(e, 2p − 2q1 − q2)⊥

− 1

q1+r1−
(pe)⊥
p2⊥

(
4(p, r1 + r2)⊥ + t̄2⊥ + 2q2

1 − q2
2 + E0

)}
.

(15)

Here t̄ = p − q2.
3. Figure 3c.
This diagram generates two terms with different color fac-

tors. The corresponding contributions �3 and �4 in the kine-
matics (13) are given by

�3 = C3

{
1

p+r1−
(ep)⊥

+ 1

2

1

q1+r1−
(e, q1 + r1)⊥ + 1

q1+r1− p2⊥
(ep)⊥q2

2

}

(16)

and

�4 = C4

{
−1

2

1

p+r1−
(ep)⊥ + 1

2

1

q1+r1−
(e, q1 + r1)⊥

}
.

(17)

4. Figure 3d.
In the kinematics (13) this diagram gives

�5 = C5

{
1

2

(pe)⊥
p+

(
1

r1−
− 1

r2−

)

− 1

2q1+r1−
(q1 − r1 − q2 + r2, e)⊥

}
. (18)

The color factors are

C1 = f db2c f b1a1e f ea2d , C2 = f da2c f b1a1e f db2e,

C3 = f a1b1d f a2ce f b2de, C4 = f a1b1d f a2de f b2ce,

C5 = f a1d1b1 f d1cd2 f a2d2b2 ,

so that

C3 = −C2, C4 = C1 (19)

and using the Jacoby identity

C5 = C4 − C3 = C1 + C2. (20)

These expressions are to be symmetrized over permuta-
tions of reggeons. Since �1, . . . , �4 are to be symmetrized
over all permutations of momenta and colors of the two
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incoming and two outgoing reggeons and �5 only over the
two outgoing reggeons, we can totally symmetrize the sum
of all diagrams taking the contribution from �5 with weight
1/2.

First we show that terms of the leading order 1/(p+r1−)

and 1/(p+r2−) cancel. Before symmetrization they are

C1

[
− (pe)⊥

2p+r1−
+ 1

2

(pe)⊥
2p+

(
1

r1−
− 1

r2−

)]

+C2

[
(pe)⊥

2p+r1−
− (pe)⊥

p+r1−
+ 1

2

(pe)⊥
2p+

(
1

r1−
− 1

r2−

)]

= C1

[
− (pe)⊥

4p+

(
1

r1−
+ 1

r2−

)]
+ C2

[
− (pe)⊥

4p+

(
1

r1−
+ 1

r2−

)]

= −1

4
(C1 + C2)

[
(pe)⊥
p+r1−

+ (pe)⊥
p+r2−

]
. (21)

At all permutations the momentum factor in (21) does not
change. So the leading order contribution is determined by
the symmetrized combinations of the color factors. One has

Sym {C1 + C2} = Sym {C5} = C5 + C5(a1 ↔ a2)

+C5(b1 ↔ b2) + C5(a1 ↔ a2, b1 ↔ b2) = 0.

(22)

Thus the leading order contribution is indeed canceled.
Next we study the factor multiplying 1/(q1+r1−). First we

address separate terms which do not contain (pe)⊥/p2⊥:

−C1(e, p + 2r1 + r2)⊥ − C2(e, 2p − 2q1 − q2)⊥

−1

2
C2(e, q1 + r1)⊥ + 1

2
C1(e, q1 + r1)⊥

−1

2
(C1 + C2) (e, q1 − q2 − r1 + r2)⊥

= (−C1 + C2) (e, q1 + q2)⊥ − 2C2(pe)⊥

+1

4
(C1 + C2) (pe)⊥ . (23)

Then we transform the factor multiplying the product of
1/(q1+r1−) and (pe)⊥/p2⊥ (using t̄ = q1 − r1 − r2):

−C2

(
4(p, r1 + r2)⊥ + t̄2⊥ + 2q2

1 − q2
2 + E0

)
− C2

(
q2

2

)

= −2C2(p + r1 + r2)
2⊥ + 2C2 p

2⊥ . (24)

As a result, the total factor multiplying 1/(q1+r1−) takes the
form [using p+r1 +r2 = q1 +q2 and noting that the second
term in (23) cancels the second term in (24)]

(−C1 + C2) (e, q1 + q2)⊥ − 2C2
(pe)⊥
p2⊥

(q1 + q2)
2⊥

+1

4
(C1 + C2) (pe)⊥ . (25)

Now we pass to symmetrization. Taking the order of
the two incoming and two outgoing reggeons as �i ≡
�i (2, 1|2, 1) in the expressions for �i , i = 1, . . . , 5 we have
for the total vertex

5∑
i=1

[�i (2, 1|2, 1) + �i (1, 2|2, 1) + �i (2, 1|1, 2) + �i (1, 2|1, 2)] .

