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Abstract In this paper we discuss the inclusive J/ψ pro-
duction in proton–proton collisions from fusion of three
pomerons. We demonstrate that this mechanism gets dom-
inant contribution from the region which can be theoreti-
cally described by CGC/saturation approach. Numerically, it
gives a substantial contribution to the J/ψ production, and
is able to describe the experimentally observable shapes of
the rapidity, momenta and multiplicity distributions. The lat-
ter fact provides a natural explanation of the experimentally
observed enhancement of multiplicity distribution in J/ψ
production.
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1 Introduction

The description of the charmonium hadroproduction remains
one of the long-standing puzzles since its discovery. The large

a e-mails: leving@tauex.tau.ac.il; eugeny.levin@usm.cl
b e-mail: marat.siddikov@usm.cl

mass mc of the charm quark inspired applications of per-
turbative methods and consideration in the formal limit of
infinitely heavy quark mass [1]. However, in reality the cou-
pling αs (mc) ∼ 1/3 is not very small, so potentially some
mechanisms suppressed in the large-mc limit, numerically
might give a sizeable contribution.

The Color Singlet Model (CSM) [2–4] assumes that the
dominant mechanism of charmonia production is the gluon-
gluon fusion supplemented by emission of additional gluon.
Early evaluations in the collinear factorization framework
did not agree with the experimental data at large transverse
momenta pT by several orders of magnitude. The failure of
the expansion over αs due to milder suppression of higher
order terms at large pT [5,6] and co-production of addi-
tional quark pairs [7,8] motivated introduction of the phe-
nomenological Color Octet contributions [9,10]. The modern
NRQCD formulation [11–15] constructs a systematic expan-
sion over the Long Distance Matrix Elements (LDMEs) of
different charmonia states which can be extracted from fits
of experimental data. However, at present extracted matrix
elements depend significantly on the technical details of the
fit [14,16,17], which contradicts expected universality of the
extracted LDMEs. At the same time, it is known that at large
pT , a sizeable contribution might come from other mech-
anisms, like for example gluon fragmentation into J/ψ or
co-production together with other hadrons [18–21]. The lat-
ter findings are partially supported by experimental data on
multiplicity of co-produced charged particles [22–26] which
suggest that J/ψ production might get sizeable contribution
from this mechanism.

In this paper we analyze J/ψ in the CGC/saturation
approach, which incorporates the leading-log contributions
from hadron production in the small-x kinematics, and takes
into account saturation effects in the region of very small-
x [39,94]. We focus on the mechanism of J/ψ production
shown in the diagram (a) of the Fig. 1, when the production
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Fig. 1 a Two parton showers
contribution to J/ψ production
in hadron-hadron collisions. b
Production of J/ψ and even
number of soft
(non-perturbative) gluons.
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of J/ψ occurs from fusion of three gluons, accompanied by
the production of two parton showers.1 In order to emphasize
the role of co-production of other particles associated with
J/ψ , below we will follow the terminology used in some
BFKL papers and refer to this mechanism as “two-parton
shower” contribution. This mechanism differs from the so-
called “single-shower” mechanism shown in the diagram (b)
of the Fig. 1. The latter corresponds to gluon-gluon fusion
with emission of additional (soft) gluon in collinear and kT -
factorization approaches, and is a counterpart of CSM mech-
anism in BFKL framework. We expect that the two-parton
shower mechanism should be dominant for the events with
large multiplicities, exceeding the average multiplicity n̄ of
the gluon production in the inclusive process. This mech-
anism is similar to mechanisms studied earlier in the liter-
ature for proton–proton collisions [27,28] and for proton–
nucleus and nucleus–nucleus scattering [29–31]. For colli-
sions involving heavy nuclei, the two parton shower mecha-
nism inside heavy nuclei with atomic number A is dominant
due to factor ∼ A1/3, and, because of this, has been compre-
hensively discussed during the past decade [32–37]. On the
other hand, for proton–proton scattering we found only one
paper which considers this process in the kT -factorization
approach [38].

At first sight, the two parton showers mechanism should
be suppressed in comparison with the production of J/ψ in
one parton shower shown in the diagram (b) of the Fig. 1b:
in contrast to αs coupling which appears in the shower-
quark vertex, the emission of soft gluon in Fig. 1b is not
suppressed by any hard scale and thus does not bring a
smallness proportional to ᾱS . In the DGLAP approach, it
is expected that such diagrams are of higher twist and are
(at least formally) suppressed by additional powers of hard
scale. However, at high energy this suppression is compen-
sated by enhanced contribution of the second parton shower
(see [39] for review). For typical 〈r〉 ∼ 1 GeV−1 we get

1 We would like to clarify what we mean, saying “the production of
two parton showers.” The parton shower is the initial state “cut ladder,”
which generates the production of gluons that are almost uniformly
distributed in the entire region of rapidities. As we will see below, such
parton showers correspond to the cut BFKL Pomeron.

ᾱS
(
4/r2

) ≈ 0.2 so ᾱSGBFKL (s, . . . ) ∝ ᾱS s�BFKL ≥ 1
at high energies, where �BFKL = 4 ln 2ᾱS is the intercept
of the BFKL Pomeron [40–44] and GBFKL (s, . . . ) is the
Green function of the BFKL Pomeron. The numerical esti-
mates of Ref. [38] suggests that the considered mechanism
yields about one third of the experimental cross section in the
kT factorization approach, though the final estimate suffers
significantly from the uncertainty in digluon PDF modeling,
namely the choice of value of the parameter σeff (“effective
double parton cross-section”). On the other hand, the diagram
(b) in the Fig. 1 at high energies gets additional suppression
due to growth of the saturation scale Qs , which decreases the
average dipole size and suppresses the emission of the extra
gluons leading to αS(Qs) suppression.

The main motivation of this paper is to re-visit the esti-
mates of the contribution of the mechanism of Fig. 1a in
the CGC/saturation framework and check if it can repro-
duce the observed multiplicity distributions. We demonstrate
that: (i) this mechanism can be calculated in CGC/saturation
approach (see Ref. [94] for a review) since the main contri-
bution comes from the vicinity of the saturation scale, where
we know theoretically the scattering amplitude, and (ii) it
on its own gives a significant contribution to experimentally
observable cross sections. In contrast to Ref. [38], we use
a CGC/saturation framework, and in order to avoid uncer-
tainties related to digluon distributions, we relate the cross-
sections of the J/ψ production to the diffractive production
cross-section known from DIS.

