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Abstract We consider the Szekeres universe with an inho-
mogeneous dust fluid and a homogeneous and isotropic ghost
matter source with equation of state pg = (γ − 1)ρg, where
γ is a constant. The field equations determine two fami-
lies of spacetimes which describe homogeneous Kantowski–
Sachs universes and inhomogeneous Friedmann universes.
The ghost field permits static and cyclic solutions to exist.
The stability of the Einstein static and cyclic solutions are
studied with a critical point analysis.

1 Introduction

One proposal to solve the flatness and the horizon problems
of our universe, that differs from the inflationary scenario [1],
is the cyclic cosmological model [2]. In the cyclic model, the
universe undergoes an endless series of cycles of expansion
and contraction, and the cosmic energy density and cosmic
temperature remain finitely defined at any transition between
expanding and contracting phases of the universe.

In the theory of general relativity cyclic universes can be
constructed in the presence of a ghost field [3]. Ghost fields
are exotic matter sources with negative energy density and
also can have a parameter for the equation of state w f = p/ρ
for pressure p and density ρ, such that w f < −1. There are
various applications of ghost fields in classical and quantum
cosmology [4–7] and it is interesting to note that the stability
of Einstein static universes changes in the presence of a ghost
field. More specifically, in [8] it was found that there exact
solutions which describe an oscillation around an Einstein
static solution for a closed Friedmann–Lemaître–Robertson–
Walker universe (FLRW) when a radiation-ghost field (w f =
1/3, ρ < 0) exists. More recently, the behaviour of cyclic
mixmaster universes was studied in [9,10] in the presence of
ghost fields.

a e-mail: j.d.barrow@damtp.cam.ac.uk
b e-mail: anpaliat@phys.uoa.gr

In this work, we study the existence of ghost fields in inho-
mogeneous dust universes [11] by assuming a “silent uni-
verse” [12] with dust and a radiation-like ghost matter source.
More specifically, we focus on the existence and stability of
Szekeres-like cyclic universes. Szekeres universes [13,14]
describe exact inhomogeneous solutions in general relativity
which does not admit any isometry [15]. These exact solu-
tions are categorized in two large families of spacetimes, the
inhomogeneous Kantowski–Sachs solutions and the inhomo-
geneous FLRW solutions. Various applications of the Szek-
eres universes can be found in [16–22]. A detailed analysis
of the conservation laws and the dynamics of the Szekeres
system was performed recently in [23,24]. The results of [23]
were applied in [25] to quantize the Szekeres system for the
first time.

A generalization of the Szekeres solutions in the presence
of a cosmological constant was presented in [26]; while the
inclusion of a fluid source with heat flow in Szekeres uni-
verses was made in [27]. Recently, the case of the Szekeres
inhomogeneous dust model with a homogeneous scalar field
was studied in [28]. In [28] it was found that there exists
only one family of solutions which describe inhomogeneous
universes and they generalise the FLRW family. By contrast,
the Szekeres family of solutions of Kantowski–Sachs type
describe spatially homogeneous universes when the ghost
field is added to the dust.

In the following, we consider the Szekeres system with a
dust fluid and a homogeneous ghost matter source with con-
stant parameter for the equation of state. We solve the gravi-
tational field equations analytically and we find that the two
families of solutions are those of homogeneous Kantowski–
Sachs and inhomogeneous FLRW spacetimes. These results
are similar to that of the Szekeres model with a homoge-
neous scalar field [28]. For the inhomogeneous FLRW-like
solution we are able to write the solution in a closed form.
More specifically, we find again that for a closed FLRW-like
universe there exists a periodic solution around a static uni-

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-019-6890-5&domain=pdf
mailto:j.d.barrow@damtp.cam.ac.uk
mailto:anpaliat@phys.uoa.gr


379 Page 2 of 8 Eur. Phys. J. C (2019) 79 :379

verse. Furthermore, from the stability analysis we find that
all the solutions in which the expansion rate θ changes sign
are unstable. We perform that analysis by studying the field
equations in dimensionless variables different from those of
the H -normalization [12].