(26)

The transverse factors in (25) do not change under permu-
tations. Since in our kinematics with the adopted precision
q2+ = −q1+ and r2− = −r1−, the denominator q1+r1−
changes sign for the reggeon configurations (1, 2|2, 1) or
(2, 1|1, 2) and does not change sign for the configuration
(1, 2|1, 2). As a result we find antisymmetric combinations
of the color factors,

Asym {Ci } = Ci − Ci (a1 ↔ a2) − Ci (b1 ↔ b2)

+Ci (a1 ↔ a2, b1 ↔ b2) . (27)

Take first C5 = f a1b1d f dce f ea2b2 :

Asym {C5} = Asym {C1 + C2}
= f a1b1d

(
f dce + f ecd

)
f ea2b2

− f a2b1d
(
f dce + f ecd

)
f ea1b2 = 0, (28)

from which it follows that Asym {C1} = −Asym {C2}.
As a result the last term in (25) gives no contribution to

the total vertex. It takes the form

Asym {C2}
q1+r1−

(
2(e, q1 + q2)⊥ − 2

(pe)⊥
p2⊥

(q1 + q2)
2⊥

)
.

(29)

To calculate

Asym {C2} = f a1b1d f db2e f ea2c − f a2b1d f db2e f ea1c

− f a1b2d f db1e f ea2c + f a2b2d f db1e f ea1c ,

(30)

one has to apply the Jacoby identity three times. First consider
the difference between the first and third terms. Applying

f a1b1d f db2e + f b1b2d f da1e + f b2a1d f db1e = 0

it can be rewritten as − f b1b2d f da1e f ea2c. Similarly the dif-
ference between the fourth and second terms can be rewrit-
ten as − f b2b1d f da2e f ea1c. Finally, one more Jacoby identity
allows one to find

Asym {C2} = f b1b2d
(
f da2e f ea1c − f da1e f ea2c

)

= − f a1a2e f ecd f db1b2 . (31)

The final result for the total vertex is

� = f a1a2e f ecd f db1b2

q1+r1−

(
−2(e, q1 + q2)⊥ + 2

(pe)⊥
p2⊥

(q1 + q2)
2⊥

)
,

(32)
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Fig. 4 Cut amplitudes with vertices �R→RRG and �R→RRRG

2 31

Fig. 5 Typical cut amplitudes with vertex �R→RRG and rescattering

which can be rewritten as

�RR→RRG = 2 f a1a2e f ecd f db1b2

g3(q1 + q2)
2⊥L(p, r1 + r2)

1

q1+r1−
. (33)

4 The inclusive cross-sections in hA and AA collisions at
small p±

4.1 hA collisions

As we have seen the vertices for gluon production in the inter-
action of reggeons drastically simplify in the region of small
longitudinal momenta of the produced gluon. At first sight it
promises to facilitate calculation of the physical observables,
such as inclusive cross-sections in the collision of compos-
ite particles, e.g. deuterons. However, we shall discover that
while such a facilitation certainly takes place, the resulting
cross-sections vanish in this region.

We start with hA collisions. We recall that the inclusive
cross-section from the double scattering of an elementary
projectile is given by the formula

IA(p, y) ≡ 2(2π)3dσ

dyd2 pd2b

= A(A − 1)

4πk+s

∫
dz1dz2dε cos (εm(z1 − z2)/k+)

Im H(p, ε)ρ(b, z1)ρ(b, z2), (34)

where s = 2k2+ is the c.m. energy squared, ρ(b, z) is the
nuclear density, H(p, ε) is the high-energy part of the ampli-
tude left after separating the nuclear factor, p is the momen-
tum of the emitted particle (gluon) and ε is the ”-” component
of the momentum transferred to one of the scattering centers,
both in the c.m. system. The naive Glauber approximation
follows if

Im H = 2πδ(ε)F(p). (35)

In this case one gets

IA(p, y) = A(A − 1)

2k+s
T 2(b) F(p). (36)

The high-energy part H can be found from the scatter-
ing amplitude cut to select the observed emitted gluon in the
intermediate state. Due to the famous AGK cancelations the
gluon can either be emitted from the incoming pomeron or
from the cut triple pomeron vertex. The emission from the
pomeron is well known. Here we are interested in the emis-
sion from the cut triple pomeron vertex which contains the
convolutions of vertices �R→RG, �R→RRG and �R→RRRG

shown in Fig. 4. Apart from this contribution which comes
exclusively from the production vertices �, the high-energy
part includes numerous diagrams where one or two reggeons
do not interact (”rescattering contribution”) illustrated in
Figs. 5 and 6. In these figures only typical diagrams are
shown. We also do not indicate how the outgoing reggeons
are coupled to the two colorless targets. This coupling may
be different and follows the pattern of Fig. 4.