The paper is organized as follows. In the next Sect. 2 we
evaluate the contribution of the suggested mechanism in the
CGC/saturation framework. We re-write this contribution in
the coordinate representation and relate it to the gluon double
densities. In Sect. 3 we discuss the interrelation of the sug-
gested process with the diffractive production of J/ψ in DIS.
In the Sect. 4 we make phenomenological estimates and com-
pare results with experimental data. The Sect. 4.1 is dedicated
to the estimates of the total cross section of the process. In
this subsection we point out the differences with Ref. [38]. In
Sects. 4.2, 4.3 and 4.4 we consider the momenta, rapidity and
multiplicity distributions of the differential cross-sections.
Finally, in the Sect. 5 we draw conclusions.
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Fig. 2 The cross-section
corresponding to the first
diagram of the Fig. 1 in the
BFKL Pomeron calculus..The
vertical wavy lines of different
colors and shape passing
through unitarity cut are BFKL
Pomerons [described by the
Green functions GIP (y, kT ) in
Eq. (2)], helical lines correspond
to the gluons
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2 Charmonia production in the BFKL approach

At present, the effective theory of QCD at high energies
exists in two forms: the CGC/saturation approach [45–63]
and the BFKL Pomeron calculus [40–45,64–80]. It has been
proven that in general these two approaches are equivalent in
a limited region of the rapidities [81–84]. The interpretation
of processes at high energy appears quite different in each
approach, since they have different structural elements.

The CGC/saturation approach, being more microscopic,
describes the high energy interactions in terms of color-
less dipoles, their density, distribution over impact param-
eters, evolution in energy, etc. The distinctive feature of this
approach is the appearance of saturation effects which affect
the dynamics for parton momenta comparable to some satu-
ration scale Qs , a new dimensional parameter. The studies of
J/ψ production in this approach may be found in [36] and by
construction include all possible multishower contributions,
although with additional model-dependent assumptions.

The BFKL Pomeron calculus works with BFKL Pomerons
and their interactions, and phenomenologically is similar
to the old Reggeon theory [85]. This approach is suitable
for describing diffractive physics and correlations in multi-
particle production, so we can use the Mueller diagram tech-
nique [86]. The relation between different processes at high
energy are very often more transparent in this approach, since
in addition to the Mueller diagram technique we can use the
AGK cutting rules [87,88], which are useful in spite of the
restricted region of their application [89–93]. In this paper for
the sake of definiteness we use the BFKL Pomeron calculus
as a framework for evaluations.

In the framework of the BFKL Pomeron calculus, the
cross-section of the process shown in the diagram (a) of the
Fig. 1 is described by the exchange of two BFKL Pomerons
as shown in Fig. 2. Since we are interested in inelastic J/ψ
production, the Pomerons in Fig. 2 are cut Pomerons in which

all gluons are produced. From the unitarity constraints for the
elastic amplitude NBFKL of the dipole of size r , rapidity Y
and at the impact parameter b, we have [94]

NBFKL
cut (Y, r, b) ≡ 2 NBFKL (Y, r, b) (1)

Its contribution to the total cross section for J/ψ produc-
tion2 is equal to

d2σ (Y, qT )

dy d2qT

= 4C3
F ᾱ3

S

(2π)6

∫
d2kT d2 pT d2QT Gcut

IP

(
Y − y, pT , 0

)

×I
(
kT , qT

)
I
(
k′
T , qT

)
Gcut

IP

(
y, kT + 1

2
qT , QT

)

×Gcut
IP

(
y, −kT + 1

2
qT , QT

)
(2)

where ᾱs = Ncαs(mc)/π , the notation Gcut
IP is used for the

Green functions of the cut pomerons (it is related to elastic
amplitudes NBFKL

cut by Fourier transform), the gluon momenta
kT , pT , qT , are defined in the Fig. 2, QT = kT − k′

T , and

I
(
kT , qT

) =
∫ 1

0
dz
∫

d2r
(
ei

1
2 qT ·r − eikT ·r)

×�g (pT , r; z) �J/ψ (r; z)
= F

(
1

2
qT

)
− F (kT ) (3)

(the evaluation of the factor I
(
kT , qT

)
is discussed in more

detail in Appendix 1). The additional factor 4 in Eq. (8)
which comes from two sources: 2 from the AGK cutting
rules [87,88] and 2 from the fact that gluon that produces

2 The color factor which appears in (2) was evaluated in the large-
Nc limit. It is the same as in hadron-nucleus scattering and have been
discussed in detail in Refs. [32–35]. In particular, in Ref. [35] (see
Eqs. (12)–(15) in this paper) it has been demonstrated how all color
coefficients are distributed between different entries in (8).
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cc̄-pair can come from another proton. In Eq. (3) �g (pT , r)
stands for the wave function of gluon with virtuality pT ,
transverse quark–antiquark separation r and the light-cone
fraction of the quark z, while �J/ψ is the wave func-
tion of J/ψ meson. The amplitude of the BFKL Pomeron
Gcut

IP

(
y, kT ± 1

2qT , QT

)
can be simplified if we take into

account that the QT dependence of the BFKL Pomeron
is determined by the size of the largest of the interacting
dipoles,3 and accounting for Eq. (1), may be written as

Gcut
IP

(
y, kT ± 1

2
qT , QT

)

≈ 2GBFKL
IP

(
y, kT ± 1

2
qT , QT = 0

)
Sh (QT ) (5)

The dependence on QT is described by Sh (QT ) in Eq. (5),
which has the non-perturbative origin and has to be taken
from the experiment. Using Eq. (5) we can re-write Eq. (2)
in the form

dσ
(
Y, Q2

)

dy d2qT
= 4C3

F ᾱ3
S

(2π)4

∫
d2QT

(2π)2 S2
h (QT )

×
∫

d2kT d
2 pT Gcut

IP (Y − y, pT , 0)

× I 2 (kT , qT
)
GBFKL

IP

(
y; kT + 1

2
qT , 0

)

×GBFKL
IP

(
y,−kT + 1

2
qT , 0

)
. (6)

As we can see from (6), the dependence in S (QT ) only
enters as a constant multiplicative factor ∼ ∫

d2QT S2
h (QT ),

which only affects the normalization of the cross-sections.
In what follows, we will fix the normalization from the
charmonia photoproduction data, and for this reason do not
need to model the QT -dependence of Sh (QT ). For fur-
ther evaluations it is very convenient to introduce momenta
p1,2,T = ±kT + 1

2qT , which allow to rewrite Eq. (6) as

3 The fact that the QT dependence is determined by the size of the
largest dipole stem from the general features of the BFKL Pomeron.
Indeed, the eigenfunction of the BFKL Pomeron in the coordinate space
is equal to [64,65]

