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Abstract The comparative analysis of the neutrino mixing
in the standard, cobimaximal and exponential parameteriza-
tions is performed. With the latest November 2018 data the
logarithm of the mixing matrix is computed and the exact
entries for the exponential matrix are obtained. The factoriza-
tion of the real rotation and the CP violation in the exponen-
tial form of the mixing matrix is demonstrated. Quark-lepton
complementarity hypothesis is reformulated, involving three
mixing angles in the framework of the exponential parameter-
isation of the mixing matrix. It is shown that the cobimaximal
parameterization, consistent with recent experimental data
on neutrino mixing with the spread 3σ , can provide exact
quark-lepton complementarity based on the data for all three
mixing angles. The dependence of the CP violation degree
on the parameterization parameters in the standard and the
exponential forms is studied with the help of the Jarlskog
invariant.

1 Introduction

The Standard Model (SM) [1–3] successfully describes wide
range of particle physics phenomena and is consistent with
major experiments held during the last half a century. Neu-
trinos were introduced in the SM massless with left chirality.
However, the prediction of neutrino oscillations [4,5] and
their experimental confirmation yielded the conclusion that
neutrinos had finite nonzero mass, much smaller than that
of other elementary particles. One of the possible ways to
introduce small neutrino mass in the SM consists in the addi-
tion of extremely heavy right neutrinos to the Lagrangian
function of the model [6,7]. These extra heavy neutrinos
are scalars in SU (3) × SU (2) × U (1) group, their mass is
giant, ∼ 1016 GeV, and their observation in modern experi-
ments is impossible. After the introduction of heavy neutri-
nos, the resulting mass term determines the CP violation of
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the action in the SM and the violation of the lepton-number
conservation law within each generation. The presence of
non-diagonal entries in the mass matrix means there is neu-
trino mixing. The contribution of the extra heavy mass states
to the mixing is negligible. A unitary transforms exist, which
diagonalizes the neutrino mass matrix and yields the states
of neutrino with given mass. The observables are the flavor
states of neutrinos νe, νμ, ντ , which are the linear combi-
nations of neutrino mass states ν1, ν2, ν3; the transforms
is given by the unitary mixing matrix U Pontecorvo–Maki–
Nakagawa–Sakata (PMNS) [8]:

|να〉 =
∑

i=1,2,3

U∗
αi |νi 〉, U αi ≡ 〈να|νi 〉,

α = e, μ, τ, i = 1, 2, 3, (1)

The amplitude of the transition for the given flavor α to the
mass state i is proportional to |Uαi |2. Neutrino mixing can be
parameterized in several ways by different matrices. While
the physical result obviously does not depend on the choice
of the parameterization, the latter may be more or less use-
ful and convenient for certain studies. In what follows we
will consider three generations of Dirac neutrinos. Among
many parameterizations, the most common is the standard
parameterization matrix:

Ust =
⎛

⎝
1 0 0
0 c23 s23

0 −s23 c23

⎞

⎠

⎛

⎝
c13 0 s13e−iδCP

0 1 0
−s13eiδCP 0 c13

⎞

⎠

×
⎛

⎝
c12 s12 0

−s12 c12 0
0 0 1

⎞

⎠

=
⎛

⎝
c12c13 s12c13 s13e−iδCP

−s12c23 − c12s23s13eiδCP c12c23 − s12s23s13eiδCP s23c13

s12s23 − c12c23s13eiδCP −c12s23 − s12c23s13eiδCP c23c13

⎞

⎠ ,

(2)

where ci j = cos θi j , si j = sin θi j , i = 1, 2, 3, θi j are the mix-
ing angles, and δCP is the phase, describing the CP violation.
There can be other 11 matrices constructed similarly to (2);

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-019-6896-z&domain=pdf
mailto:zhukovsk@physics.msu.ru


385 Page 2 of 11 Eur. Phys. J. C (2019) 79 :385

they differ from each by the complex phase placement and
by the order of matrix product (see [9]). It follows from (2)
that the CP violation in νe flavor comes from ν3 mass state;
the CP violation in νμ,τ flavor states is due to the mixed ν1,2

mass states.
In search for symmetries in neutrino mixing, other than

(2) parameterizations were proposed. The simplest of them
were the bimaximal (BM) and the tribimaximal (TBM) [10–
13] parameterizations with the following matrices:

UBM =

⎛

⎜⎜⎜⎝

1√
2

1√
2

0

− 1
2

1
2

1√
2

1
2 − 1

2
1√
2

⎞

⎟⎟⎟⎠ ,

UT BM =

⎛

⎜⎜⎜⎝

√
2
3

1√
3

0

− 1√
6

1√
3

1√
2

1√
6

− 1√
3

1√
2

⎞

⎟⎟⎟⎠ . (3)

