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Abstract We investigate spherically symmetric, steady
state, adiabatic accretion onto a Tangherlini–Reissner–Nords-
trom black hole in arbitrary dimensions by using D-
dimensional general relativity. We obtain basic equations for
accretion and determine analytically the critical points, the
critical fluid velocity, and the critical sound speed. We lay
emphasis on the condition under which the accretion is pos-
sible. This condition constrains the ratio of mass to charge
in a narrow limit, which is independent of dimension for
large dimension. This condition may challenge the validity
of the cosmic censorship conjecture since a naked singularity
is eventually produced as the magnitude of charge increases
compared to the mass of black hole.

1 Introduction

The extra dimension in physics is especially important, for
example, the higher dimensions are needed for consistency
in string theory. It believed that the physics of higher dimen-
sional black holes can be markedly different and much richer
than in four dimensions. The accretion process could pro-
vide possible way to detect the effects of higher dimensions.
Accretion of matter onto a black hole is also the most likely
scenario to explain the high energy output from active galac-
tic nuclei and quasars, which is an important phenomenon of
long-standing interest to astrophysicists. Pressure-free gas
dragged onto a massive central object was first considered
in [1,2], which was generalized to the case of the spherical
accretion of adiabatic fluids onto astrophysical objects [3].
In the framework of general relativity the steady-state spher-
ically symmetric flow of matter into or out of a condensed
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object was examined by Michel [4]. Since then accretion has
been an extensively studied topic in the literature, [4–21].
Quantum gravity effects of accretion onto a Schwarzschild
black hole were considered in the context of asymptoti-
cally safe scenario [22]. An exact solution was obtained for
dust shells collapsing towards a black hole [23,24]. Ana-
lytic solution for accretion of a gaseous medium with a adi-
abatic equation of state (P = ρ) was obtained for a moving
Schwarzschild black hole and a moving Kerr back hole [25]
and a moving Reissner–Nordström Black Hole [26].

Here we will investigate the effects of higher dimen-
sion on accretion. An interesting study of higher dimen-
sional accretion onto TeV black holes was discussed in
the Newtonian limit [27]. The accretion of phantom mat-
ter onto 5-dimensional charged black holes was studied in
[28]. The accretion of phantom energy onto 5-dimensional
extreme Einstein–Maxwell–Gauss–Bonnet black hole was
investigated in [29]. Matter onto a Schwarzschild black hole
in arbitrary dimensions was analyzed in [30]. Accretions
of dark matter and dark energy onto (n + 2)-dimensional
Schwarzschild black hole and Morris–Thorne wormhole was
considered in [31]. Steady-state polytropic fluid accretion
onto a charged higher-dimensional black hole was dealt in
[32], but the conditions under which the accretion is possible
has not yet been discussed. In this paper we will reconsider
the problem of matter accreting onto a Tangherlini–Reissner–
Nordstrom in arbitrary dimensions, focusing on the condi-
tions under which the accretion will happen. The gravita-
tional model used here is D-dimensional general relativity.
We find the conditions give constraints on the ratio of mass
to charge.

The paper is organized as follows. In next section, we will
present the fundamental equations for matter accreting onto
a Tangherlini–Reissner–Nordstrom black hole. In Sect. 3,
we will consider the critical points and the conditions the
critical points must fulfil. Finally, we will briefly summarize
and discuss our results.
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2 Basic equations for accretion

We consider the Tangherlini–Reissner–Nordstrom black hole
which is a D-dimensional nonrotating charged black hole and
its geometry is represented by the following line element [33]

ds2 = −g(r)dt2 + g−1(r)dr2 + r2d�2
D−2, (1)

where the mass M is measured at infinity and

g(r) =
[

1 −
(rg

r

)D−3 +
(rQ

r

)2(D−3)
]

, (2)

with

rg =
[

2kM

(D − 2)�D−2

] 1
(D−3)