We also do not show explicitly evolution of the pomerons
attached to the projectile and target (which is well known
and standardly realized by the BFKL equation) nor the actual
coupling to colorless scattering centers in the nucleus (in fact
nucleons). One has to take into account that for the heavy
nucleus the two centers have to refer to different nucleons.
Otherwise the contribution is down by A1/3, assumed large.
For clarity we show some diagrams with the nuclear target
explicitly indicated in Fig. 7. Several cuts in Figs. 5 and 6
imply that the sum over the contribution of each cut should
be taken. Our aim is to study these contributions in the limit
when the longitudinal momentum p− of the created gluon
is much smaller than the ”-”-momentum ε transferred to the

Fig. 6 Typical cut amplitudes
with pure rescattering
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Fig. 7 Typical amplitudes with the coupling to the nuclear target
explicitly shown

Fig. 8 Cut amplitudes with vertices �R→RRG and �R→RRRG after
reduction in Fig. 2

Fig. 9 Cut amplitudes with vertex �R→RRG and rescattering after
reduction in Fig. 2

target, which is the only dimensional variable after the inte-
gration over the longitudinal momenta of the reggeons.

As we have shown, in this kinematics the vertices�R→RRG

and �R→RRRG degenerate into the simple expressions (11)
and (12), illustrated in Fig. 2. The diagrams in Figs. 4 and 5
then transform into Figs. 8 and 9.

Leaving the discussion of the rescattering contribution to
the end of this section we concentrate here on the diagrams
with the reduced vertices � in Fig. 8. Since the pomeron
vanishes when the two reggeons are located at the same point,
all diagrams in which the two final reggeons in �R→RRG or
�R→RRRG are coupled to the same target vanish. So in the
domain p− << |ε| the inclusive cross-section coming from
the cut triple pomeron vertex will be given exclusively by

diagram 3 in Fig. 8. which corresponds to squaring the vertex
�R→RRG.

Twice the imaginary part of the high-energy amplitude
H will be given by the square of the two production ampli-
tudes, each containing the vertex �R→RRG. It contains color,
energetic, transverse momentum and numerical factors.

The color factor is given by (at large Nc)

f ae1d f de2a f e1b1b2 f b1e2b2 = (−Ncδe1e2

) (−Ncδe1e2

) = N 4
c .

Energetic factors come from three cut quark propagators.
From the projectile quark we find 4k2+/2k+ = 2k+. The two
target quarks give each 2l−. In the total we get 8k+l2−. Apart
from this we have factors 1/r1− in each of the two vertices
�R→RRG. Taking into account that r1− on the right differs by
ε we find a longitudinal integral

J (ε) =
∫

dr1−
2π

P 1

r1−
· P 1

r1− − ε
, (37)

where P means the principal value. Calculation gives

J (ε) = 1

8π
lim

η1→0,η2→0

∫
dx

(
1

x + iη1
+ 1

x − iη1

)

(
1

x − ε + iη2
+ 1

x − ε − iη2

)

= − i

4

(
1

ε − iη1 − iη2
− 1

ε + iη2 + iη1

)
= π

2
δ(ε)

(38)

and provides us with the factor (π/2)δ(ε). So actually the
diagram is zero unless ε is different from zero. However,
with ε = 0 one cannot realize the kinematics p− << |ε|,
since p− > 0. This means that in fact the diagram of Fig. 8,
3 vanishes in this kinematics.

Later we shall see that the diagrams with rescattering also
give no contribution in this domain.

4.2 AB collisions

Passing to AB collisions the obvious generalization of (36)
gives the inclusive cross-section in 2 × 2 collisions in the
Glauber approximation,

IAB(p, b1, b2, y) ≡ (2π)3dσ

dyd2 pd2b1d2b2

= A(A − 1)B(B − 1)

2k+2l−s
FT 2

A(b1)T
2
B(b2),

(39)

where s = 2(kl), TA,B(b) are the nuclear profile functions
and F is related to the high-energy amplitude H with the
”-” component ε and the ”+” component λ of the transferred
momenta to one of the two target centers and two projectile
centers, respectively, in the c.m. system, by

Im H = 2πδ(ε)2πδ(λ)F + · · · . (40)
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Fig. 10 Cut amplitudes with
two reggeons attached to each
participant

Fig. 11 Reduction of the
vertices RR→RRG,
RR→RRRG and RRR→
RRRG for the emission of a
particle (gluon) with small ±
components of its momentum

Terms in H which do not contain δ(ε)δ(λ) give no contribu-
tion to the inclusive cross-section.