The tribimaximal mixing follows from the standard parame-
terization for θ13 = 0, θ23 = π/4, tan2 θ12 = 1/2. In papers
[14–23] it was pointed out that discrete or continuous fla-
vor groups appear to be particularly suitable to reproduce
this specific mixing pattern as a first approximation. While
the BM and TBM matrices do possess symmetry, they do
not describe the CP violation; moreover, the BM parame-
terization UBM disagrees with contemporary experimental
data and the TBM matrix UT BM (3) just vaguely agrees
with the experiments (see [13]). Nice symmetry of the TBM
matrix UT BM inspired attempts to keep it for the description
of neutrino mixing; some corrections to it were introduced
[9] for better agreement with the experiments. Due to exper-
imentally confirmed CP violation and nonzero value of the
angle θ13 for neutrinos, the conceptual shift from the TBM
matrix to the cobimaximal mixing with θ13 �= 0, θ23 = π

4 ,
δCP = ±π

2 in (2), followed (see [24–28]); proper reasons for
it and justifications can be found in the above citations. The
extended corresponding symmetries are now under inves-
tigations (see, for example, [29–32]) to reconstruct from
them the following neutrino mixing matrix with cobimaximal
mixing:

UCBM

=

⎛

⎜⎜⎝

c12c13 s12c13 ∓is13

−
√

2
2 (s12 ± is13c12)

√
2

2 (c12 ∓ is13s12)
√

2
2 c13

√
2

2 (s12 ∓ is13c12) −
√

2
2 (c12 ± is13s12)

√
2

2 c13

⎞

⎟⎟⎠ .

(4)

The phenomenological description of neutrino mixing
has much in common with quark mixing; the latter is
described similarly to (1) by the Cabibbo–Kobayashi–
Maskawa (CKM) matrix V. Mixing and CP violation for

quarks are smaller than for neutrinos and the quark mixing
matrix V is rather close to the unitary matrix. Small devia-
tions from the unitary matrix were described, for example,
by Wolfenstein parameters λ, A, ρ, η [33]. Looking for some
more global symmetry in mixing, researchers explored par-
allels between neutrino and quark mixings. Also for neutri-
nos there has been a proposal for the deviation parameters
from the unitary matrix; these parameters were expressed
via the Wolfenstein parameters through empiric relations
[34] and the hypothesis of quark-lepton complementarity
(QLC) and of self-lepton complementarity (SC) appeared
[34,35]. Quark-lepton complementarity [36–38] related the
mixing angles of quarks to those of neutrinos. Relevant to it
is the fact that without CP violation the real part of the mix-
ing matrix remains and it represents the 3D rotation in real
space.

Our analysis in what follows employs the experimental
data for November 2018, which yields the following numer-
ical Best Fit values for the mixing matrix entries [39]:

Ubest fit

=
⎛

⎝
0.821 0.551 −0.123 + 0.086i

−0.283 + 0.054i 0.590 + 0.036i 0.753
0.490 + 0.046i −0.588 + 0.031i 0.641

⎞

⎠ .

(5)

With account for 3σ experimental error spread, the absolute
values of the mixing matrix entries are currently within the
following intervals [39]:

|U|3σ

=
⎛

⎝
0.796 ↔ 0.843 0.518 ↔ 0.586 0.143 ↔ 0.156
0.214 ↔ 0.533 0.425 ↔ 0.703 0.639 ↔ 0.784
0.246 ↔ 0.505 0.451 ↔ 0.721 0.603 ↔ 0.755

⎞

⎠.

(6)

The discussion of the ways the underlaying data sets are
obtained and elaborated, as well as the account for the exper-
imental and evaluation errors, their evaluation and relation
with each other, can be found, for example, in [13,39–42]
and other relevant publications.

In the present work we will consider the cobimaximal
matrix (CBM), fit with the existing experimental data, and
we will use the Jarlskog invariant to control the degree of the
CP violation. We will use the matrix exponential to frame
the CBM ansatz in the exponential parameterization and get
the value of the rotation angle in space. With the help of
the exponential parameterization we will show that neutrino
mixing reduces to rotations in real space and further action
of the CP violating matrix. We will redefine the quark-lepton
complementarity by including all three mixing angles in it,
and demonstrate that CBM parameterization provides exact
quark-lepton complementarity in this sense.
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2 Exponential parameterization of mixing matrix

The mixing matrix can be presented in the following expo-
nential form:

Uexp = expA, (7)

which was, to our best knowledge, first proposed for neutri-
nos in [43] and for quarks in [44]. Relevant studies of the
exponential mixing matrix were conducted in [44–50]. The
anti-Hermitian form of the matrix A ensures that the trans-
forms by the matrixUexp are unitary. The exponential param-
eterization (7) has several advantages; one of them consists
in that the mixing can be presented as the product of matrices
in charge of the real rotation, PRot = eARot , and the CP viola-
tion, PCP = eACP , which form new unitary parameterization

Ũ = PRotPCP, PRot = eARot , PCP = eACP . (8)

The exponentials ARot and ACP describe the rotation and
the CP violation respectively. Based on the experimentally
verified values of the mixing matrix (5), one can obtain the
entries for the matrixA in the exponent by taking matrix loga-
rithm of the mixing matrix. This procedure can be executed in
several different ways (see, for example, [51,52]); computer
programs for analytical calculations, such as Mathematica,
allow fast computations. According to the November 2018
data [39], the mixing angles values are as follows:

θ12 ∼= 33.82◦+0.78◦
−0.76◦, θ23 ∼= 49.6◦+1.0◦

−1.2◦ ,

θ13 ∼= 8.61◦+0.13◦
−0.13◦, δCP ∼= 215◦+40◦

−29◦ . (9)

Upon taking matrix logarithm with account for the angles
(9), we get the argument of the exponent (7) in the form of
the following matrix:

A =
⎛

⎜⎝
−0.0147i 0.4982 + 0.0323i −0.3661 + 0.0787i

−0.4982 + 0.0323i 0.0292i 0.8018 + 0.0184i

0.3661 + 0.0787i −0.8018 + 0.0184i −0.0144i

⎞

⎟⎠ .