, (3)

rQ =
[

kQ2

(D − 2)(D − 3)�2
D−2

] 1
2(D−3)

, (4)

where k = 8πG. For convenience, we introduce the gravi-
tational radius rg and the charge radius rQ in D-dimensional
spacetime. We take the units c = G = 1 and use the comov-
ing coordinates xμ = (t, r, θ1, θ2, . . . , θD−2). �D−2 is an
unit (D-2)-dimensional sphere

�D−2 = 2π
D−1

2

�
( D−1

2

) ,

and d�2
D−2 is the line element on the sphere

d�2
D−2 = dθ2

1 +
D−2∑
n=2

(
n∏

m=2

sin2θm−1

)
dθ2

n .

The above metric (1) describes a static, unrotating, higher
dimensional charged black holes. If r2(D−3)

g < 4r2(D−3)
Q ,

the metric (1) has the naked singularity at r = 0, this situ-
ation is similar to the Reissner–Nordstrom solution in the
4-dimensional spacetime when rg < 2rQ. If r2(D−3)

g ≥
4r2(D−3)

Q , the metric (1) at

rH± ≡
[

1

2

(
r D−3

g ±
√
r2(D−3)

g − 4r2(D−3)
Q

)]1/(D−3)

has black hole horizons, this situation is also similar to the
Reissner–Nordstrom black hole if rg ≥ 2rQ .

We consider a static radial matter flow onto the
Tangherlini–Reissner–Nordstrom black hole with mass M .
the matter is approximated as an ideal flow described by the
following energy-momentum tensor

T αβ = (ρ + p)uαuβ + pgαβ, (5)

where ρ is the fluid proper energy density and p is the fluid
proper pressure. The D-velocity of the fluid uα = dxα/ds
obeys the normalization condition uαuα = −1. In the mean-
time, we define the proper baryon numbers density n and then

baryon numbers flow Jα = nuα . Ignoring the self-gravity of
the flow, all of these quantities are measured in the flow’s
local inertial frame. Assuming no particles are generated or
destroyed, meaning the number of particles is conserved, we
have

Jα
;α = (nuα);α = 0, (6)

where ; a denotes the covariant derivative with respect to the
coordinate xα . The conservation of energy and momentum
is determined by

T αβ

;α = 0, (7)

We denote the radial component of the D-velocity as v(r) =
u1 = dr/ds. Since the normalization condition for uα and
the velocity component is zero for α > 1, one has

(u0)2 = υ2 + 1 − ( rg
r

)D−3 + ( rQ
r

)2(D−3)

[
1 − ( rg

r

)D−3 + ( rQ
r

)2(D−3)
]2 , (8)

In D-dimensional Tangherlini–Reissner–Nordstrom black
hole, the Eq. (6) can be rewritten as

1

r D−2

d

dr

(
r D−2nυ

)
= 0, (9)

For spherical symmetry and steady-state flow, the β = 0
component of Eq. (7) gives

1

r D−2

d

dr

[
r D−2 (ρ + p)

υ

√
1 −

(rg

r

)D−3 +
(rQ

r

)2(D−2) + υ2

]
= 0. (10)

After some calculations, the β = 1 component of Eq. (7) can
be simplified as

υ
dυ

dr
= −dp

dr

1 − ( rg
r

)D−3 + ( rQ
r

)2(D−3) + υ2

ρ + p

−D − 3

2

(
r D−3

g

r D−2 − 2r2(D−3)
Q

r2D−5

)
, (11)

These expressions generalize, to arbitrary dimensions D, the
results acquired in [7] for spherical accretion onto a Reissner–
Nordstrom black hole and can reduce to the results in 4-
dimension

1

r2

d

dr

(
r2nυ

)
= 0, (12)

1

r2

d

dr

[
r2(ρ + p)υ

(
1 − 2M

r
+ Q2

r2 + υ2
)1/2

]
= 0,

(13)