N
(
r, r ′; b) =

⎛

⎜
⎝

r2 r ′2
(
b − 1

2 (
r − 
r ′)
)2 (
b + 1

2 (
r − 
r ′)
)2

⎞

⎟
⎠

γ

(4)

where b is the conjugate variable to QT . From Eq. (4) one can see
that the typical value of b is of the order of the largest of r and r ′. In
our process r ′ is of the order of Rh , where Rh denotes the radius of the
nucleon. The value of 1/r is of the order of the mass of the heavy quark
mc, or the saturation scale Qs and, therefore, turns out to be much larger
than 1/Rh , and can be neglected. The dependence on QT ≈ 1/Rh is
described by Sh (QT ) in Eq. (5), which has the non-perturbative origin
and. in practice, has to be taken from the experiment.

dσ
(
Y, Q2

)

dy d2qT

= 4C3
F ᾱ3

S

(2π)4

∫
d2QT

(2π)2 S2
h (QT ) xgG

(
xg, MJ/ψ

)

×
∫

d2 p1,T d
2 p1,T δ(2)

(
p1,T + p2,T − qT

)

×I 2 ( p1,T , p2,T

)
GBFKL

IP

(
y; p1,T , 0

)

×GBFKL
IP

(
y, p2,T , 0

)
(7)

where we took the integral over pT ∈ (0, 2mc) using
Gcut

IP

(
Y − y, pT , 0

) = d x G
(
x, p2

T

) /
dp2

T , xgG
(
xg,

MJ/ψ
)

is the gluon structure function, xg =
√
M2

J/ψ + q2
T

ey/
√
s, and Y − y ≡ ln

(
1/xg

)
. There is a freedom in the

choice of the factorization scale μF (upper limit of inte-
gration over pT ) in gluon PDFs, and the physical observ-
ables should not depend on it (provided the evolution of
gluon PDFs and loop corrections to hard coefficient func-
tions are taken in the same order over αs). Our choice of
the fixed scale μF = MJ/ψ is motivated by simplicity: for
pT � MJ/ψ we may disregard the pT -dependence of the
gluon-J/ψ transition form factor I

(
pT , kT

)
and thus the

integration over pT leads to the standard collinear PDFs
at factorization scale MJ/� . In contrast, if we used the

scale μ
(kT )
F =

√
M2

J/ψ + q2
T common in kT -factorization

approach, for larger pT � MJ/ψ the transition gluon-J/ψ
form factor would start to decrease, violating the log inte-
gration over pT which are summed by the DGLAP evolu-
tion equation. Since the qT -integrated observables obtain the
main contribution from the region of small qT , we expect
that the qT -integrated observables should not depend on this
choice.

The choice of the factorization scale μF =
√
M2

J/ψ + q2
T

does not work in our case since the production of J/� at large
qT occurs due to large momentum transferred in scattering
amplitudes (see Fig. 2). However, there is another contribu-
tion with pT ≈ qT at large values of qT . In this contributions
the value of pT of the lower two gluons are small and the qT
dependence turns out to be similar to the one parton shower
mechanism. We do not consider this possibility in the paper,
leaving it to the further publication.

Making a Fourier transform, we may rewrite Eq. (7) in the
coordinate space as

dσ
(
Y, Q2

)

dy d2qT

= 4
∫

d2QT

(2π)2 S2
h (QT ) xgG

(
xg, MJ/ψ

)

×
∫ 1

0
dz
∫ 1

0
dz′

∫
d2r

4π

d2r ′

4π
d2b e

−iqT ·
(
b+ 1

2 (r−r ′)
)

×〈�g (r, z) �J/ψ (r, z)〉 〈�g
(
r ′, z′

)
�J/ψ

(
r ′, z′

)〉
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×
(
N (y; b) + N

(
y; b + r − r ′)

− N (y; b + r) − N
(
y; b − r ′)

)2

= 4
∫

d2QT

(2π)2 S2
h (QT ) xgG

(
xg, MJ/ψ

)

×
∫ 1

0
dz
∫ 1

0
dz′

∫
d2r

4π

d2r ′

4π
d2b e−iqT ·(b)

×〈�g (r, z) �J/ψ (r, z)〉 〈�g
(
r ′, z′

)
�J/ψ

(
r ′, z′

)〉
×
(
N

(
y; b − 1

2

(
r − r ′)

)
+ N

(
y; b + 1

2

(
r − r ′)

)

− N

(
y; b + 1

2

(
r + r ′)

)

− N

(
y; b − 1

2

(
r + r ′)

))2

(8)

where the amplitudes N (y; r i ) are related to the solutions
of the BK equation as N (y; r i ) = ∫

d2b′ N
(
y; r i , b′), and

the variable b is a Fourier conjugate of momentum p1,T +
p2,T − qT . In what follows, we will also need an expression
for the qT -integrated cross-section, which takes a simpler
form

dσ
(
Y, Q2

)

dy
= 16

∫
d2QT

(2π)2 S2
h (QT ) xgG

(
xg, mc

)

×
∫ 1

0
dz
∫ 1

0
dz′

∫
d2r

4π

d2r ′

4π

× 〈
�g (r, z) �J/ψ (r, z)

〉 〈
�g

(
r ′, z′

)
�J/ψ

(
r ′, z′

)〉

×
(
N

(
y; 
r + 
r ′

2

)
− N

(
y; 
r − 
r ′

2

))2

(9)

Finally, we would like to mention that the expressions
presented in this section implicitly assume that each parton
cascade is emitted independently, namely that parton correla-
tions are negligible. In more general case with nonzero parton
correlations, the expression (6) should be replaced with

dσ
(
Y, Q2

)

dy d2qT
= 4C3

F ᾱ2
S

(2π)4

×
∫

d2QT

(2π)2

∫
d2kT d

2 pT Gcut
IP (Y − y, pT , 0)

×I 2 (kT , qT
)

ρ(2)

×
(
y; kT + 1

2
qT ; y,−kT + 1

2
qT ; QT

)
(10)

where we replaced the product of pomeron propagators with
the double transverse momentum densities ρ(2) defined as

ρ(2)
(
x1, p1,T ; x2, p2,T , QT

)

=
〈
P

∣
∣∣∣

{
a+

(
x1, p1,T + 1

2
QT ; b

)

a+
(
x2, p2,T − 1

2
QT ; c

)

a

(
x2, p2,T + 1

2
QT ; c

)

a

(
x1, p1,T − 1

2
QT ; b

)}∣∣∣∣ P
〉

(11)

where
(
x1, p1,T

)
and

(
x2, p2,T

)
are the light-cone and trans-

verse momenta of the partons in the cascade,4 |P〉 is the
Fock state of colliding hadrons, a+ and a denote the creation
and annihilation operators for gluons that have longitudi-
nal momentum xi and transverse momentum pi,T , ci are the
color indexes. However, at present there is no experimental
evidence that such correlations are large, for this reason in
what follows we will use a simpler expressions (6). Similarly,
in coordinate space the Eq. (8) can be extended as

dσ
(
Y, Q2

)

dy d2qT
= 4

∫
d2QT

(2π)2 xgG
(
xg, 2mc

)