(10)

Let us consider the CBM matrix (4), that is the standard
parameterization matrix (2) for θ23 = π/4, δCP = −π/2, for
the angles θ12 = 33.51◦, θ13 = 8.695◦ within the experimen-
tally allowed range. The explanation of why exactly these
values θ12,23 are chosen among others within 3σ spread, will
be provided in the following section of this paper. Then for
these angles we obtain Ubest fit CBM = exp [ACBM ] follow-
ing (7), where ACBM reads as follows:

ACBM

=
⎛

⎜⎝
−0.0235i 0.5523 + 0.0524i −0.2303 + 0.1413i

−0.5523 + 0.0524i 0.0467i 0.7604 + 0.0347i
0.2303 + 0.1413i −0.7604 + 0.0347i −0.0232i

⎞

⎟⎠ .

(11)

The resulting CBM matrix has the following entries:

Ubest fit CBM

=
⎛

⎝
0.824 0.546 0.151i

−0.390 + 0.089i 0.590 + 0.059i 0.699
0.390 + 0.089i −0.590 + 0.059i 0.699

⎞

⎠ .

(12)

The parameterization of the mixing matrix (1) in the expo-
nential form (7) Uexp = expA, where A is given by (10),
exactly reproduces the experimental data (5). Moreover, the
CBM matrix (12)Ubest fit CBM = exp [ACBM ], whereACBM

is given by (11), is within the allowance (6), determined by
the experimental data. Matrix A has zero trace TrA = 0
(same for ACBM etc). Apart small diagonal imaginary ele-
ments of the matrices A (10) (and ACBM (11))

Adiag = idiag {α1, α2, α3} , (13)

α1 ∼= α3 ∼= −α2/2, α2 = 0.0292. (14)

we can distinguish the matrices of pure rotation and CP vio-
lation

A = A1 + Adiag ∼= A1 = ARot + ACP , (15)

where the matrix

ARot = Re [A] =
⎛

⎝
0 0.4982 −0.3661

−0.4982 0 0.8018
0.3661 −0.8018 0

⎞

⎠ (16)

describes the rotations in 3D space and the identity PRot ·
[PRot]Transposed = I = diag{1, 1, 1} holds. The other matrix
in (15) describes the CP violation:

ACP = iIm[A − Adiag]

=
⎛

⎝
0 0.0323i 0.0787i

0.0323i 0 0.0184i
0.0787i 0.0184i 0

⎞

⎠ . (17)

In this way we separate the real rotational matrix, PRot =
eARot , and the term PCP = eACP , which describes the CP
violation. Note, that the above proposed way to distinguish
ACP and ARot is not the only one. A variety of matrices for
real rotation and CP violation can be distinguished, which
yield the matrix Ũ = PRotPCP. The explicit expression for
the latter in our case reads as follows:

Ũ =
⎛

⎜⎝
0.8213 + 0.008068i 0.5511 + 0.024291i −0.12401 + 0.07493i

−0.28228 + 0.07839i 0.5901 + 0.004751i 0.7522 − 0.01136i

0.4884 + 0.03162i −0.5888 + 0.027606i 0.6421 + 0.02769i

⎞

⎟⎠.

(18)

The absolute values of the entries of the matrix Ũ (18) agree
quite well with those determined from the experimental val-
ues for neutrino mixing Ubestfit (5) and they are within the
range 3σ (6); the entries of Ũ differ from those of Ubestfit (5)
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by small imaginary parts of the order 10−2, which is within
the order of the accuracy of U.

In complete analogy we can treat the exponential form of
the CBM matrix to distinguish in (11) the rotational compo-
nent

ARot CBM =
⎛

⎝
0 0.5523 −0.2303

−0.5523 0 0.7604
0.2303 −0.7604 0

⎞

⎠ , (19)

and the CP violating component

ACP CBM =
⎛

⎝
0 0.0524i 0.1413i

0.0524i 0 0.0348i
0.1413i 0.0348i 0

⎞

⎠ . (20)

The imaginary diagonal for the CBM matrix reads as follows:

ACBM
diag = idiag {−0.0235, 0.0468,−0.0232} . (21)

Note, that the deviation from exact equality in (14) is very
small: < 1% and it holds better for the recent data [39] than
for the old data 2016 [41]. Imaginary diagonal matrix Adiag

yields the complex diagonal exponential matrix

Pdiag = exp[Adiag] = diag
{
eiα1 , eiα2 , eiα3

}
. (22)

The matrix A1 = ARot + ACP (15) is the sum of the
rotational term ARot (16) and the CP-violating term ACP

(17). For the recently established most probable value of the
CP violating phase δCP = 215◦ we therefore get

A ∼= A1 = ARot + ACP

=
⎛

⎝
0 c2eiδ2 −c1eiδ1

−c2e−iδ2 0 c3eiδ3

c1e−iδ1 −c3e−iδ3 0

⎞

⎠ ,

δ1 = 168◦,
δ2 = 4◦,
δ3 = 1◦,

c1 = −0.374,

c2 = 0.499,

c3 = 0.802.