υ
dυ

dr
=−dp

dr

⎛
⎝1− 2M

r + Q2

r2 +υ2

ρ + p

⎞
⎠−

(
M

r2 − Q4

r3

)
. (14)
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Writing the continuity equation explicitly in the form of a
conservation equation, integrating equation (9) over (D −
1)-dimensional volume, and multiplying it with m which
denotes the mass of each gas particle, we have

Ṁ = 2π(D−1)/2

�( D−1
2 )

r D−2mnυ, (15)

where Ṁ is an integration constant which has dimensions of
mass per unit time, meaning it is the higher dimensional gen-
eralization of mass accretion rate. Combining Eqs. (9) and
(10) yields:

(
ρ + p

n

)2
[

1 −
(
rg

rc

)D−3

+
(
rQ

rc

)2(D−3)

+ υ2

]

=
(

ρ∞ + p∞
n∞

)2

, (16)

where the subscript “∞” denotes the corresponding asymp-
totic values at infinity, these values are usually used as the
initial values of the fluid. The Eqs. (15) and (16) are the
basic conservation equations for the material flow onto a
D-dimensional Tangherlini–Reissner–Nordstrom black hole
where the back-reaction of matter is ignored.

3 Analysis for the accretion

From the qualitative analysis of Eqs. (9) and (11), we can
calculate the rate of mass accretion. For the adiabatic flow,
there is no entropy generation, the mass-energy conservation
is given by

0 = Tds = d
(ρ

n

)
+ pd

(
1

n

)
, (17)

from which one can easily get the following relation

dρ

dn
= ρ + p

n
, (18)

Like in the four-dimension case, we can define the adiabatic
sound speed a as

a2 ≡ dp

dρ
= dp

dn

n

ρ + p
, (19)

where Eq. (18) has been used. For Tangherlini–Reissner–
Nordstrom black hole, the continuity equation (9) and the
momentum equation (11) can be rewritten as (similar calcu-
lating process see [12])

1

υ
υ ′ + 1

n
n′ = −D − 2

r
, (20)

υυ ′ +
[

1 −
(rg

r

)D−3 +
(rQ

r

)2(D−3) + υ2
]
a2

n
n′

= −D − 3

2

[
r D−3

g

r D−2 − 2r2(D−3)
Q

r2D−5

]
, (21)

where the prime (′) represents a derivative with respect to r .
From these equations we get the following system

υ ′ = N1

N
, (22)

n′ = −N2

N
, (23)

where

N1 = 1

n

{ [
1 −

(rg

r

)D−3 +
(rQ

r

)2(D−3) + υ2

]
(D − 2)

a2

r

− D − 3

2

[
r D−3

g

r D−2 − 2r2(D−3)
Q

r2D−5

]}
, (24)

N2 = 1

υ

{
(D − 2)

υ2

r
− D − 3

2

[
r D−3

g

r D−2 − 2r2(D−3)
Q

r2D−5

]}
, (25)

N =
υ2 −

[
1 − ( rg

r

)D−3 + ( rQ
r

)2(D−3) + υ2
]
a2

υn
, (26)

For r → +∞, we require that the fluid is subsonic, that is
v < a and the speed of sound is less than the speed of light,
that is a < 1, we have v2 � 1 the denominator (26) can be
simplified as

N ≈ υ2 − a2

υn
, (27)

meaning N > 0 for large r . At the outer horizon,
1 − (rg/r)D−3 + (rQ/r)2(D−3) = 0, one has

N = υ2(1 − a2)

υn
, (28)

Thinking of the causality constraint a2 < 1, we have N < 0,
therefore there must exist critical points rc at which N = 0.
The flow must pass through each critical point of spacetime,
but at these points the denominators on the right hand sides of
the Eqs. (22) and (23) are zero, their numerators N1 and N2

must also be zero to avoid discontinuities in the flow. These
equations determine the critical point

N1 = 1

nc

{[
1 −

(
rg

rc

)D−3

+
(
rQ

rc

)2(D−3)