Due to AGK cancelations [14] we expect that contribu-
tions from emission from the cut pomerons cancel and the
final result comes exclusively from the cut 4-pomeron inter-
action vertex, including improper terms corresponding to its
disconnected part, corresponding to rescattering in our lan-
guage. Apart from rescattering and the suppressed evolution
each diagram becomes a convolution of two amplitudes for
production of the observed gluon in the transition from 1, 2 or
3 initial reggeons into 1, 2 or 3 final reggeons. Then graphi-
cally H corresponds to the cut diagrams shown in Fig. 10. We
do not show the different ways in which the reggeons may be
coupled to the two projectiles and targets. They again follow
the pattern illustrated in Fig. 4.

The diagrams in Fig. 10 contain first ones with a con-
volution of two connected vertices for the production of
the observed gluon for transition from 1, 2 or 3 initial
reggeons into 1, 2 or 3 final reggeons. Apart from this
there are the diagrams with non-connected vertices, which
we interpret as rescattering. We shall consider the kine-
matic domain of small longitudinal momenta of the emitted
gluon,

p− << |ε|, p+ << |λ|. (41)

This domain implies small values of p2⊥ and so refers to
emission in the forward direction. As we shall argue later, the
amplitudes with rescattering do not contribute to the cross-
section in the domain (41).

As we have previously shown in the domain (13), the ver-
tices �R→RRG, �R→RRRG and �RR→RRG degenerate into the
simple expressions (11), (12) and (33), respectively. Unfortu-
nately we do not know explicit expressions for the production
amplitudes �RR→RRRG and �RRR→RRRG. However, in the
spirit of the QCD effective action and comparing with cases
with smaller numbers of reggeons we firmly believe that also
for them a similar reduction takes place. This reduction is
graphically shown in the lower part of Fig. 11.

With vertices thus degenerated, the cut diagrams shown in
Fig. 10 transform into the diagrams illustrated in Fig. 12. We
recall that when the two reggeons forming a pomeron happen
to be located at the same point in the coordinate space the
corresponding pomeron leg vanishes. This excludes all the
diagrams in Fig. 12 except the last.

As we have seen in the kinematics p± → 0 vertex
�RR→RRG is simplified to (33). The imaginary part of H
will be obtained by squaring this expression together with
the relevant energetic, transverse momenta, numerical and
color factors.

123



Eur. Phys. J. C (2019) 79 :392 Page 9 of 14 392

Fig. 12 Cut amplitudes for AB
scattering with two reggeons
attached to each participant and
vertices reduced in the
kinematics (13)

The square of the color factor gives N 5
c of which N 4

c are
to be included into the coupled pomerons. Energetic factors
coming from each projectile quark give 4k2+/2k+ = 2k+ and
from each target quark 2l−. So we get 16k2+l2− in all. There
also remains a product of 1/q1+r1− on the right and on the
left, which gives an integral which is a product of integrals
similar to (37),
∫

dq1+dr1−
4π2

1

q1+r1−(λ − q1+)(ε − r1−)

= π2

4
δ(ε)δ(λ). (42)

So we find that

Im H ∝ δ(ε)δ(λ),

which lies outside our kinematics (13), since p± > 0. So, as
for hA, the domain of small longitudinal moments have no
effect on the inclusive cross-section.

4.3 Rescattering

The fact that the diagrams with rescattering do not contribute
to the cross-section at small p± follows directly from the
number L of longitudinal integrations and dimensional con-
siderations.

Let us start from hA collisions. All the diagrams with
rescattering have the same order g10 as the calculated con-
tribution without rescattering. Initially the diagram with
the total number M of incoming and outgoing reggeons
involves 2(M−3) longitudinal momenta of integration, hav-
ing in mind that in each participant the sum of the trans-
ferred momenta is restricted by kinematics. Each rescatter-

ing diminishes L by 2. So initially we have 2M − 6 − 2R
integration variables. In the rescattering each quark prop-
agator gives a δ-function restricting one of the longitudinal
momenta. The total number of these δ-functions is obviously
M − 3. Two more δ-functions come from the restriction to
fix the momentum p of the emitted gluon. As a result, we
find

L = M − 2R − 5. (43)

In the main diagram without rescattering M = 6, so that
L = 1, which agrees with our previous calculations. The
diagrams with a single rescattering have M = 7 and R = 1,
which gives L = 0. Finally, with two rescatterings we have
M = 8, R = 2 and consequently L = −1. This negative L
means of course that one δ-function survives after longitu-
dinal integrations. The two remaining longitudinal variables
are p− and ε, so that the result has to be some function of
p− and ε of dimension −1.