(23)

For CBM matrix, where δCP = 270◦, we obtain

ACBM
1 = ACBM

Rot + ACBM
CP

=
⎛

⎝
0 0.5548ei5

◦
0.2702ei148◦

−0.5548e−i5◦
0 0.7612ei3

◦

−0.2702e−i148◦ −0.7612e−i3◦
0

⎞

⎠ .

(24)

Both (23) and (24) satisfy the spread 3σ . The absolute
values of the entries of A1 matrix (23) for the experimental
spread 3σ [see (4)] are as follows:

|A1|3σ =
⎛

⎝
0 0.439 ↔ 0.660 0.047 ↔ 0.428

0.439 ↔ 0.660 0 0.628 ↔ 0.929
0.047 ↔ 0.428 0.628 ↔ 0.929 0

⎞

⎠ .

(25)

The anti-Hermitian form of the matrix in the exponential
ensures unitarity of the proper transform:U−1

exp ·Uexp = U+
exp ·

Uexp = I. Other than (7) exponential forms for the mixing
matrix can be constructed. For example, the following one
can be considered:

U = exp iθH, (26)

where H is the traceless (3 × 3) Hermitian matrix with the
normalization tr[H2] = 2, which formally frames neutrinos
into SU(3) group. Although at this moment of time there
are no obvious physical reasons to frame neutrinos in SU(3)
group, the underlying mathematics determines the specific
way to distinguish the group parameter θ in (26):

θ =
(
−tr

[
A2/2

])1/2
, (27)

and links it with the presentation of neutrino mixing in terms
of rotation and CP violation, which we will consider in
what follows. Omitting small diagonal part Adiag, we get

θ ∼=
√
c2

1 + c2
2 + c2

3 written in terms of c1,2,3 defined in (23).
Moreover, following [53], we get for the mixing matrix the
following explicit form:

U = exp iθH

=
∑

k=0,1,2

⎛

⎝ e
2√
3
iθ sin(φ+2πk/3)

1 − 2 cos (2 (φ + 2πk/3))

×
[
H2 + H

2 sin (φ + 2πk/3)√
3

− I
1 + 2 cos (2 (φ + 2πk/3))

3

] ⎞

⎠ , (28)

where the angle φ is expressed via det H as follows [53]:

φ = 1

3

(
arccos

(
3

2

√
3 det H

)
− π

2

)
. (29)

The above formulation in the framework of the exponential
ansatz is valid for SU(3) group. This approach is different
from that applied for the study of mixing in [54], where the
Cayley–Hamilton theorem [55] for the exponential matrix
was employed:

expA = a0I + a1A + a2A2, (30)

and a0,1,2 were computed, following the method of [55].
By elaborating the last experimental data with the help of

the Mathematica program, we obtain the following explicit
matrix form for H:

H2018
Nov

∼=
⎛

⎝
−0.014 0.032 − 0.490i 0.077 + 0.360i

0.032 + 0.490i 0.029 0.018 − 0.789i
0.077 − 0.360i 0.018 + 0.789i −0.014

⎞

⎠ .

(31)

High precision computations show that the matrix H is trace-
less and det (H) = −0.076, the latter being the invariant for
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the SU(3) group. For the CBM parameterization, fitted with
the available experimental data [see matrix (12)], we get the
following matrix HCBM :

HCBM =
⎛

⎝
−0.0240 0.053 − 0.563i 0.144 + 0.235i

0.053 + 0.563i 0.048 0.035 − 0.775i
0.144 − 0.235i 0.035 + 0.775i −0.024

⎞

⎠ .

(32)

Based on the available experimental data, we fitted (26) and
obtained θ and φ for some sets of measurements; we found
that they varied for different from each other sets of measure-
ments. Based on the data for January of 2018 [40] we get

θ Jan
ν2018 = 56.75◦+3.26◦

−7.23◦, φ2018
v Jan = 5.49◦+4.36◦

−5.49◦ , (33)

and with the data for November 2018 [39] we obtain

θNov
ν2018 = 58.24◦+7.25◦

−8.62◦, φ2018
νNov = 3.78◦+3.94◦

−10.03◦ . (34)

For the CBM parameterization (12) consistent with the most
recent experimental data [39], we get

θCBM = 56.19◦, φCBM
ν = 6.88◦. (35)

The respective values for quarks are significantly smaller:

θq = 13.23◦+0.02◦
−0.02◦, φq = −0.25◦+0.01◦

−0.01◦ . (36)

Importantly, the angle θ – the parameter (27) in SU(3)
group formalism – is very close to the angle of 3D rotation

 in the rotation matrix PRot, which will be distinguished
and used for the study of QLC in Sect. 4. Slight difference
between θ and 
 is due to the way the rotation matrix PRot is
distinguished as Re [A] and not |A1|. The behavior of the
angles θ and φ in the exponential presentation (26)–(29)
will be further studied in Sect. 5. As regards the exponen-
tial matrix A (23) in (7), note that the angle θ is by definition
(27) independent on the phases δ1,2,3 in (23).