The plan of the paper is as follows. In Sect. 2 we define
our cosmological model which is that of the Szekeres metric
with a homogeneous and isotropic ghost field with constant
parameter for the equation of state. The requirement of homo-
geneity for the ghost field provides a first constraint on the
unknown functions in the line element for the geometry of the
universe. In Sect. 3 we present the two families of spacetimes
which describe the solutions of the field equations. The sta-
bility of the cyclic solutions is presented in Sect. 4. Finally, in
Sect. 5 we discuss our results and we draw our conclusions.

2 Szekeres universes with dust and an isotropic ghost
field

In the context of general relativity we consider the action
integral of the field equations to be

S =
∫

d4x
√−gR +

∫
d4x

√−gLm +
∫

d4x
√−gLg,

(1)

where Lm is the Lagrangian density of a pressureless fluid
term and LG describes an isotropic and homogeneous ghost
ideal gas.

The Einstein field equations are

Gμν = T (m)
μν + T (g)

μν (2)

in which

Tμν(m) = − 1

2
√−g

∂
(√−gLm

)
∂gμν

and Tμν(g)

= − 1

2
√−g

∂
(√−gLg

)
∂gμν

. (3)

where the Bianchi identity gives
(
Tμν(m) + Tμν(g)

)
;ν = 0.

Furthermore, by assuming that the two matter sources (dust
and ghost field) are minimally coupled, we end up with two
separate conservation equations:
(
Tμν(m)

)
;ν = 0 ,

(
Tμν(g)

)
;ν = 0. (4)

For the background metric, we consider the following line
element introduced by Szekeres [13]:

ds2 = −dt2 + e2Adr2 + e2B
(
dy2 + dz2

)
, (5)

where functions of A = A (t, r, y, z) and B = B (t, r, y, z)
are solutions of the Einstein’s field equations (2).

In terms of 1 + 3 decomposition for the fluid sources we
have

T (m)
μν = ρm (t, r, y, z) uμuν ,

T (g)
μν = ρg (t) uμuν + pg (t) hμν, (6)

where uμ = δ
μ
t is the comoving 4-velocity and hμν = gμν +

uμuν is the projective tensor, ρm is the inhomogeneous dust
density, and for the homogeneous ghost field we set pg (t) =
(γ − 1) ρg (t) .Both fluids share the same 4-velocity.

By substituting (6) into (4), we find

∂ρm (t, r, y, z)

∂t
+

(
∂A (t, r, y, z)

∂t

+2
∂B (t, r, y, z)

∂t

)
ρm (t, r, y, z) = 0, (7)

∂ρg (t)

∂t
+ γ

(
∂A (t, r, y, z)

∂t
+ 2

∂B (t, r, y, z)

∂t

)
ρg (t) = 0

(8)

which implies [28]:

exp(A(t, r, y, z)) = a(t) exp(F(r, y, z) − 2B(t, r, y, z)).

(9)

We proceed now with the presentation of the possible solu-
tions for the Einstein field equations (2).

3 Analytic cyclic solutions

Szekeres spacetimes correspond to two families, the
Kantowski–Sachs family with ∂B

∂r = 0 and the FLRW fam-
ily in which ∂B

∂r �= 0. While in the Szekeres system the two
spacetimes are inhomogeneous and do not admit any isom-
etry, in [28] it was found that, if an isotropic scalar field is
added to the dust source then the Kantowski–Sachs family
of solutions must be spatially homogeneous, while an extra
constraint on the functional form of the spacetime appears
for the inhomogeneous FLRW family. In a similar way, the
same two families of solutions are determined for the model
considered here.

In particular, for the homogeneous Kantowski–Sachs fam-
ily, the line element (5) simplifies to

ds2 = −dt2 + a2 (t) dr2

+b2 (t)

(
dy2 + dz2

)
(
c1

(
(y − y0)

2 + (z − z0)
2) + c2

)2 , (10)

with c1, c2 constants, while the gravitational field equations
reduce to those of the Kantowski–Sachs spacetime with two
homogeneous perfect fluids [29] whose solution gives the
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Fig. 1 Numerical simulation of the total volume, V (t), volume expansion rate, θ (t), and shear anisotropy scalar, σ (t) , for the graviational
equations when γ = 4

3 ,
∣∣ρg0

∣∣ > ρm0 and K = 0, which corresponds to a Bianchi I universe

evolution of the scale factors1 a(t) and b(t). Moreover, the
spatial curvature K of the 2-dimensional line element ds2

(2) =
(c1((y − y0)

2 + (z − z0)
2)+ c2)

−2(dy2 + dz2) is calculated
to be2 K = 8c1c2.