In the region p− << |ε| the only remaining variable is ε.
So in the case of no integration the result has to be ∝ 1/ε and
in the case of L = −1 it has to be ∝ δ(ε). As we have already
mentioned the last case lies outside the assumed kinematics.
If the amplitude is ∝ 1/ε it gives zero in (34) as it is odd in
ε. Calculations also show that in this case the contribution
to the amplitude is real and its imaginary part is zero. So
rescattering amplitudes do not contribute to the inclusive hA
cross-section either.

This argument works also for AB collisions. In this case
the diagrams with rescattering are many and their order in g
starts with g10 lower than for the main diagram calculated in
Section 3. In Fig. 13 we show the diagrams with rescattering
of orders g10 and g12 lower than the order g14 considered
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Fig. 13 Diagrams with rescattering of orders g10 and g12

above. It is trivial to show that they all do not give any con-
tribution to the inclusive cross-section in the domain (13) on
the same grounds as for hA scattering.

With four participants and R rescatterings the number of
integrations is initially 2(M − 4 − R). Rescattering propa-
gators will produce M − 4 delta-functions and together with
the restriction imposed by fixing p we get in this case

L = M − 2R − 6. (44)

The order gN of different contributions may be different in
this case. It combines the couplings of the reggeons to the
participant quarks and the reggeon interactions, supposed to
be the only one to correspond to the notion of the vertex (a
single fixed rapidity y). Let the numbers of the incoming and
outgoing reggeons be M1 and M2, respectively. M = M1 +
M2 is their total number. A fraction R of the reggeons may
go directly from the projectile to the target (rescatterings).
The rest of the reggeons, M1 − R from the projectile and
M2 − R from the target, interact once with the transitional
kernel KM1−R→M2−R , which has order gk with k = M1 +
M2−2R−2 = M−2R−2. Taking into account the coupling
to participants gM we find the total order

N = 2M − 2R − 2. (45)

One, however, has to take into account the number of inter-
acting incoming and outgoing reggeons—each cannot be
smaller than 2. This gives a restriction on the number of
rescatterings,

R ≤ M1 − 2, M2 − 2. (46)

Using Eqs. (44) and (45) we find the following diagrams
with R rescattering having order N ≤ 14 which are interest-
ing for our 4-pomeron vertex. We combine the numbers R,
N and L for the diagram into a single index (R, N , L). We
find

1. M = 8 : (0, 14, 2), (1, 12, 0), (2, 10,−2);
2. M = 9 : (1, 14, 1), (2, 12,−1);
3. M = 10 : (2, 14, 0), (3, 12,−2) (only M1 = M2 =

5);
4. M = 11 : (3, 14,−1), (only M1 = 6, M2 = 5);
5. M = 12 : (4, 14,−2) (only M1 = M2 = 6).

Negative values for L as before imply that one or two δ-
functions remain as factors for the diagram.

Inspecting these data we first find our main diagram with
M = 8 and no rescattering. It contains two longitudinal inte-
grations as we have previously seen. We also see that some
diagrams with many rescatterings contain no integrations but
one or two δ-functions as factors. The final dimension of the
longitudinal integral is, however, −2 in all cases.

In the domain (13) the result of the longitudinal integration
should be a function of ε and λ which is Lorenz-invariant and
of dimension −2. The only candidates are terms proportional
to 1/ελ, δ(ε)/λ, δ(λ)/ε and δ(ε)δ(λ). In all these cases no
contribution to the cross-section follows in the domain (13)
either because of the oddness in ε or λ or because of violating
the kinematics.

5 Conclusions

The bulk of our paper is devoted to the study of the vertex
for transition RR→RRG in the special kinematical region
where the longitudinal momentum of the emitted gluon is
much smaller than the longitudinal momenta of participat-
ing reggeons. We were able to show that the vertex drastically
simplifies, so that emission proceeds from a single intermedi-
ate reggeon connected to the participants via two 3-reggeon
vertices. This also reestablishes the role of the 3-reggeon ver-
tex, absent in many cases due to signature conservation but
appearing under certain kinematical conditions. It also indi-
cates the general rule for gluon emission in the interaction
of reggeons when the longitudinal momenta of the emitted
gluon turn out to be much smaller (larger) than those of the
reggeons. Under this condition the emission vertex drasti-
cally simplifies from a very complicated general expression
to a simple and physically clear form. First examples of such
simplification were already mentioned in [16]. Here we found
that it remains valid also for the highly complicated vertex
�RR→RRG. We firmly believe that this phenomenon holds
also for vertices with any number of incoming and outgoing
reggeons.