3 Jarlskog invariant

Due to the unitarity of the mixing matrix the following rela-
tions hold:

∑

α=e,μ,τ

UαiU
∗
α j = δi j ,

∑

i=1,2,3

UαiU
∗
βi = δαβ, (37)

where U αi ≡ 〈να|νi 〉 , α = e, μ, τ, i = 1, 2, 3; (37) can be
geometrically viewed as triangles on the complex plane, like
that shown in Fig. 1.

The square of the triangle in Fig. 1 equals a half of the abso-
lute value of the vector product of the vectors {Rea, Ima, 0}
and {Reb, Imb, 0}:
S = 1

2
|(Rea)(Imb) − (Reb)(Ima)|

= 1

2
|Im(ab∗)| = 1

2
|Im(a∗b)|. (38)

Fig. 1 Jarlskog relation presented as triangle on a complex plane in
3D space

For a = Ue1U∗
e3 and b = −Uμ1U∗

μ3 we get S =
1
2

∣∣∣Im(Ue1U∗
e3U

∗
μ1Uμ3)

∣∣∣. Due to the unitarity of the matrix

U the following equality holds: U∗
e3Uμ3 = −U∗

e1Uμ1 −
U∗
e2Uμ2, which means that the square of the triangle is

S = 1
2

∣∣∣Im(Ue1Uμ2U∗
e2U

∗
μ1)

∣∣∣ = 1
2 J . The squares of other

triangles can be calculated in similarly; they also equal J/2,
where J is the Jarlskog invariant [56]. For the matrixU (2) we
therefore get the Jarlskog invariant in the following explicit
form:

J = Im(Ue1Uμ2U∗
e2U

∗
μ1) = cos θ12 sin θ12 cos2 θ13

× sin θ13 cos θ23 sin θ23 sin δCP . (39)

Since J ∝ sin δCP , it has nonzero value only in the presence
of the CP violation. In fact, the Jarlskog invariant represents
the degree of the CP violation, which is independent on the
parameterization of the mixing matrix. The dependence |J |
on δCP in the standard parameterization with account for the
experimental data [39] is shown in Fig. 2.

We chose θ23 and δCP as the arguments of |J | in Fig. 2,
because they are less well determined than θ12,13. The range
of their values in Fig. 2 is chosen within the experimental
spread 3σ [see (6)]. With the data [39] we obtain the Jarl-
skog invariant value for neutrinos Jν = −0.019+0.046

−0.016. The
CBM parameterization assumes δCP = 270◦; the depen-
dence J (θ12, θ13) is shown in this case in Fig. 3.

For quarks the degree of the CP violation is about of three
orders of magnitude less than for neutrinos. According to
PDG [42] the value of the Jarlskog invariant for quarks is
Jq = (3.18 ± 0.15) × 10−5. The dependence J (δCP , θ23)

for quarks is shown in Fig. 4.
In Fig. 5 we present the dependence of the absolute value

of the Jarlskog invariant |J | for neutrinos on θ12 and θ13 in
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Fig. 2 Dependence of the absolute value of the Jarlskog invariant J on
θ23 and δCP for neutrinos in the standard parameterization with account
for the experimental data [39]

Fig. 3 The Jarlskog invariant J for neutrinos in the framework of CBM
parameterization as a function of the mixing angles θ12,, θ13 (δCP =
270◦)

Fig. 4 Dependence of the Jarlskog invariant J on θ23 and δCP for
quarks

the CBM parameterization (4) (θ23 = π/4, δCP = −π/2).
The plot in Fig. 5 corrects the erroneous result in [51].

Let us now fix some value, J f i x , of the Jarlskog invari-
ant for the CBM parameterization. This yields the following
analytical relation between θ12 and θ13:

Fig. 5 Dependence of the absolute value of the Jarlskog invariant J
on θ12 and θ13 for neutrinos in CBM parameterization (4)

θ12 = 1

2
arcsin

( −4J f i x
cos2 θ13 sin θ13

)
. (40)

From this relation we find θ12 = 33.51◦, θ13 = 8.695◦ for
J f i x = −0.034 within the experimental spread 3σ ; it yields
the CBM matrix in the form (12) in best agreement with the
available the experimental data. Thus, we have got the angles
θ12 and θ13 for the CBM parameterization, where θ23 = π/4,
δCP = −π/2, such, that the CBM parameterization fits the
experimental data |U|3σ (6) and so does the Jarlskog invari-
ant. In what follows we will address the complementarity
hypothesis for quarks and neutrinos in the CBM and in the
exponential parameterizations, fitted with the experimental
data.