The nonlinearity of the field equations prevents us from
finding closed-form solutions. However, for K = 0 (or in
the limit in which K

b2 → 0) under the transformation a =
u (τ ) v3 (τ ), b = v3 (τ ) , dt = ab2dτ the gravitational field
equations lead to

u (τ ) = u0e
u1τ , (11)

while v (τ) satisfies the two equations

6u1

v2

d

dτ

(
v2

)
+ 27

v2

(
dv

dτ

)2

= −
(
ρg0v

6e
2
3 u1τ + ρm0v

9eu1τ
)

, (12)

and

1

v2

(
dv

dτ

)2

− 1

ν

d2v

dt2 + 2

3
ρg0v

6e
2
3 u1τ + ρm0v

9eu1τ = 0,

(13)

where we have assumed γ = 4
3 for the ghost field. When we

perform the coordinate transformation, v (τ) = e− u1
9 τV (τ ),

the second-order differential equation (13) is simplified to

d2V

dτ 2 = 1

V

(
dV

dτ

)2

+ 2ρg0V 8 + ρm0V 11

18V
(14)

which does not admit any periodic solutions. More specifi-
cally, it admits the unique critical point, for ρg0 < 0, Vc =(

2|ρg0|
r0

) 1
3
, which is a source point and describes an Einstein

static universe. Now, in the case where u1 = 0, we have

1 Note that in the case of homogeneous perfect fluids, for the line ele-
ment 10 the conservation equations (7)–(8) give ρm(t) = ρm0a−1b−2

and ρg = ρg0a−γ b−2γ , in which ρmo and ρgo are constants of integra-
tion.
2 When K = 0, the line element (10) describes the homogeneous
Bianchi I spacetime, while, when K > 0 , the line element (10) is
that of the Bianchi III spacetime.

a (τ ) = v (τ) so the Bianchi I spacetime reduces to the spa-
tially flat homogeneous FLRW universe.

In Fig. 1 the qualitative time-evolution of the volume
V (t), the expansion rate θ (t) , and the shear σ (t) are pre-
sented following a numerical simulation of the field equations
for K = 0, and

∣∣ρg0
∣∣ > ρm0.

In the following section we find that solutions with volume
expansion turning points, where θ (t0) = 0 , exist for K < 0,

but for different values of the barotropic parameter γ .
The second family of the Szekeres solutions is that of

the inhomogeneous FLRW-like spacetimes, where the line
element is given by the expression [28]

ds2 = −dt2 + a2 (t)

((
∂C (r, y, z)

∂r

)2

dr2

+ e2C(r,y,z)
(
dy2 + dz2

) )
. (15)

The spatial function C (r, y, z) is given by the expression

C (r, y, z) = − ln
(
γ1 (r)

(
(y − γ2 (r))2 + (z − γ3 (r))2

)

+ γ4 (r)) , (16)

where two of the four arbitrary functions, γ1 (r) → γ4 (r) ,

are related to the spatial curvature, K , by

K = 8γ1 (r) γ4 (r) . (17)

It is important to mention here that K is a constant and not
a function of r as it is in the case of the Szekeres space-
times. This difference arises because of the existence of
the second (homogeneous ghost) fluid source. Moreover,
the evolution of scale factor, a (t) , is described by Fried-
mann’s equations with two homogeneous perfect fluids; its
general analytic solution is expressed in terms of elliptic
integrals.

However, in the particular case for which ρg describes a
radiation ghost field, i.e., γ = 4

3 , the exact form of the scale
factor is given by the following simple expression [8,9]
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a (τ )= ρm0

6k
+

√(ρm0

6k

)2−
∣∣ρg0

∣∣
3k

sin
(√

K τ
)

for K �= 0,

(18)

or by

a (τ ) =
∣∣ρg0

∣∣
ρm0

+ ρm0

12
τ 2 for K = 0, (19)

where τ is the conformal time defined by dt = a (τ ) dτ . The
scale factor in K = 0 solution increases towards a power law,

with a minimum as τ → 0 at a (0) = |ρg0|
ρm0

. For zero spatial

curvature the scale factor has a minimum at a(k=0)
min = |ρg0|

ρm0
.