×
∫ 1

0
dz
∫ 1

0
dz′

∫
d2r

4π

d2r ′

4π
d2b e−iqT ·b,

×〈�g (r, z) �J/ψ (r, z)〉 〈�g
(
r ′, z

)
�J/ψ

(
r ′, z

)〉

×
(

ρ(2) (y; b − rd ; y; b − rd , QT )

+ ρ(2) (y; b + rd , y; b + rd , QT )

+ ρ(2) (y; b + rs , y; b + rs , QT )

+ ρ(2) (y; b − rs , y; b − rs , QT )

+ 2 ρ(2) (y; b − rd , y; b + rs , QT ) − 2 ρ(2)

× (y; b + rd , y; b + rs , QT )

− ρ(2) (y; b − rd , y; b − rs , QT )

− 2 ρ(2) (y; b + rd , y; b + rs , QT )

− 2 ρ(2) (y; b + rd , y; b − rs , QT )

+ 2 ρ(2) (y; b + rs , y; b − rs , QT )

)
(12)

where ρ(2)
(
x, r; x, r ′; QT

)
is the double parton density in

the coordinate representation, rs = 1
2 (r + r ′) and rd =

1
2 (r − r ′).

While for numerical estimates we could use parameter-
izations of the amplitude N available from the literature,
we would like to minimize dependence on parameterization
and make a few model-independent estimates. One of the
important parameters for understanding the small-x dynam-
ics is the saturation scale Qs and its product on character-
istic size of the dipoles 〈r〉 in the process. The saturation
has a mild dependence on energy [96] and in the kinematics
of interest for our studies (

√
s ∈ (1.9, 7) TeV) its values are

4 The definition (11) is closely related to digluon PDFs introduced in
[95], though we have to mention that the probabilistic interpretation
strictly speaking can be discussed only for QT = 0. As we will see
below, in final expressions for the J/ψ production we will need only
this case.
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Fig. 3 Two main contributions
to the diffractive production of
J/� meson. The elastic
contribution (a) contributes
mainly to production of hadrons
with small total mass, while the
inelastic contribution (b) is the
source of hadrons with large
total mass

k+q/2−k+q/2 k’+q/2 −k’+q/2 k+q/2−k+q/2 k’+q/2 −k’+q/2

(a) (b)

3P

Q2
s = 0.7−0.9 GeV2. The typical size of the dipole essential

in our process might be estimated as5

〈
r2
〉
=
∫ 1

0 dz
∫ d2r

4π
r2
〈
�g (r, z) �J/ψ (r, z)

〉

∫ 1
0 dz

∫ d2r
4π

〈
�g (r, z) �J/ψ (r, z)

〉

≈ 0.76 GeV−2 (13)

so the product τ ≡ 〈
r2
〉
Q2

s ≈ 0.5 . . . 0.7. Contrary to
the large-mc expectations, this number is not very small and
corresponds to the dynamics in the vicinity of the satura-
tion scale [37,98]. The scattering amplitude is well known in
this region (see (15) below), so this implies minimal model-
dependence in our estimates.

3 Interrelation with the diffractive J/ψ production in
DIS

The cross-section of the J/ψ production in the small-x kine-
matics is closely related to the diffractive J/� production in
DIS, and this relationship is useful to fix the unknown non-
perturbative factor ∼ ∫

d2QT S2
h(QT ) which appears in (7,

8). In the BFKL picture, there are elastic and inelastic contri-
butions to diffractive J/ψ production, shown in the left and
right panels of the Fig. 3. Taking into account approximate
equality of the elastic and inelastic contributions [99,100],
we may focus on evaluation of the diagram (a) of the Fig. 3.
For fixing the prefactor ∼ ∫

d2QT S2
h(QT ), it is sufficient

to consider only the qT -integrated cross-section dσdiff/dy,
which is given by (see Fig. 3):

dσdiff
(
y, Q2,

√
sγ ∗ p

)

dy

=
∫

d2QT

(2π)2 S2
h (QT )

∫ 1

0
dz
∫ 1

0
dz′

∫
d2r

4π

d2r ′

4π

× 〈
�γ ∗ (r, z) �J/ψ (r, z)

〉

× 〈
�γ ∗

(
r ′, z′

)
�J/ψ

(
r ′, z′

)〉

N
(
y, r2

)
N
(
y, r ′2) . (14)

5 See Appendix 1 and [97] for paramertizations of the wave functions.

In the vicinity of the saturation scale, which gives the domi-
nant contribution, the CGC/saturation approach predicts that
the amplitude N has a form

N
(
y, r2, 0

)
≈ Consts

(
r2 Q2

s (x)
)γ̄

, (15)

where γ̄ ≈ 0.63 [94], x ≈ MJ/ψe−y/
√
s, and Q2

s (x) is the
saturation scale. The Eq. (14) in this case takes the form

dσdiff
(
y, Q2,

√
sγ ∗ p

)

dy

= Const2s

∫
d2QT

(2π)2 S2
h (QT )

∫ 1

0
dz
∫ 1

0
dz′

∫
d2r

4π

d2r ′

4π

× 〈
�γ ∗ (r, z) �J/ψ (r, z)

〉 〈
�γ ∗

(
r ′, z′

)
�J/ψ

(
r ′, z′

)〉

× (
Q2

s (x) r2)γ̄ (
Q2

s (x) r ′2)γ̄ , (16)

which allows to factorize all the energy- and rapidity depen-
dence,

dσdiff
(
y, Q2,

√
sγ ∗ p

)

dy
∼
[
Q2

s (x)
]2γ̄

(17)

and in this way facilitate scaling from HERA to Tevatron and
LHC energies. Similarly, for the gluon induced elastic J/ψ
production in the vicinity of the saturation scale (see Ref.
[37]) we may simplify (9) to

dσ
(
y, Q2,

√
sγ ∗ p

)

dy

= 16 Const2s

∫
d2QT

(2π)2 S2
h (QT ) xgG

(
xg, MJ/�

)

×C2
F

∫ 1

0
dz
∫ 1

0
dz′

∫
d2r

4π

d2r ′

4π

× 〈
�g (r, z) �J/ψ (r, z)