Our results have a certain significance in the general theory
of interacting reggeons within the effective action approach.
They refer to the use of the effective action for calculating not
only the vertices at a given rapidity but also the amplitudes for
physical processes at large overall rapidity. Then according
to the idea of effective action one has to divide the total
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rapidity interval in slices of definite intermediate rapidities,
which are then connected by reggeon exchanges. It is initially
assumed that the vertices determined by the effective action
are working only within a given rapidity slice, so that the set
of diagrams describing the amplitude depends on the number
of divisions of the total rapidity (resolution in rapidity). Our
results show that this situation is different: the set of diagrams
actually does not depend on the resolution. Taking the lowest
resolution and using the appropriate set of diagrams for the
intermediate rapidity one automatically obtains a different
set of diagrams appropriate for higher resolution when one
considers the limiting expressions for the initial resolution.
In this sense we prove the independence of the slicing of the
whole rapidity into partial intervals as supposed to be true in
the original derivation of LEA.

Our proof is not complete and does not cover all possible
cases. It is based on the vertices which have been explicitly
calculated earlier. In fact the vertices become very compli-
cated with the growth of the number of reggeons and emitted
particles. However, we firmly believe that the result obtained
for the considered comparatively simple vertices is true in
more complicated cases.

As an application we considered the contribution of the
vertices in the limiting cases of higher rapidity resolution
to the calculation of the inclusive cross-section for gluon
production. One finds that this contribution is zero. In fact
this result trivially follows from two circumstances. First, in
the integration over longitudinal momenta of the reggeons at
small p± their order of magnitude automatically reduces to
the transferred momenta ε and λ. Then the condition of small-
ness of p± relative to longitudinal momenta of the reggeons
transforms into smallness relative to ε and λ. Second, dimen-
sional considerations restrict the final dependence of the lon-
gitudinal integrals over “-” components to either 1/ε or δ(ε)

and over “+” components to either 1/λ or δ(λ). Then van-
ishing of the contribution in the domain (13) immediately
follows.

We do not exclude cases that the obtained properties of
the vertices at limiting values of gluon momenta may have
other less trivial applications. We are going to search for such
applications in our future study.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: This article has
no extra associated data.]

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

6 Appendix. Vertex RR→ RRG in the kinematics (13)

6.1 Contribution from Fig. 3a

On mass shell, multiplied by the polarization vector e, the
corresponding amplitude �1 is given by

�1 = −C1
1

t2k2
1

X1, X1 = −bB̄ − cC̄ + dĒ . (47)

The denominator is

t2k2
1 =

(
−2p+r1− + t2⊥ + i0

) (
−2q1+r1− + k2

1⊥ + i0
)

.

The coefficients b, c and e are

b = 2p+
(

(q1e)⊥ − (pe)⊥
q1+
p+

)
− 2q1+(r2e)⊥,

c = 2p+
(

(q2e)⊥ − (pe)⊥
q2+
p+

)
− 2q2+(r2e)⊥,

d = −2(p + r2, e)⊥ = −2(te)⊥.

These coefficients do not depend on r1−, nor on r2−. The
terms B̄, C̄ and Ē are

B̄ = −4r1−, C̄ = −4r1− + 2
r2

1

q1+
,

Ē = −2r1−(2q1+ + q2+) + q2
1 + q2

2 − k2
1 + r2

1

+(a1, t + q2)⊥ + 2r2
1
q2+
q1+

− r2
1q

2
2

q1+r1−
,

where a1 = q1 + r1.
We rewrite

X1 = −(b + c)B̄ − 2c
r2

1

q1+
+ dĒ ≡ X11 + X12 + X13.

So

X11 = −(b + c)B̄ = 8r1− p+(r1e)⊥,

with b + c = 2p+(r1e)⊥ Next we find

X12 = −2c
r2

1

q1+
= −4

r2
1

q1+

(
p+(q2e)⊥ − q2+(te)⊥

)

= 4p+(k1e)⊥
r2

1

q1+
− 4r2

1 (te)⊥

and finally

X13 = 2(te)⊥

(
2r1−(2q1+ + q2+) − q2

1 − q2
2 + r2

1 − k2
1

−2p+
r2

1

q1+
− (a1, t + q2)⊥ + q2

2r
2
1

q1+r1−

)
.

The leading terms in our kinematics are proportional to
1/q1+r1−. So terms in X1 which grow more slowly than
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p+r1− can be dropped. In particular term X12 can be dropped
altogether. Separating the longitudinal terms in Ē we have

Ē = −2p+r1− + q2
1 + q2

2 − k2
1⊥ − r2

1

+(a1, t + q2)⊥ + 2r2
1
p+
q1+

− r2
1q

2
2

q1+r1−
.