For positive spatial curvature, (K = 1), the solution (18) is
real when (ρm0)

2 > 12
∣∣ρg0

∣∣ and it is also a periodic solution
with minimum and maximum of a(τ ) and a(t) at

a(k=1)
min = 1

6

(
ρm0 −

√
ρ2
m0 − 12

∣∣ρg0
∣∣
)

,

a(k=1)
max = 1

6

(
ρm0 +

√
ρ2
m0 − 12

∣∣ρg0
∣∣
)

, (20)

and the scale factor can be written as [8]

a(k=1) (τ ) = 1

2

[(
a(k=1)

max + a(k=1)
min

)

+
(
a(k=1)

max − a(k=1)
min

)
sin (τ )

]
(21)

so we can see that the scale factor oscillates around the
static solution a(k=1) (0) =

(
a(k=1)

max + a(k=1)
min

)
with arbi-

trary amplitude. Hence these solutions show the stability of
the Einstein static universe to these bounded oscillations but
they only occur when a ghost field is present.

Note that the quantities a(k=1)
max and a(k=1)

min are not spatially
varying because they depend on the constant quantities ρm0

and
∣∣ρg0

∣∣.
Finally, for K = −1, solution (18) is real if and only if

ρm0 < 12
∣∣ρg0

∣∣ and the scale factor then simplifies to

a (τ ) = ρm0

6
+

√∣∣ρg0
∣∣

3
−

(ρm0

6

)2
sinh (τ ) , (22)

which increases exponentially as τ → ∞.
We continue our analysis by studying the stability of these

particular solutions with emphasis on the cyclic solutions.

4 Stability of the cyclic solutions

We have seen that the addition of the ghost field to the Szek-
eres universes can create new cyclic solutions, or solutions in
which the volume expansion rate, θ (t) , can go to zero and
change sign. In this section we perform a dynamical analysis

of the kinematic quantities for the gravitational field equa-
tions. Here, the solutions with θ = 0 appear and we are able
to study their stability.

In terms of the kinematic quantities θ, σ, E , ρm and3

ρg, the Szekeres field equations (2) are expressed as follows
[30,31]

dρm
dt

+ θρ = 0, (23)

dρg

dt
+ γρgθ = 0 (24)

dθ

dt
+ θ2

3
+ 6σ 2 + 1

2
ρm + (3γ − 2)

2
ργ = 0, (25)

dσ

dt
− σ 2 + 2

3
θσ + E = 0, (26)

dE
dt

+ 3Eσ + θE +
(

1

2
ρm + γ

2
ρg

)
σ = 0, (27)

θ2

3
− 3σ 2 +

(3)R

2
− ρm − ρg = 0, (28)

where (3)R denotes the curvature of the three-dimensional
hypersurfaces.

We proceed by choosing the new dimensionless variables
[32], ωm, ωr and ωR defined via

ρm = 1

3
ωm

(
1 + θ2

)
, ρr = 1

3
ωr

(
1 + θ2

)
,

(3)R = 2

3
ωR

(
1 + θ2

)
(29)

and β, E and h by

σ = 1√
3
β
√

1 + θ2 , ε = 1

3
E

(
1 + θ2

)
,

h2 =
(

θ√
1 + θ2

)2

, (30)

so the gravitational field equations become an autonomous
system:

dωm

dζ
= 1

3
hωm

(
2h2 + 12β2 + ωm + 2ωg − 3

)
, (31)

dωr

dζ
= 1

3
hωr

(
2h2 + 12β2 + ωm + 2ωg − 3γ

)
, (32)

dβ

dζ
= 1

6
√

3

[
β

(
6β + √

3h
(

2h2 − 4

+12β2 + ωm + 2ωg

))
− 6ε

]
, (33)

dε

dζ
= 1

6

[
4h3ε + 2hε

(
12β2 + ωm + 2ωg − 3

)

−√
3β

(
6ε + ωm + ωg

)]
, (34)

3 Here, σ denotes the shear scalar and E is the scalar for the electric
part of the Weyl tensor.
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dh

dζ
= 1

6

(
h2 − 1

) (
2h2 + 12β2 + ωm + 2ωg

)
, (35)

and there is a first integral

ωR = ωm + ωg + 3β2 − h2, (36)

where the new time variable, ζ , is defined as dt =(√
1 + θ2

)
dζ.