〉 〈
�g

(
r ′, z′

)
�J/ψ

(
r ′, z′

)〉

×
{(∫

d2b Q2
s (x, b)

)2γ̄

×
(( 
r + 
r ′

2

)2 γ̄

−
( 
r − 
r ′

2

)2 γ̄
)2 }

(18)

which also has a factorizable dependence on energy and
rapidity,

dσ
(
y, Q2

)

dy
∼ xg G

(
xg MJ/ψ

) [
Q2

s (x)
]2γ̄

. (19)
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Taking into account that the wave functions of the proton
and gluon are proportional to each other in the leading order
of pQCD [35],

�γ ∗ (r, z) =
√

2Nc

g

2

3
eNc�g (r, z) (20)

we may expect the proportionality of the diffractive and inclu-
sive cross-sections

dσ
(
y, Q2

)
/dy

dσdiff
(
y, Q2

)
/dy

∣∣
∣∣
Q=mJ/ψ ,y→Y0

≈ 9

2
xgG

(
xg, MJ/ψ

) RC2
F

αS

αe.m,.N 3
c

(21)

where

R = I1/I2 ≈ 1.27, (22)

I1 = 4
∫ 1

0
dz
∫ 1

0
dz′

∫
d2r

4π

∫
d2r ′

4π

× 〈
�γ ∗ (r, z) �J/ψ (r, z)

〉 〈
�γ ∗

(
r ′, z′

)
�J/ψ

(
r ′, z′

)〉

×
[( 
r + 
r ′

2

)2γ̄

−
( 
r − 
r ′

2

)2γ̄
]2

, (23)

I2 =
∫ 1

0
dz
∫ 1

0
dz′

∫
d2r

4π

∫
d2r ′

4π

× 〈
�γ ∗ (r, z) �J/ψ (r, z)

〉

× 〈
�γ ∗

(
r ′, z′

)
�J/ψ

(
r ′, z′

)〉 (
r2r ′2)γ̄

(24)

and for estimates of parameter R we used the parameteriza-
tions of the wave functions given in Appendix 1. The data
on diffractive production are available from H1 and ZEUS
experiments [99–102], and they show that in HERA kinemat-
ics the elastic and inelastic contributions (diagrams a and b in
the Fig. 3, respectively) are approximately equal. As a conse-
quence, for W ≡ √

s ≈ 30 GeV (xg ≈ 0.01) the diffractive
cross-section

dσdiff

dy

∣∣∣∣
Q=MJ/ψ ,y→Y0

∼ 20 nb.

This allows to use Eq. (21) for estimate of the hadropro-
duction cross-section at

√
s ≈ 30 GeV,

dσ

dy

∣∣
∣∣
xg≈10−2

≈ 0.83 μb. (25)

In the next section we will extrapolate it with the help of
the small-x evolution up to LHC energies.

Table 1 Comparison of the theoretical estimates with experimental
data for the cross-section dσ/dy at central rapidities. Theoretical esti-
mates correspond to values of parameter λ ∈ (0.2, 0.3) (lower and
upper values respectively). In the last column we’ve quoted the data
on prompt J/ψ production. The cross-section dσ/dy at Tevatron was
extracted dividing the total cross-section σtot(|y| < 0.6) by the width
of the bin �y ∼ 1.2

Theoretical estimates Experiment

√
s ≈ 1.96 TeV 2.1–2.6 µb 2.38 µb [103]√
s ≈ 7 TeV 3.8–5.6 µb 5.8 µb [104]

4 Phenomenological estimates

4.1 Total J/� production cross section

As we demonstrated in Sect. 2, the typical size 〈r〉 of QQ̄
dipole is small when the saturation scale Qs(x) � mc (see
Eq. (13)), and for this reason from (18) we expect that the
cross-section at central rapidities should scale with energy as

dσ

dy

∣∣∣∣
y=0

∼ xgG
(
xg, MJ/ψ

) (
Q2

s (x)
)2γ̄

. (26)

For numerical estimates we assume that the saturation scale
Q2

s scales as [98]

Q2
s (x) = Q2

s (x0)
( x0

x

)λ

. (27)

with λ ≈ 0.2 − 0.3 [106–108] and x ≈
√
M2

J/ψ + q2
T e

−y/√
s. In case of Tevatron and LHC kinematics, this leads to

the cross-section estimates given in the Table 1. In these esti-
mates we use that the evolution does not change the ratio
between the elastic and inelastic contributions which corre-
spond to two terms in the solution to the evolution equation
for ρ(2) (see Appendix B and Fig. 9).

As we can see, the suggested mechanism gives a signif-
icant contribution to the total cross-section, though in view
of inherent uncertainties of the CGC/saturation approach we
cannot make more accurate estimate about the fraction of
charmonia produced via this mechanism.

As we have mentioned earlier, our estimates exceed the
result of Ref. [38], where similar contribution was found
approximately twice smaller. Below we would like to ana-
lyze the reasons which might be responsible for this discrep-
ancy. It was assumed in [38] that the digluon distribution is
proportional to a direct product of independent gluon dis-
tributions, with a phenomenological multiplicative prefac-
tor usually described by the so-called effective cross-section
σeff . In the CGC/saturation picture, each gluon effectively is
replaced by a pomeron, so the factorized model would corre-
spond to the diagram (a) in the Fig. 3. As we discussed earlier,
the inelastic contributions (diagram (b) in the same Figure)
yields a numerically comparable contribution which would
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correspond to corrections breaking the factorized form. This
additional inelastic contribution might be one of the reasons
of the strong channel dependence of the phenomenological
effective cross-section σeff .

6 In our approach, we fix the the
only unknown constant

∫
d2QT S2 (QT ) from experimental

data at HERA and evolve the cross-section as prescribed by
small-x evolution, thus taking into account both diagrams of
the Fig. 3. The main source of uncertainty in this procedure is
the energy dependence of the saturation scale Q2

s (x), namely
the choice of coefficient λ in (27). Theoretical estimates of
this parameter significantly depend on the choice of the scale
in the running coupling constant ᾱs , and lead to estimates
λ ≈ 0.3 − 0.4 [109], whereas phenomenological estimates
of this parameter restrict it to the range λ ∈ (0.2, 0.3) [94].
We can see that it results in up to fifty per cent uncertainty in
the theoretical estimates shown in the Table 1.