Only the first term contributes after multiplication by d.
Combining all terms we have

X1 = 4p+r1−(e, q1 + q2 + r1)⊥,

which gives the final result (14).

6.2 Contribution from Fig. 3b

On mass shell, multiplied by the polarization vector e, the
corresponding amplitude �2 is given by

�2 = −C2
1

t̄2k2
1

X2, X2 = ā A + b̄B + c̄C + d̄ E . (48)

The denominator is

t̄2k2
1 = (2q1+ p− + t̄2⊥)(−2q1+r1− + k2

1⊥ + i0).

The coefficients ā, ...ē are

ā = (pe)⊥
t̄2

p+
where t̄2 = 2q1+ p− + t̄2⊥,

b̄ = 2p−(r1e)⊥ + 2r1−
(

(q2e)⊥ − (pe)⊥
q2+
p+

)

+2(pe)⊥

(
r1− − r1−

q2
2

p2⊥
+ (pr1)⊥

p+

)
,

c̄ = 2p−(r2e)⊥ + 2r2−
(

(q2e)⊥ − (pe)⊥
q2+
p+

)

+2(pe)⊥

(
r2− − r2−

q2
2

p2⊥
+ (pr2)⊥

p+

)
,

d̄ = 2(q2e)⊥ + 2(pe)⊥

(
1 − q2+

p+
− q2

2

p2⊥

)
.

Furthermore,

A = 3q1+ − q2
1

r1−
, B = 4q1+, C = 4q1+ − 2

q2
1

r1−
E = −2q1+(2r1− + r2−) + r2

2 + r2
1 − k2

1

+q2
1 + 2q2

1
r2−
r1−

− (a1, t̄ − r2)⊥ − q2
1r

2
2

r1−q1+
.

We present

X2 = ā A + (b̄ + c̄)B − 2c̄
q2

1

r1−
+ d̄ E

≡ X21 + X22 + X23 + X24.

In our limit we can drop the second term in ā. So

X21 = 3(pe)⊥
q1+
p+

t̄2 = 6(pe)
q2

1+ p−
p+

+ 3(pe)
q1+
p+

t̄2⊥.

Next we find

b̄ + c̄ = 2p−
[
(eq1)⊥ − (ep)⊥

q1+
p+

− (ep)⊥

(
1 − q2

2

p2⊥
+ 2

(p, r1 + r2)⊥
p2⊥

)]
,

so that

X22 = −8(pe)⊥
q2

1+ p−
p+

+8q1+ p−
[
(eq1)⊥ − (ep)⊥

(
1 − q2

2

p2⊥
+ 2

(p, r1 + r2)⊥
p2⊥

)]
.

Next we find the terms of interest in the part X23,

X23 = 4(pe)⊥
q1+
p+

q2
1 .

Finally, the most complicated term is X24. Separating the
longitudinal momenta in E we find terms which do not vanish
at q1+, r1− → ∞,

E = 2p−q1+ + E0,

E0 = r2
1 + r2

2 − q2
1 − k2

1⊥ − (q1 + r1, t̄ − r2)⊥

and multiplying by d̄ we find

X24 = 4(pe)⊥
q2

1+ p−
p+

+ 2(pe)⊥
q1+
p+

E0

+4q1+ p−

(
(q2e)⊥ − (pe)⊥

q2
2

p2⊥

)
.

Summing all terms we have

X2 = 2(pe)⊥
q2

1+ p−
p+

+ (pe)⊥
q1+
p+

(
3t̄2⊥

+ 4p2⊥ − 2q2
2 + 4q2

1 + 8(p, r1 + r2)⊥ + 2E0

)

+4q1+ p−(2q1 + q2, e).

We have to take into account that the denominator t̄2 has
to be taken with the next order correction,

1

t̄2 = 1

2q1+ p− + t̄2⊥
= 1

2q1+ p−

(
1 − t̄2⊥

2q1+ p−

)
.

As a result

X2

t̄2k2
1

= − 1

4q2
1+r1− p−

(
X2 − (pe)

q1+
p+

t̄2⊥
)

,

so that we get

�2 = −C2
X̃2

4q2
1+r1− p−

(49)
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where

X̃2 = 2(pe)⊥ + (pe)⊥
q1+
p+

(
2t̄2⊥ + 4p2⊥ − 2q2

2 + 4q2
1

+ 8(p.r1 + r2)⊥ + 2E0) + 4q1+ p−(2q1 + q2, e).