This normalization of the variables differs from the usual
H -normalization [30,33] because now it is possible to deter-
mine critical points also in the surface where θ = 0, where
h = 0. Furthermore, parameters ωm , ωg and ωR are related
to the familiar energy-density parameters �m, �g and �R

as follows:

ωm = �mh
2 , ωg = �gh

2 and ωr = �R h2 . (37)

We are interested in the critical points for the system
(31)–(35) when θ is zero. They can be easily computed:

P1 : (
h, β, ε, ωm, ωg

)

=
(

0, β, β2, 12
(γ − 1)

2 − γ
β2,− 6β2

2 − γ

)
(38)

and

P2 : (
h, β, ε, ωm, ωg

) =
(

0, 0, 0, ωm,−ωm

2

)
. (39)

These points P1 and P2 describe Einstein static universes.
However, in addition to those two critical points there is

a family of critical points where h2 = 1. These correspond
to the Szekeres universes when ωg = 0 and to the Szekeres-
Szafron universes [14] when ωm = 0. Moreover, we find that
there is no critical point where ωmωg �= 0.

Now we discuss the stability and the physical parameters
of the points P1 and P2.

a. At point P1 the anisotropic parameter β is not a con-
straint, which means that P1 describes a surface of critical
points on the phase-space. Since β is unconstrained, point P1

can describe solutions in the Kantowski–Sachs family and in

the FLRW-like family. From the algebraic equation (36), we
can derive the parameter ωR , namely,

ωR = 9β2

2 − γ

(
γ − 4

3

)
. (40)

Hence, the final geometry of the solution at P1 depends upon
the equation of state parameter,γ , for the ghost field, ρg .
If we assume that β �= 0, then for γ = 4

3 the solution
at point P1 describes a Bianchi I spacetime, for γ > 4

3 ,
the geometry is that of Bianchi III, while, when γ < 4

3 , it
follows that ωR < 0, which means that the (3)R < 0 and
the solution at point P1 describes a Kantowski–Sachs uni-
verse. Furthermore, at the special limit where β = 0, P1

describes the Minkowski spacetime. We study the stabil-
ity of the solution at P1 in the four-dimensional subspace{
β, ε, ωm, ωg

}
when h → 0. We find that there exists an

eigenvalue, positive real-valued, for the matrix which defines
the linearized system. Therefore, the solution at P1 is unsta-
ble in the 4-dimensional subspace

{
β, ε, ωm, ωg

}
and conse-

quently also in the 5-dimensional space in which the dynami-
cal system evolves. Two-dimensional phase-space diagrams
are presented in Figs. 2, 3, 4 and 5, from which it is clear
that P1 describes an unstable Einstein static solution. More-
over, from the phase-space diagrams we observe that unsta-
ble oscillatory behaviours exist around P1. The figures are
for γ = 4

3 , Figs. 2 and 3 are in the surface ωm − h, ωg − h,
respectively, Fig. 4 is in the surface β − ε and vectors in Fig.
5 are on the surface β − h.

b. The solution at point P2 describes an isotropic static
universe because β = ε = 0, and more specifically it is the
inhomogeneous FLRW space with positive spatial curvature,
i.e., ωR = −ωg . We remark that P2, like point P1, is actually
a surface – a family of solutions where ωm = −2ωg but
with ωR = ωm

2 , which means that the spatial 3-curvature is
positive. In order to study the stability of the solution we
calculate the eigenvalues of the linearized system and they
are

Fig. 2 Phase-space diagram for the dynamical system (31)–(35) in the ωm − h surface and for three different values of β, γ = 4
3 and ωg, as given

by the point P1 The middle figure is for β = 0, the left figure for β < 0 and the right figure for β > 0
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Fig. 3 Phase-space diagram for the dynamical system (31)–(35) on the ωg −h surface, for γ = 4
3 , ωm = 12 (γ−1)

2−γ
β2 and for three different values

of β. The middle figure is for β = 0, the left figure for β < 0 and the right figure for β > 0.