4 Complementarity of neutrino and quark mixing

The quark-neutrino complementarity (QLC) hypothesis was
expressed in [35,36,57]; it is usually understood that the sum
of the Cabibbo angle θ12 for quarks and of the solar mixing
angle θ12 for neutrinos gives π/4. Its extended formulation
includes also “weak complementarity” relation for θ23: θ23ν+
θ23q ∼= 45◦ [58–61]. It would be natural to assume that the
third QLC relation holds also for θ13. However, it appears that
θ13ν + θ13q < 10◦, although the angles θ13 are established
with less precision that θ12, θ23. Despite the third possible
QLC relation in the above formulation is not realized at all
appearance, we have obtained another, more general relation
for neutrinos and quarks, which involves all three mixing
angles, θ12, θ23 and θ13; it yields 45◦ angle for the rotation
axes of neutrinos and quarks. This 45◦ space angle holds
remarkably well through the years with different from each
other data sets. We will demonstrate it in what follows.

Consider real rotation matrix PRot = eARot , where ARot =
Re [A] (16). This rotation can be presented as a turn in the
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angle 
 in 3D space around a definite axis 
n, and it has the
following form:

PRot = eARot ,

ARot =
⎛

⎝
0 λ −μ

−λ 0 ν

μ −ν 0

⎞

⎠ = 


⎛

⎝
0 −nz ny
nz 0 −nx

−ny nx 0

⎞

⎠ .

(41)

Note that ARot in (41) is close to, but different from |A1|
in (23). It is easy to calculate the rotation angle 
 =
±√

λ2 + μ2 + ν2 ∼= ±θ [see (27)], where both signs are
possible, and the coordinates of the rotation vector are 
n =(− ν



,− μ



,− λ




)
. For certainty we choose the sign + and, for

example, for tribimaximal matrix (TBM) we get


nTBM = −(0.7858,0.2235,0.5777), 
TBM ∼= 56.6◦.
(42)

The coordinates of 
nν in the standard and other parameter-
izations vary, dependently on the experimental data set. In
2016 they were as follows:


n2016
ν = −(0.8094, 0.2417, 0.5353),


2016
ν

∼= 59.06◦+4.36◦
−9.67◦ ; (43)

The January 2018 data yields


nJan2018
ν = −(0.7859, 0.3272, 0.5246),


Jan2018
ν

∼= 56.28◦+4.58◦
−6.48◦ ; (44)

based on November 2018 data [39], we get


nNov2018
ν = −(0.7919, 0.3616, 0.492),


Nov2018
ν

∼= 58.01◦+7.07◦
−8.33◦ . (45)

For quarks, based on 2017 data [42], we obtain the following
coordinates and the angle:


n2017
q = −(0.1810, 0.0141, 0.9834),


2017
q

∼= 13.23◦+0.02◦
−0.03◦ . (46)

For CBM parameterization we get with account for the matri-
ces (11), (12), which are consistent with the experimental
spread 3σ , the following coordinates and angle:


nCBM = −(0.7858, 0.2380, 0.5708), 
CBM ∼= 55.4◦.
(47)

Now upon the comparison of the values for neutrinos (42)–
(45) with those for quarks (46), we note that the rotation axes
for neutrinos and quarks constitute with each other the angles
≈ 44◦–50◦ and these angles varies in fairly small range
around 45◦, dependently on the experimental data set. More-
over, the angle between the rotation vector (47) in the CBM
parameterization Ubest fit CBM (12), consistent with current
experimental data, and the vector (46) for quarks, is exactly

0 0.2 0.4 0.6 0.8

x
0

0.2
y

0

0.2

0.4

0.6

0.8

1

z

Fig. 6 Axes of rotation in real space: for quarks – green arrow, for
neutrinos Best Fit 2018 – blue arrow, for neutrinos in CBM parameter-
ization with 3σ spread of Best Fit 2018 – red arrow

45.0◦. So, the angle between the quark and neutrino rotation
axes is relatively stable, ≈ 45◦, despite the values of 
n i 


vary from year to year. For the CBM parameterization this
angle = 45.0◦ (see Fig. 6, where all the axes are drawn with
the opposite signs 
n → −
n to show them in first quadrants
for clarity); this means exact complementarity of mixing for
neutrinos and quarks in CBM parameterization, based on the
data for all three mixing angles. This fact in turn makes us
look deeper for the underlying symmetries.

5 Study of the CP-violation in the exponential
parameterization

With the last experimental data November 2018 [39] we
obtained the matrix A1 (23) of the exponential parameter-
ization, where δ1 = 168◦, δ2 = 4◦, δ3 = 1◦. We have
also obtained the dependences of the angles θ ≈ 
 and φ

for neutrinos on the CP-violating phase δCP in the standard
parameterization; they are shown it in Fig. 7.

The plots in Fig. 7 demonstrate that in the likely range
of values δCP ∼ [180◦–360◦] the angle θ ≈ 
 (27) for
space rotations for neutrinos is in narrow range [56◦–60◦].
The angle φ is at its maximum for δCP = 270◦.