(50)

�2 can be rewritten in the form

�2 = C2

{
1

2
(pe)⊥

1

p+r1−
− 1

q1+r1−
(e, 2p − 2q1 − q2)⊥

− 1

q1+r1−
(pe)⊥
p2⊥

(
4(p, r1 + r2)⊥ + t̄2⊥ + 2q2

1 − q2
2 + E0

)}
.

(51)

Here t̄ = p − q2.

6.3 Contribution from Fig. 3c

This diagram generates two terms with different color factors.
The corresponding amplitudes �3 and �4 are given by

�3,4 = C3,4
1

k2
1

X3,4, (52)

where the denominator is k2
1 = −2q1+r1− + k2

1⊥ + i0.
We have

X3 = −(a1e)⊥ + 2
(pe)⊥
p+

(
q2

1

r1−
− q1+

)

−2
(pe)⊥q2

2

p2⊥r2−

(
r2

1

q1+
− r1−

)

and

X4 = −(a1e)⊥ − (pe)⊥
p+

(
q2

1

r1−
− q1+

)

+ (pe)⊥q2
2

p+r1−r2−

(
r2

1

q1+
− r1−

)
.

Here a1 = q1 + r1.
All terms in X3,4 which are small in the limit q1+, r1− →

∞ can be dropped. Then we obtain in a straightforward man-
ner (16) and (17).

6.4 Contribution from Fig. 3d

On mass shell and convoluted with the polarization vector,
the corresponding amplitude �5 is given by

�5 = C5
1

k2
1k

2
2

X5, X5 = 2(k2L1)L2 − 2(k1L2)L1

+(L1L2)(k1 − k2)e . (53)

Here k1,2 = q1,2 −r1,2 and C5 = C1 +C2. The denominator
is

k2
2k

2
1 =

(
−2q2+r2− + k2

2⊥ + i0
) (

−2q1+r1− + k2
1⊥ + i0

)
.

The Lipatov vertices convoluted with polarization vectors are

L1 = (a1e)⊥ − (pe)⊥
p+

(
q2

1

r1−
− q1+

)
,

L2 = (a2e)⊥ − (pe)⊥
p+

(
q2

2

r2−
− q2+

)
,

(k1 − k2)e = (k1 − k2, e)⊥ − (pe)⊥
p+

(q1+ − q2+),

where a1 = q1 + r1 and a2 = q2 + r2.
One finds

(k2L1) = (pL1) = −p+r1− − p−q1+
+(pa1)⊥ + r2

1
p+
q1+

+ q2
1
p−
r1−

, (54)

(k1L2) = (pL2) = −p+r2− − p−q2+
+(pa2)⊥ + r2

2
p+
q2+

+ q2
2
p−
r2−

, (55)

and finally

(L1L2) = (a1a2)⊥ + q1+r2− + q2+r1− − r2
1
q2+
q1+

−r2
2
q1+
q2+

− q2
1
r2−
r1−

− q2
2
r1−
r2−

+ q2
1r

2
2

r1−q2+
+ q2

2r
2
1

r2−q1+
.

In our limit we get

L2(k2L1) = (pe)⊥
q2+
p+

(−p+r1− − p−q1+)

+(pe)⊥
q2+
p+

(pa1)⊥ + (a2e)⊥(−p+r1− − p−q1+)

and

L1(k1L2) = (pe)⊥
q1+
p+

(−p+r2− − p−q2+)

+(pe)⊥
q1+
p+

(pa2)⊥ + (a1e)⊥(−p+r2− − p−q2+).

Taking the difference we find

L2(k2L1) − L1(k1L2)

= (pe)⊥(q1+r2− − q2+r1−)

+(pe)⊥
1

p+
(q2+(pa1)⊥ − q1+(pa2)⊥)

+(a2e)⊥(−p+r1− − p−q1+)

−(a1e)⊥(−p+r2− − p−q2+).

Only terms quadratic in q1+ = −q2+ and r1− = −r2− can
give a non-zero contribution in our limit. However, as we
see, they are canceled in the first term. So we do not get any
contribution from the first two terms in X5
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In the third term we can leave only the leading term in
(L1L2)

(L1L2) = q1+r2− + q2+r1−,

which leads to

X5 = − (pe)⊥
p+

(q1+ − q2+)(q1+r2− + q2+r1−)

+(k1 − k2, e)⊥(q1+r2− + q2+r1−).

In the second term we can take q2+ = −q1+ and r2− =
−r1− to finally get

�5 = C5

{
1

2

(pe)⊥
p+

(
1

r1−
− 1

r2−

)

− 1

2q1+r1−
(q1 − r1 − q2 + r2, e)⊥

}
. (56)

Note that the first term is the only one where the difference
between r1− and −r2− is significant.
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