Fig. 4 Phase-space diagram for the dynamical system (31)–(35) on the ε − h surface, for γ = 4
3 ,

(
ωm , ωg

) =
(

12 (γ−1)
2−γ

β2,− 6β2

2−γ

)
and for three

different values of β. The middle figure is for β = 0, the left figure for β < 0 and the right figure for β > 0.

Fig. 5 Phase-space diagram for the dynamical system (31)–(35) on the β − ε surface, for γ = 4
3 ,

(
ωm , ωg

) =
(

12 (γ−1)
2−γ

β2,− 6β2

2−γ

)
and for three

different values of h around the h (P1) = 0 value

e1 = 0 , e±
2 = ±

√
γωg

3
, e±

3 = ±
√

(2 − γ )
(−ωg

)
6

.

Hence, there exists always a positive eigenvalue and so
we can infer that the solution at P2 is unstable. However,

one of the eigenvalues has nonzero imaginary part (because
ωm = −2ωg) which means that periodic behaviour exists.
In particular the imaginary eigenvalues are in the ωg − h
surface, and indeed periodic behaviour is observed in Fig. 6.
This means that small perturbations around P2 in the ωg − h
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Fig. 6 Phase-space diagram for the dynamical system (31)–(35) in the ωg − h surface for γ = 4
3 , β = 0 and for three different values of ωm

Fig. 7 Phase-space diagram for the dynamical system (31)–(35) in the ωm − h surface, for γ = 4
3 , β = 0 and for three different values of ωg

Fig. 8 Phase-space diagram for the dynamical system (31)–(35) in the β − h surface for γ = 4
3 , ωm = −2ωr , ωr < − 1

2 and for three different
values of ε

surface give a behaviour similar to that of the solution (21).
In Figs. 7 and 8 the phase-space diagrams in the ωm − h and
β − h surfaces are presented, respectively.

5 Conclusions

We have considered the Szekeres dust universe with an addi-
tional homogeneous and isotropic ghost field. The equation

of state parameter for the ghost field was assumed to be
pg = (γ − 1) ρg and ρg < 0. We were able to simplify
the gravitational field equations and determine the existence
of two possible families of solutions. Unlike in the absence
of the ghost field, the first family of solutions describes spa-
tially homogeneous Kantowski–Sachs universes, while the
second family of solutions describes inhomogeneous FLRW-
like universes. The specific forms of the spacetimes are simi-
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lar to those determined in the case of an homogeneous scalar
field and dust in the Szekeres metrics [28]. However, the exis-
tence of the ghost field produces new possible behaviours for
the scale factors of these universes. Specifically, it is possi-
ble to have Einstein-static solutions in the Kantowski–Sachs
family while a cyclic solution was found analytically for the
FLRW-like family of spacetimes.

By studying the critical points of the gravitational field
equations expressed in terms of the kinematic quantities we
have found two points which describe Einstein static solu-
tions, points P1 and P2, which are sources. More specifi-
cally, P1 and P2 actually describe surfaces in the dynam-
ical phase-space: P1 exists for both of the families while
P2 describes an Einstein static solution in the FLRW fam-
ily of solutions. While the Einstein solutions are unstable,
from the numerical simulations it is easy to observe that for
specific initial conditions around the critical points cyclic
behaviour appears which is agreement with the cyclic solu-
tion determined analytically. These are the first studies, via
exact solutions, of inhomogeneous oscillating universes. We
have not introduced dissipative processes but entropy pro-
duction could be introduced in order to study the evolution
of cycle size and length as the universe evolves through suc-
cessive maxima [9,10,34,35].

Acknowledgements JDB is supported by the Science and Technology
Facilities Council (STFC) of the United Kingdom. AP acknowledges
financial supported of FONDECYT Grant no. 3160121.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: Data sharing
not applicable to this article as no datasets were generated or analysed
during the current study.]