The relation between δ1,2,3 values [see matrix A1 (23)]
and the CP violating phase δCP is demonstrated in Fig. 8.
The analysis of the behavior of the function δ1(δCP ) in the
left plot in Fig. 8 shows that its minimal value δmin

1 = 147.2◦
is reached for δCP = 302◦. The phase δCP = 270◦ corre-
sponds δ1 ∼= 151.6◦ and currently likely value δCP = 215◦
corresponds δ1 = 167.9◦. Due to large uncertainty for δCP ,
the range for δ1 is ≈ [145◦–180◦] (see Fig. 8). The behaviors
δ2(δCP ) and δ3(δCP ) are qualitatively similar each other (see
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Fig. 7 Dependence of θ(δCP )

– left plot, ϕ(δCP ) – right plot

Fig. 8 Dependence δ1(δCP ) –
left plot; δ2(δCP ) – right plot,
upper line, δ3(δCP ) – right plot,
lower line

Fig. 8); they have their maximums at δCP ≈ 270◦, but the
range of values for δ2 is ∼ 3 times more than that for δ3 (see
Fig. 8).

Now let us consider the contribution of the small imag-
inary diagonal matrix Adiag = idiag {α1, α2, α3} of the
exponential parameterization (7) of the PMNS matrix U to
the CP violation with the help of the Jarlskog invariant J .
The matrix Adiag apparently reminds the Majorano term in
the neutrino mixing, beyond the scope of the present paper;
Adiag comes due to the CP violation. It follows from (10)
that the entries of Adiag obey with precision relation (14):
α1 ∼= α3 ∼= −α2/2. Let us then consider the following
parameterization for Adiag:

Adiag ∼= idiag {−α, 2α, −α} . (48)

Figure 9 shows the behavior of the Jarlskog invariant J as
the function of the parameter α in (48), where α varies in the
interval [0, α2].

The dependence J (α) is linear. Moreover, it follows from
Fig. 9 that even if we assume Adiag = 0, then the absolute
value of the Jarlskog invariant changes insignificantly, from
0.01914 to 0.01875. Thus, it is not Adiag, which determines
most of the CP violation, but ACP matrix (17), i.e. the imag-
inary part of the matrix A, except for the diagonal Adiag.
This justifies the approximate equality in (15). The matri-
ces of the real rotation ARot (16) and of the CP violation
ACP (17) together constitute the most important part of the
mixing matrix A1 = ARot + ACP (15). The CP violation
is described primarily by δ1; small contribution comes from
δ2; the contribution of δ3 in the exponential matrix (23) is
negligible.

Fig. 9 Dependence of the absolute value of the Jarlskog invariant J
on the imaginary diagonal parameter α in (48)

The dependence of the absolute value of the Jarlskog
invariant |J | on δ1,2 is shown in Fig. 10. It shows the range of
values for the Jarlskog invariant in the experimentally sug-
gested range of the CP violation and mixing angles within
the spread 3σ . If is evident (see Fig. 10) that δ1 primarily
determines the Jarlskog invariant value; the influence of δ2

is small. The influence of δ3 is even weaker and it is omitted.

6 Results and discussion

With the help of the exponential form of the mixing matrix for
neutrinos we analyzed the mixing data for November 2018.
We compared it with that for January 2018 and for the year
2016. The exponential matrixA = ARot+ACP+Adiag allows
separation of the real part ARot in charge of the rotation, the
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Fig. 10 Behavior of the absolute value of Jarlskog invariant J as the
function of δ1 in the range 145◦–180◦, and δ2 in the range 0◦–6◦ for
δ3 = 1◦ in the exponential parameterization of the neutrino mixing
matrix. The ranges are based on 3σ spread of Best Fit

imaginary non-diagonal part ACP responsible for most of
the CP violation, and small imaginary diagonal part Adiag,
whose trace is zero. We factorized in the exponential form
Uexp = expA the contributions of the rotation PRot = eARot

and of the CP violation PCP = eACP in a new unitary matrix
Ũ = PRotPCP compliant with 3σ spread of Best Fit. The
commutators of ARot, ACP, Adiag with each other are small,
Ũ ∼= U with the accuracy of the order 10−2. The expo-
nential argument ACP is imaginary and has zero diagonal
entries; this matrix describes the CP violation quite well.
Additional account for the small imaginary diagonal matrix
Adiag = idiag {α1, α2, α3} provides exact match with Best
Fit; however,Adiag entries,α2/2 ∼= −α1 ∼= −α3 ≈ 10−2, can
be omitted without significant sacrifice of precision, when Ũ
is compared with Best Fit. Moreover, the latest experimental
data yields the smallest ever values for the entries α1,2,3.