4.2 Transverse momentum distribution

Qualitatively the main features of qT -distribution may be
understood from (8). For small momenta 1

2qT � Qs (x), we
can safely use the behaviour of the Pomeron Green function
in the vicinity of the saturation momentum [98]

GBFKL
IP

(
y; kT ± 1

2
qT , QT = 0

)

≈ const

(
Q2

s (x)
(
kT ± 1

2qT
)2

)γ̄

, small qT . (28)

In the kinematic region 1
2qT � kT the scattering amplitude

becomes sensitive to dynamics at shorter distances, which is
described in perturbative QCD. In this region we may use a
parameterization (15), which is a BFKL prediction for small
dipoles with r � Q−1

s (x) [94].
The two approaches are valid for different values of qT

and thus complement each other. The choice of the threshold
scale q0 between them is somewhat arbitrary, yet we expect
that q0 should be of order ∼ (1 − 2) MJ/ψ .

In Fig. 4 we compare model predictions for the shape
of the qT -dependence with experimental data from [110,
111]. In order to avoid the above-mentioned global uncer-
tainty in normalization, we consider the normalized ratio(
d2σ/dy dqT

)
/ (dσ/dy). The cusp on the curve near the

threshold scaleqT = q0 can be smoothed out by more relaxed
conditions.

The asymptotic behaviour of the cross-section might be
understood from analysis of the cross-section (8). In this

6 This phenomenological parameter manifests significant dependence
on channel used to extract it and varies between 5 and 25 mb (see Ref.
[105] for a review).

Fig. 4 Solid green line corresponds to the shape of the qT distribu-
tion of produced J/ψ at central rapidities described in the text. The
threshold scale q0 is chosen as q0 ∼5 GeV. Dashed and dotted brown

lines correspond to an asymptotic form ∼ 1/
(
q2
T + 
2

c

)2+2γ̄
discussed

in the text, with parameter 
c ≈ (1 − 2) MJ/ψ The experimental data
are taken from Refs. [110,111]

problem we have several relevant scales, however for asymp-
totic behavior we need to compare each variable |b|, |r|, |r ′|
with 1/qT . In what follows we will analyze kinematics
qT � mc ∼ Qs(x). The region

|b| ∼ |r| ∼ |r ′| ∼ 1/qT (29)

gives an asymptotically suppressed contribution which fol-
lows directly from the third line of (8)

d2σ (29)

d2qT
∼ 1

q6+4γ̄

T

∼ 1

q8.5
T

. (30)

It should be noted that factor 1/q4
T stems from the behaviour

of the form factors for gluon-J/ψ transition.
The regions

|b| ∼ |r + r ′| ∼ 1/qT , |r| ∼ |r ′| ∼ m−1
c � q−1

T (31)

|b| ∼ |r − r ′| ∼ 1/qT , |r| ∼ |r ′| ∼ m−1
c � q−1

T (32)

give the asymptotic contribution

d2σ (31), (32)

d2qT
∼ 1

q4+4γ̄

T

. (33)

Such behaviour in the momentum representation (7)
comes from the integration region kT � MJ/ψ : theqT depen-
dence comes only from the Pomeron Green functions so
the cross-section has an asymptotic behaviour d2σ/d2qT ∝
(
GBFKL

IP

(
y, qT /2, 0

) )2

∝ 1/(qT )4+4γ̄ . This contribution

describes two gluons that are emitted from different quarks
in the quark loop in Fig. 2. They are scattered at the same
value of the momentum transfer and this contribution does
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not depend on the form factor of the gluon-J/� transition
(the second term in (3)).

In preasymptotic regime, the behaviour (33) is regularized
at smaller qT as

d2σ (31), (32)

d2qT
∼ 1
(
q2
T + 
2

c

)2+2γ̄
(34)

where the parameter 
c ≈ (1 − 2) MJ/ψ . As we can see

from the Fig. 4, the behaviour (34) agrees reasonably well
with the data at large pT . In our estimates of the pT depen-
dence we considered leading order evaluation, and as was
explained in Sect. 2, the coupling constant αs in the gluon
wave function �g in (8) is taken at scale ∼ mc.

Now we would like to comment briefly on different qT -
dependence found in this section and in the kT -factorization
approach [38]. The working formulas in that approach have
a structure similar to (2), provided Green functions are
replaced with unintegrated gluon densities. The prefactor
of (2) includes a common factor α2

s (μF ), with the kT -
factorization scale prescription μF ∼ qT . The use of running
coupling leads to stronger observed suppression at larger qT .
However, since the latter is the next-to-leading order effect,
a complete analysis of the NLO corrections is needed in this
kinematics for analysis of qT dependence. Note, that these
factors ∼ (αs(qT ))2 have been included in the dipole scatter-
ing amplitude in our approach (see (8)) and finally have been
absorbed in the definition of the saturation momenta in (15).
Another crucial assumption which affects the large-qT slope
of the cross-section is the value of the parameter γ̄ , as could
be seen from (34). There is some uncertainty in the value
of this parameter, and phenomenological fits [106,108] fre-
quently prefer slightly higher values of paramater γ̄ than the
theoretical value γ̄ ≈ 0.63 used in our estimates. Potentially
this also leads to stronger suppression at large qT . These two
effects explain the discrepancy between our result and find-
ings of [38] in the kT -factorization approach, and signal that
in the large-qT kinematics the theoretical uncertainty might
be significant.

4.3 Rapidity distribution

For numerical estimates in the previous sections we used the
leading log approximation (LLA) for the BFKL Pomeron
Green function, assuming additionally that mass mc is large,
so that we could use a small-r approximation. The shape
of the rapidity distribution in this approximation has a very
simple form, which follows directly from Eq. (18):

Fig. 5 Rapidity distribution of produced J/ψ . The ratio RJ/ψ (y) is
defined as RJ/ψ = (

dσJ/ψ/dy
)
/
(
dσJ/ψ/dy

)
y=0. The dashed curve

corresponds to Eq. (35) with BFKL-style parameterization 37 for gluon
densities, the solid line takes into account ∼ (1 − x)5-endpoint factors
as described in the text. The data are taken from Ref. [111]

dσJ/ψ (y) /dy

dσJ/ψ (y) /dy|y=0
=
(
Q2

s (y∗ − y)
(
Q2

s (y∗ + y)
)2

Q2
s (y∗)

(
Q2

s (y∗)
)2

)γ̄

︸ ︷︷ ︸
Fig. 6-a

+
(
Q2

s (y∗ + y)
(
Q2

s (y∗ − y)
)2

Q2
s (y∗)

(
Q2

s (y∗)
)2

)γ̄

︸ ︷︷ ︸
Fig. 6-b

= cosh (λγ̄ y) , (35)

y∗ = − ln

⎛

⎝

√
M2

J/ψ + q2
T

s

⎞

⎠ , (36)

since all dependence on rapidity is concentrated in the energy
dependence of the saturation scale (27) which contributes to
the cross-section (18) multiplicatively, and the gluon density
in prefactor. The latter in the small-x kinematics is expected
to have a simple power-like behaviour

xgG
(
xg, M2

J/ψ

)
∝
(
Q2

s

(
xg
)
/M2

J/ψ

)γ̄

. (37)