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

References

1. A. Guth, Phys. Rev. D 23, 347 (1981)
2. P.J. Steinhardt, N. Turok, Science 296, 1436 (2002)

3. G.W. Gibbons. arXiv:hep-th/0302199
4. S.V. Sushkov, S.-W. Kim, Gen. Relat. Gravit. 36, 1671 (2004)
5. J.D. Barrow, D. Kimberly, J. Magueijo, Class. Quant. Gravit. 21,

4289 (2004)
6. C. Gao, Y. Lu, Y.-L. Shen, Gen. Relat. Gravit. 46, 1791 (2014)
7. M.P. Dabrowski, C. Kiefer, B. Sandhoefer, Phys. Rev. D 74, 044022

(2006)
8. J.D. Barrow, C.G. Tsagas, Class. Quant. Gravit. 26, 195003 (2009)
9. J.D. Barrow, C. Ganguly, Phys. Rev. D 95, 083515 (2017)

10. C. Ganguly, J.D. Barrow, Phys. Rev. D 96, 123534 (2017)
11. K. Bolejko, M.-N. Célérier, A. Krasinski, Class. Quant. Gravit. 28,

164002 (2011)
12. M. Bruni, S. Matarrese, O. Pantano, Astrophys. J. 445, 958 (1995)
13. P. Szekeres, Commun. Math. Phys. 41, 55 (1975)
14. D.A. Szafron, J. Math. Phys. 18, 1673 (1977)
15. N. Mustapha, G.F.R. Ellis, H. van Elst, M. Marklund, Class. Quan-

tum Gravit. 17, 3135 (2000)
16. B.K. Berger, D.M. Eardley, D.W. Olson, Phys. Rev. D 16, 3086

(1977)
17. N. Tomimura, Il Nuovo Cimento B 44, 372 (1978)
18. G.M. Covarrubias, J. Phys. A Math. Gen. 13, 3023 (1980)
19. P.S. Joshi, A. Królak, Class. Quantum Gravit. 13, 3069 (1996)
20. W.B. Bonnor, N. Tomimura, Mon. Not. R. Astron. Soc. 175, 85

(1976)
21. M. Ishak, A. Peel, Phys. Rev. D 85, 083502 (2012)
22. R.A. Sussman, J.C. Hidalgo, I.D. Gaspar, G. German, Phys. Rev.

D 95, 064033 (2017)
23. A. Paliathanasis, P.G.L. Leach, Phys. Lett. A 381, 1277 (2017)
24. A. Gierzkieiwicz, Z.A. Gold, Phys. Lett. A 382, 2085 (2018)
25. A. Paliathanasis, A. Zampeli, T. Christodoulakis, M.T. Mustafa,

Class. Quant. Gravit. 35, 125005 (2018)
26. J.D. Barrow, J. Stein-Schabes, Phys. Lett. A 103, 315 (1984)
27. J.A. Sales de Lima, Phys. Lett. A 116, 210 (1986)
28. J.D. Barrow, A. Paliathanasis, EPJC 78, 767 (2018)
29. D. Lorenz, J. Phys. A Math. Gen. 16, 575 (1983)
30. J. Wainwright, G.F.R. Ellis, Dynamical Systems in Cosmology

(Cambridge University Press, New York, 1997)
31. H. van Elst, G.F.R. Ellis, Class. Quant. Gravit. 13, 1159 (1996)
32. A. Giacomini, S. Jamal, G. Leon, A. Paliathanasis, J. Saveedra,

Phys. Rev. D 95, 124060 (2017)
33. E.J. Copeland, A.R. Liddle, D. Wands, Phys. Rev. D 57, 4686

(1998)
34. R.C. Tolman, Relativity, Thermodynamics and Cosmology, Section

174 (Clarendon Press, Oxford, 1934)
35. J.D. Barrow, M. Dabrowski, Mon. Not. R. Atron. Soc. 275, 850

(1995)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/hep-th/0302199

	Cyclic Szekeres universes
	Abstract 
	1 Introduction
	2 Szekeres universes with dust and an isotropic ghost field
	3 Analytic cyclic solutions
	4 Stability of the cyclic solutions
	5 Conclusions
	Acknowledgements
	References