We compared the rotation vectors and angles for neutrinos
and quarks in the exponential parameterizations fitted with
the data for 2016–2018. We have found that the space angle
between the rotation axes for quarks and neutrinos remains
≈ 45◦, despite the data varied from year to year. This result
has high statistical value since it involves the data for all
three mixing angles and thus it can be viewed as an alterna-
tive formulation of quark-lepton complementarity hypothesis
(QLC), usually based on the relations for θ12 and θ23 in its
extended formulation. We have demonstrated that the cobi-
maximal parameterization fits the experimental range 3σ and
the angle between the rotation axes for quarks and neutrinos
in the CBM parameterization equals exactly 45◦ (see Fig. 6).
Other angles in the CBM parameterization compliant with
Best Fit are θ12 ∼= 33.51◦, θ13 ∼= 8.695◦ and it is assumed
that θ23 = 45◦, δCP = −90◦. The resulting value of the
Jarlskog invariant J , which measures the degree of the CP
violation, is J = −0.034, which is close to the maximal
value of |Jmax| = 0.035. Thus, the cobimaximal parame-

terization not only fits the experimental data spread 3σ , but
it provides exact complementarity for neutrinos and quarks
in the above defined sense. For smaller CP violating phase,
δCP = 215◦, we get Jν ∼= −0.019 and the complementarity
is satisfied approximately.

Using exponential parameterization of the neutrino mix-
ing, we framed it into SU(3) group [see (31)–(35)] and
obtained the value for the rotation angle θNov

ν2018 =
58.24◦+7.25◦

−8.62◦ , best fitted with the experimental data spread
3σ . This angle is very close to the rotation angle 
 around
the axis 
n in 3D space for the rotation matrix PRot; the small
difference is due to the way this rotation matrix was distin-
guished. We have obtained the relations of θ and φ with the
CP violating phase δCP in the standard parameterization (see
Fig. 7). The angle θ by definition is independent from δ1,2,3

in the exponential parameterization. We have shown that in
the likely wide range of values δCP ∼ [180◦–360◦] the angle
θ for neutrinos varies in the narrow range: θ ∼ [56◦–60◦].

The correspondence between the CP violation in the stan-
dard and in the exponential parameterizations is established.
For the exponential parameterization the hierarchy of the
complex entries (1,3), (2,3), (3,2) of the matrix exponen-
tial with the phases δ1 ≈ 150◦–180◦, δ2 ≈ 4◦, δ3 ≈ 1◦ is
established.

With the help of the Jarlskog invariant we measured the
CP violation in the framework of the standard, cobimaxi-
mal and exponential parameterizations (see Figs. 2, 3, 4, 5,
9, 10). The major variation of the Jarlskog invariant in the
exponential parameterization is induced by δ1. For the cur-
rently likely value δCP ≈ 215◦, the exponential parameter
δ1, which mainly determines the CP violation, is in the mid-
dle of its possible range of values. The parameter δ2 and
especially δ3 weakly influence the CP violation and depend
on δCP in qualitatively similar to each other way (see Fig. 8).

7 Conclusions

1. The exponential parameterization Uexp = expA of the
mixing matrix allows explicit factorization of pure rota-
tion in 3D space, PRot = eARot , ARot ∈ Reals, and the CP
violation, PCP = eACP , ACP ∈ Imaginaries; the small
diagonal elements in the latter matrix can be neglected.
The result is consistent with the Best Fit data.

2. The axes of real rotation for neutrinos and quarks in the
exponential parameterization constitute with each other
the angle ≈ 45◦. This result is based on the data for all
three mixing angles θ12,23,13 and therefore it has higher
statistical value than common quark-lepton complemen-
tarity (QLC). This can be viewed as an alternative for-
mulation of QLC; it is more general than the common
formulation, which involves just the angles θ12 and in its
extended form also θ23.
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3. The quark-neutrino complementarity, understood in the
above redefined way, holds quite well through the years
2016–2018, despite the data for the rotation angles and
axes varied.

4. In the cobimaximal parameterization (CBM), θ23 = π/4,
δCP = −π/2, fitted with most recent experimental data
2018, the angles of rotation for quarks and neutrinos con-
stitute exactly 45◦. Thus QLC is satisfied exactly for it.

5. In the exponential parameterization the neutrino mixing
can be formally framed in SU(3) group, whose parameter
θ coincides with the rotation angle 
 around the fixed
axis in 3D space with the accuracy 0.5◦. The angle θ

does not depend on the values of δ1,2,3 in the exponential
parameterization; dependently on the Best Fit data with
δCP in the range [180◦–360◦], it varies in very narrow
range around 58◦ ± 2◦.

6. Using Jarlskog invariant we have shown that in the expo-
nential parameterization the value of δ1 determines most
of the CP violation. While the CP violation for νe mix-
ing comes from ν3 mass state, the degree of CP violation
behaves similarly for νμ,τ flavor states and comes from
ν1,2 mass states. This might indicate possible symmetry
of the CP violation in νμ and in ντ neutrino mixing.

Our results demonstrate usefulness of the exponential
parameterization for the analysis and interpretation of mix-
ing. With its help we have factorized the matrices of rota-
tion and CP violation for neutrino mixing, reformulated
the hypothesis of quark-neutrino complementarity (QLC),
involving the data for all three mixing angles, and shown
that the CBM parameterization with arguably best symme-
try in neutrino mixing exactly satisfies QLC. This induces
research for new underlying physical symmetries.
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