However, such simple parameterization is valid only at cen-
tral rapidities (near y = 0), and as could be seen from the
Fig. 5, outside this region (|y| � 1) mismatches the experi-
mental cross-section even on the qualitative level. This hap-
pens because at very forward or very backward kinematics
we should add in (35) additional factor

∼ (1 − x)5 , x = e−y∗±y

per each gluon/pomeron in order to have correct endpoint
behaviour of the gluon densities in the x → 1 limit [112].
As we can see from the Fig. 5, the model gives a reason-
able description of the rapidity dependence, which might be
interpreted as confirmation of the applicability of the small-r
approximation.
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Fig. 6 Multiplicities in the
J/ψ production, accompanied
by two parton showers

(b)

Y

T

hadron

(a)

Y

T

hadron

hadron

Y/2

0

   n 
_

  2 n 
_

   n 
_  2 n 

_

hadron

hadron hadron

Fig. 7 Left plot: comparison of the multiplicity distribution with the
experiment [22]. Solid line: result of evaluations with (9) using CGC
parameterization for the dipole amplitude and saturation scale adjusted
according to (38). The upper band marked “2-showers” stands for the
estimates with approximate expression (39) and values of γ̄ varied
in the range γ̄ ∈ (0.67, 0.76), as implemented in phenomenological

parameterizations. Similarly, the lower color band marked with label “1-
shower” stands for multiplicity distribution evaluated in single-shower
mechanism shown in the Fig. 1b. Right plot: large-multiplicity exten-
sion of the solid curve from the left plot (result of evaluations with (9)
using CGC parameterization)

4.4 Multiplicity dependence

The J/ψ production accompanied by two parton showers
occurs in the events with larger multiplicity than the average
multiplicity n̄ in the inclusive hadron production [22,26].
The mechanism suggested in this paper provides a natural
explanation of this enhancement. The cross-section includes
contributions of additional parton shower as shown in Fig. 6a,
b, which enhances the observed multiplicity. Technically, the
dependence on multiplicityn of the produced particles affects
the cross-section through the increase of the number of the
particles in a parton shower and change of the value of the
saturation scale, which is proportional to the density of pro-
duced gluons (see [39,113–115] for more details). Assuming
that for hadron-hadron collisions the area of interaction does
not depend on multiplicity, the saturation scale is linearly
proportional to the number of particles in the shower [116],

Q2
s (y, n) = Q2 (y, n̄)

n

n̄
, (38)

where n̄ is the average multiplicity at y∗ = 0 (n̄ ≈ 6.5 at
W = 13 TeV [117]). As we discussed earlier, the product
of dipole size on saturation scale

〈
r2
〉
Q2 (y, n̄) is close to

one, for this reason the multiplicity events with n/n̄ � 1

probe a deep saturation regime, where approximation (18)
is not valid, and we should use (9) with phenomenological
parameterization of the dipole amplitude N .

In the Fig. 7 we plot the self-normalized multiplicity
distribution evaluated with (9), using CGC parameteriza-
tion for the dipole amplitude and saturation scale adjusted
according to (38). We can see that agreement with experi-
mental data from ALICE [22] is reasonable. At sufficiently
small multiplicities, dNJ/ψ/dy is increasing as a function
of dNch/dη, however, as can be seen from the right plot,
at larger multiplicities in deep saturation regime it starts
decreasing. This behaviour might be understood from the
structure of the last line in (9): the dipole amplitude N sat-
urates (approaches asymptotically a constant) [118], for this

reason the difference
[
N
(
y; 
r+
r ′

2 , 0
)

− N
(
y; 
r−
r ′

2 , 0
)]2

gets suppressed. For the sake of completeness in the left panel
of the Fig. 7 we also plotted the ratio evaluated with the sim-
plified parameterization (15). Taking into account that con-
tributions of left and right diagrams in the Fig. 6 contribute

with relative weights ∼ (
Q2

s (y, n)
)2γ̄

and ∼ (
Q2

s (y, n)
)γ̄

respectively, we may obtain for the self-normalized multi-
plicity dependence of contribution in Fig. 6 a simple expres-
sion
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dσJ/�

dy

∣
∣∣
fixed n

〈 dσJ/�

dy 〉
∣
∣∣
sum over n

= 1

1 + κ

(
κ
(n
n̄

)γ̄ +
(n
n̄

)2 γ̄
)

(39)

where the coefficient κ = (
Q2

s (Y − y) /Q2
s (y)

)γ̄ ≈
eγ̄ λ(Y−2y) reflects the relative suppression of the contribu-
tion of the right diagram in the Fig. 6 with respect to the left
diagram for different rapidities (at central rapidities used for
comparison with data κ ≈ 1). While the LO CGC/saturation
predicts a value γ̄ ≈ 0.63 , the phenomenological fits
[106,108] favor slightly higher values of γ̄ , for this reason we
varied this parameter in the range γ̄ ∈ (0.67, 0.76) . We also
plotted the estimates of single-shower mechanism shown in
the right part of the Fig. 1. Within model uncertainty, we can
see that the experimental data support the main hypothesis
of the paper that the J/ψ production accompanied by the
production of two parton showers gives a significant contri-
bution.

5 Conclusions

In this paper we analyzed in the CGC/saturation framework
the J/ψ hadroproduction, accompanied by production of two
parton showers. We demonstrated that this mechanism gives
a large contribution to the total cross section of J/ψ produc-
tion, as well as to the transverse momenta and multiplicity
distribution of produced J/ψ . The experimental data [22]
on multiplicity distributions of produced J/ψ seem to favor
this hypothesis (compared to conventional mechanisms esti-
mated in the CGC/saturation approach). This mechanism has
no suppression of the order of ᾱS at high energies compared
to one parton shower contribution. We show that it alone can
describe the shape of the pT - and rapidity dependence of
the cross section. As we commented in detail in Sect. 5, our
results are approximately twice larger than similar evaluation
of Ref. [38] and for this reason give a significant contribu-
tion to the experimental data. However, inherent uncertain-
ties of the CGC/saturation approach preclude more precise
estimates of its fraction. Since the main contribution to the
cross section of this process stems from the vicinity of the
saturation scale, the behaviour of the scattering amplitude in
this region is largely under theoretical control, and thus has
minor dependence on phenomenological parameterizations
of the dipole amplitude.