+ υ2
c

]

(D − 2)
a2

c

rc
− D − 3

2

[
r D−3

g

r D−2
c

− 2r2(D−3)
Q

r2D−5
c

]}
= 0,

(29)

N2 = 1

υc

[
(D − 2)

υ2
c

rc
− D − 3

2

(
r D−3

g

r D−2
c

− 2r2(D−3)
Q

r2D−5
c

)]
= 0,

(30)

123



367 Page 4 of 6 Eur. Phys. J. C (2019) 79 :367

N =
υ2

c −
[

1 −
(
rg
rc

)D−3 +
(
rQ
rc

)2(D−3) + υ2
c

]
a2

c

υcnc
= 0, (31)

where ac ≡ a(rc), vc ≡ v(rc), etc. Through the Eqs. (30)
and (31), we get the critical radial velocity, the critical sound
speed, and the critical radius, respectively, as

υ2
c = 1

2

D − 3

D − 2

[(
rg

rc

)D−3

− 2

(
rQ

rc

)2(D−3)
]

, (32)

a2
c = υ2

c

1 −
(
rg
rc

)D−3 +
(
rQ
rc

)2(D−3) + υ2
c

, (33)

and

r D−3
c =

[(D − 1)a2
c + D − 3]r D−3

g ±
√

[(D − 1)a2
c + D − 3]2r2(D−3)

g − 16(D − 2)a2
c (a2

c + D − 3)r2(D−3)
Q

4(D − 2)a2
c

. (34)

where “+” corresponding the critical points lying out of the
event horizon, while “−” corresponding the critical points
lying in the black hole. The solutions of Eqs. (32) and (33)
must satisfy the conditions v2

c ≥ 0 and a2
c ≥ 0, that is

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

υ2
c = 1

2

D − 3

D − 2

[(
rg

rc

)D−3

− 2

(
rQ

rc

)2(D−3)
]

≥ 0,

a2
c = υ2

c

1 −
(
rg
rc

)D−3 +
(
rQ
rc

)2(D−3) + υ2
c

=
(D − 3)

[(
rg
rc

)D−3 − 2
(
rQ
rc

)2(D−3)
]

2(D − 2) − (D − 1)
(
rg
rc

)D−3 + 2
(
rQ
rc

)2(D−3)
≥ 0,

(35)

which can be reduced to

r D−3
g r D−3

c − 2r2(D−3)
Q ≥ 0, (36)

and

2(D − 2)r2(D−3)
c − (D − 1)r D−3

g r D−3
c + 2r2(D−3)

Q ≥ 0.

(37)

Inequality (37) can be factorized as

2(D − 2)r2(D−3)
c − (D − 1)r D−3

g r D−3
c + 2r2(D−3)

Q

= 2(D − 2)(r D−3
c − r D−3

c+ )(r D−3
c − r D−3

c− ) ≥ 0, (38)

where

r D−3
c±

=
(D − 1)r D−3

g ±
√

(D − 1)2r2(D−3)
g − 16(D − 2)r2(D−3)

Q

4(D − 2)
.

(39)

It is obvious that these two roots will be real value if
(D − 1)r2(D−3)

g − 16(D − 2)r2(D−3)
Q ≥ 0 which can also

be written as

r2(D−3)
g

r2(D−3)
Q

≥ 16(D − 2)

(D − 1)2 . (40)

Therefore r D−3
c± are positive and satisfy r D−3

c+ > r D−3
c− > 0.