We believe that our studies will bring attention to the con-
tribution of multiparton densities in production of J/ψ .
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Appendix A: Evaluation of the factor I
(
p1,T , p2,T

)

In this section we would like to comment briefly the eval-
uation of the function I

(
kT , qT

)
in (3) in the light cone

perturbative QCD [39] (Fig. 8).
We choose the polarization vectors of gluons ελ

μ(p) in the
light-cone gauge as

εα
μ(p) =

(
0,

2 εα⊥ · pT
η · p , εα⊥

)
; η = (0, 1, 0, 0) and

ε±
⊥ = 1√

2
(±1, i) (A1)

so according to the general rules of light cone perturbation
theory (LCPT) [39,86] the wave function of the Q̄Q pair after
interaction with a pair of gluons with momenta (y1,2, p1,2; T )
is given by

�(1,1)
(
qT , z; p1,T , y1; p2,T , y2

)

= g2λaλb
p1,T · εα

1

p2
1,T

p2,T · εα
2

p2
2,T

×
(

�g (lT , z) − �g
(
lT + p1,T , z

)

−�g
(
lT + p2,T , z

)

+�g
(
lT + p1,T + p2,T , z

) )
(A2)

where λa is the Gell–Mann matrix, εα is the polarization
vector of the gluon with the helicity α, and �g (lT , z) is
the wave function of Q̄Q pair formed after gluon splitting
into quark–antiquark pair with transverse momentum lT and
light-cone fraction z.

(y , p   )
2 2,T

(y, p   )
1 1,T

D1 D2 D3

(y, p )
T

l

− l

T

T

Fig. 8 The diagram for I
(
p1,T , p2,T

)
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In the coordinate space the convolution of (A2) with the
wave function of J/ψ yields

I
(
p1,T , p2,T

) =
∫ 1

0
dz

∫
d2r

〈
�g (r, z) �J/� (r, z)

〉

×e− 1
2 qT ·r

(
1 − ei p1,T ·r

)(
1 − ei p2,T ·r

)

(A3)

which agrees with (3) if we change notations of momenta to
p1,2 T = qT

2 ± kT . In view of the heavy mass of the charm
quark, in what follows we will use leading order perturbative
results for the gluon wave functions �g , as well as phe-
nomenological parameterization of the J/ψ wave function
available from the literature [97], so the convolution of the
two objects explicitly takes the form

〈
�g (r, z) �J/� (r, z)

〉
T

= g

π
√

2 Nc

1

z(1 − z)

×
(
m2

c K0 (ε r) φT (r, z)

−
(
z2 + (1 − z)2

)
ε K1 (ε r) ∂rφT (r, z)

)
; (A4)

〈
�g (r, z) �J/� (r, z)

〉
L

= g

π
√

2 Nc
2pT z(1 − z) K0 (ε r)

×
(
mJ/�φL(r, z) + m2

c − ∇2
r

m J/� z (1 − z)
φL(r, z)

)
; (A5)

φT,L(r, z) = NT,L z(1 − z)

× exp

(
− m2

c R2

8 z (1 − z)
− 2 z (1 − z) r2

R2 + m2
c R2

2

)
;

ε2 = p2
T z (1 − z) + m2

c (A6)

AppendixB:Evolutionequation for thedouble gluonden-
sity

In Ref. [119] it is proven that the evolution equations for

all partonic densities ρ(n)
(
{
ri , 
bi }

)
are the linear BFKL

evolution equations. The non-linear corrections are essen-
tial for the scattering amplitude (see, for example, the
Balitsky–Kovchegov equation for dipole scattering ampli-
tude [49–51] with nuclei) but they do not give a con-
tribution to the evolution equation for multi-gluon densi-
ties. Referring our reader to Ref. [119] for the proof and
details, we present here the resulting evolution equation for

r2
1 r

2
2

∫
d2b ρ

(2)
A

(
x, 
r; x, 
r ′; 
bT

)
= ρ̃(2) (Y − Y0, 
r1, 
r2):

hadron hadron

(a) (b)

3P

y

0

y’

Fig. 9 Graphical illustration of the solution (B2). The diagram a with
the exchange of two BFKL Pomerons (denoted by wavy lines) corre-
sponds to the first term containing ρ̃

(2)
in (γ1, γ2); the diagram b which

includes the triple Pomeron vertex �3IP corresponds to the second term
containing ρ̃

(1)
in (γ1 + γ2). Helicoidal lines denote gluons

∂ ρ̃(2)(Y − Y0; 
r1, 
r2)

ᾱS ∂ Y
=

2∑

i=1

∫
d2r ′

2π

1

(
ri − 
r ′)2

×
{

2ρ̃(2)(Y − Y0; 
r ′, 
ri+1) − r2
1

r ′2 ρ̃(2)(Y − Y0; 
r1, 
r2)

}

+ ρ̃(1) (Y − Y0, 
r1 + 
r2) (B1)

where (
r1 + 
r2)
2 ∫ d2b ρ(1)

(
Y − Y0, 
r1 + 
r2, 
b

)
= ρ̃(1)

(Y − Y0, 
r1 + 
r2). The two terms in Eq. (B1) have clear phys-
ical meaning: the first one is the evolution of two parton
showers, while the second describes the production of two
gluon in one parton shower (see Fig. 9).

The solution takes the following form (see Ref. [37] and
references therein):

ρ(2) (Y, r1, Y, r2)

=
∫ ε+i∞

ε−i∞
dγ1

2π i

∫ ε+i∞

ε−i∞
dγ2

2π i
eγ1ξ1 + γ2ξ2

{
ρ̃

(2)
in (γ1, γ2) e

ᾱS (χ(γ1) +χ(γ2)) Y

︸ ︷︷ ︸
Fig. 9-a

+ h (γ1, γ2) ρ̃
(1)
in (γ1 + γ2)

∫ Y

0
dy′eᾱS (χ(γ1)+χ(γ2)) (Y−y′) + ᾱSχ(γ1+γ2) y′

︸ ︷︷ ︸
Fig. 9-b

}

(B2)

where [39–44] ξ1 = ln
(
r2

1

)
, ξ2 = ln

(
r2

2

)
and

χ (γ ) = 2ψ (1) − ψ (γ ) − ψ (1 − γ ) where

ψ(z) = d ln �(z)

dz
. (B3)

The functions ρ̃
(2)
in (γ1, γ2) and ρ̃

(1)
in (γ1 + γ2) are determined

by the initial condition for the two and one parton shower
productions (see Fig. 9). The explicit form of the function
h (γ1, γ2) can be found in Ref. [37]. Different contributions
in the solution (B2) might be visualized as shown in the Fig. 9.
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