In general, for 4r2(D−3)
Q ≤ r2(D−3)

g , the inner critical points

will lie between r D−3
H− ≤ r D−3

c ≤ r D−3
H+ , while the outer

critical points will satisfy r D−3
c ≥ r D−3

H+ . From (37),we can
get the critical points are located in two regions: (1) r D−3

c >

r D−3
c+ or (2) 0 < r D−3

c < r D−3
c− . In order to get the solution

of the critical point, we substitute r D−3
c± in (36). First we

consider case (1) r D−3
c > r D−3

c+ . Inserting r D−3
c+ , inequality

(36) gives

r D−3
g

√
(D − 1)r2(D−3)

g − 16(D − 2)r2(D−3)
Q

≥ 8(D − 2)r2(D−3)
Q − (D − 1)r2(D−3)

g . (41)

Since r D−3
g > 0, if 8(D− 2)r2(D−3)

Q − (D− 1)r2(D−3)
g < 0,

inequality (41) does not yield any physical solutions. So we
must have 8(D − 2)r2(D−3)

Q − (D − 1)r2(D−3)
g > 0, which

yields

r2(D−3)
g

r2(D−3)
Q

<
8(D − 2)

D − 1
. (42)

Squared (41) on both sides we obtain

r2(D−3)
g

r2(D−3)
Q

≥ 4. (43)

Combining the inequalities (40), (42) and (43) implies

4 ≤ r2(D−3)
g

r2(D−3)
Q

<
8(D − 2)

D − 1
. (44)

Thus, the accretion is allowed through the critical point r D−3
c+

if the inequality (44) is satisfied. Now we consider case (2),
0 < r D−3

c < r D−3
c− . Substituting r D−3

c− into (36) gives
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r D−3
g

√
(D − 1)r2(D−3)

g − 16(D − 2)r2(D−3)
Q

≤ (D − 1)r2(D−3)
g − 8(D − 2)r2(D−3)

Q . (45)

which is satisfied if

r2(D−3)
g

r2(D−3)
Q

>
8(D − 2)

D − 1
, (46)

and

r2(D−3)
g

r2(D−3)
Q

≤ 4. (47)

The inequalities (46) and (47) are mutually contradictory,
meaning that there is no solution for rc in case (2). So accre-
tion is not possible through rc−. This critical point yields the
ratio of mass to charge of the black hole in the range specified
by (44), which allows accretion onto the charged spherically
symmetric higher dimensional black holes. For D → +∞,

the inequality (44) reduces to 4 ≤ r2(D−3)
g

r2(D−3)
Q

< 8, which is

independent of the dimension. Since a naked singularity is
eventually produced as magnitude of charge increases com-
pared to mass of black hole, the inequality (44) may also
challenge the validity of the cosmic censorship conjecture.
We note here that using Q = 0 in the inequality (44) to derive
the condition for the Tangherlini black hole (D-dimensional
Schwarzschild black hole) can be misleading, one has rQ = 0
in this case and the inequality (44) can not held any longer,
since it is obtained by using the outer apparent horizon and
critical points, while Tangherlini black hole possesses unique
horizon and the critical point. For D = 4, however, the
inequality (44) reduce to the results obtained in [7]. A simi-
lar constrain appears in the discussion of pseudo-Newtonian
forces [34].

4 Conclusions and discussions

In this paper we formulated and solved the problem of
spherically symmetric, steady state, adiabatic accretion onto
a Tangherlini–Reissner–Nordstrom black hole in arbitrary
dimensions by using D-dimensional general relativity. We
obtained basic equations for accretion and determine analyt-
ically the critical points, the critical fluid velocity, the critical
sound speed, and subsequently the mass accretion rate. We
found that accretion is possible only through rc+ which yields
a limit on the ratio of mass to charge given by the inequality
(44). This inequality incorporates both extremal and non-
extremal higher dimension charged black holes. It predicts
the existence of large charges onto black holes, although no
such evidence has been successfully deduced from the astro-
physical observations, but it is consistently deduced by the D-
dimensional general relativity, as shown here. The inequality

(44) is independent of dimension for lager dimension. It may
challenge the validity of the cosmic censorship conjecture
since a naked singularity is eventually produced as magni-
tude of charge increases compared to mass of black hole if
r2(D−3)

g < 4r2(D−3)
Q . It is worth investigating whether this

analysis can be extended for a Kerr–Neumann black hole.
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