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Abstract In this note, we study the contributions from the
S-wave resonances, f0(980) and f0(1500), to the B0

s →
ψ(3770)π+π− decay by introducing the S-wave ππ distri-
bution amplitudes within the framework of perturbative QCD
approach. Both the resonant and the non-resonant contribu-
tions are contained in the scalar form factor in the S-wave
distribution amplitude �S

ππ . Since the vector charmonium
meson ψ(3770) is a S–D wave mixed state, we calculate the
branching ratios of S-wave and D-wave, respectively, and the
results indicate that f0(980) is the main contribution of the
considered decay, and the branching ratio of the ψ(2S) mode
is in good agreement with the experimental data. We also
take the S–D mixed effect into the B0

s → ψ(3686)π+π−
decay. Our calculations show that the branching ratio of
B0
s → ψ(3770)(ψ(3686))π+π− can be at the order of 10−5,

which can be tested by the running LHCb experiments.

1 Introduction

In the present decade, the B mesons’ three-body hadronic
decays have drawn a lot of attention on both the experimen-
tal and the theoretical sides, since they can test the standard
model (SM) and help us to have a better understanding of
the scheme of QCD dynamics. The three-body decays of
B mesons are more complicated than the two-body cases
because they include both resonant and non-resonant contri-
butions. We have two-gluon exchange in the decay amplitude
within our framework of theoretical calculation, which will
lead to a hard kernel that involves three bodies, and we may
introduce possible final-state interactions [1–4]. So just as
stated in Ref. [5], because of the interference between the
resonance and non-resonance, it is difficult to make a direct
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calculation of the resonance and non-resonance contributions
separately.

The Heavy Flavor Averaging Group [6] have collected lots
of world averages of measurements of B-hadron properties
from LHCb [7–14], Belle [15] and BaBar [16–18] and other
collaborations, in which the LHCb Collaboration have mea-
sured sizable direct CP asymmetries in kinematic regions.
Due to the progress of the experiments, three-body decays
have been analyzed by different methods, which were based
on symmetry principles and factorization theorems; how-
ever, the theoretical studies are still at an early stage. Many
authors have studied the three-body decays with improved
QCD factorization [19–27] and perturbative QCD (pQCD)
factorization approaches [28–39]. The contribution studies
within non-resonance have been performed by using a heavy
meson chiral perturbative theory approach in Refs. [5,27,40]
and in the references therein, and the resonance contributions
were treated using the isobar model [41] within the Breit–
Wigner formalism [42].

In the pQCD approach which is based on the kT fac-
torization theorem, the three-body decay can be simplified
into a two-body case by bringing in two-hadron distribution
amplitudes [43,44], which contain the information of both
resonance and non-resonance. The dominant contributions
come from the region where the pair of two light mesons
move parallel with an invariant mass below O(�̄MB), where
�̄ = MB − mb is the mass difference of the B meson and
b-quark. Therefore, one can express the typical pQCD factor-
ization formula of the B meson’s three-body decay amplitude
as [35,36]

A = H ⊗ φB ⊗ φh3 ⊗ φh1h2 , (1)

where the hard decay kernel H describes the contribution
from the region with only a one gluon exchange diagram at
leading order, which can be calculated in perturbation the-
ory. The terms φB , φh1h2 and φh3 , which can be extracted
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from experiment or calculated by several nonperturbative
approaches, and can be regarded as nonperturbative input,
are the distribution amplitude of the B meson, the h1h2 pair
and h3, respectively.

The B0
s → ψ(2S)π+π− decay was first observed by the

LHCb Collaboration [7]; the data was displayed based on
the integrated luminosity of 1 f b−1 in the pp collisions at
a center-of-mass energy of

√
s = 7 TeV. It is found that

f0(980) is the main source of the decay rate by a method
called the sPlot technique. The B0

s → ψ(3770)π+π− decay
has not been observed yet, so it is desirable to make a theo-
retical prediction for the branching ratios of this decay mode,
for testing the three-body decay’s mechanism and the mix-
ing scheme of ψ(3770) as well. In this work, we will calcu-
late the branching ratio of the quasi-two-body decay mode
B0
s → ψ(3770)π+π−. Since the vector charmonium meson

ψ(3770), the lowest-lying charmonium state just above the
DD̄ threshold, is mainly regarded as a S–D mixture, we
will take the S-wave and D-wave contribution into account,
respectively. Here, ψ(2S) is the first radially excited char-
monium meson, and the pure 1D state indicates the princi-
pal quantum number n = 1 and the orbital quantum number
l = 2. The S–D mixing angle θ can be obtained from the ratio
of the leptonic decay widths of ψ(3686) and ψ(3770) [45].
In Ref. [46], the authors make tentative calculations for dif-
ferent mixing solutions of the B meson exclusive decay
B → ψ(3770)K with the QCD factorization, and they
drew the conclusion that when taking account of higher-twist
effects and adopting the S–D mixing angle θ = −(12 ± 2)◦
(which the widely accepted value), the branching ratio of
the decay B → ψ(3770)K can fit the experimental data
well. Also, in Refs. [47–49], the authors provided two sets of
mixing schemes within the nonrelativistic potential model:
θ = −(12 ± 2)◦ or θ = (27 ± 2)◦. Here, the charmonium
mesons ψ(3686) and ψ(3770) may in a good approximation
be described as [47–50]

ψ(3686) = cos θ |cc̄(1D)〉 + sin θ |cc̄(2S)〉,
ψ(3770) = cos θ |cc̄(1D)〉 − sin θ |cc̄(2S)〉. (2)

The contents of this paper is as follows. After the intro-
duction, we describe the theoretical framework and the wave
function of the excited charmonium mesons ψ(2S) and
ψ(1D) in Sect. 2. In Sect. 3, we list the decay amplitude
of the considered decay modes. The numerical results and
analysis as regards the results we have got are presented in
Sect. 4. Finally we will finish this paper with a brief summary.

2 The theoretical framework and the wave function

For the quasi-two-body B0
s → ψ f0(→ π+π−) decays, the

relevant weak effective Hamiltonian can be written as [51]

(a) (b)

(c) (d)

Fig. 1 The lowest order Feynman diagrams for the B0
s → ψ f0(→

π+π−) decays

Heff = GF√
2

{
V ∗

cbVcs[C1(μ)O1(μ) + C2(μ)O2(μ)]

−V ∗
tbVts[

10∑
i=3

Ci (μ)Oi (μ)]
}

+ H.c., (3)

where V ∗
cbVcs and V ∗

tbVts are Cabibbo–Kobayashi–Maskawa
(CKM) factors, Oi (μ) is a local four-quark operator and
Ci (μ) is the corresponding Wilson coefficient.

It is convenient for us to choose the light-cone coordi-
nates for simplicity. In these coordinates, we choose the B0

s
meson at rest, and let the ππ meson pair and ψ(2S, 1D)

meson move along with the direction of n = (1, 0, 0�) and
v = (0, 1, 0�), respectively, and the Feynman diagrams are
described in Fig. 1. So the momenta of the B0

s (pB), ππ (p),
and ψ(2S, 1D) (p3) are written as

pB = MB0
s√

2
(1, 1, 0�),

p = MB0
s√

2
(1 − r2, η, 0�),

p3 = MB0
s√

2
(r2, 1 − η, 0�).

(4)

Meanwhile, the corresponding light quark’s momentum
in each meson reads as follows:

kB =
(

0,
MB0

s√
2
xB, kB�

)
,

k =
(MB0

s√
2
z(1 − r2), 0, k�

)
,

k3 =
(MB0

s√
2
r2x3,

MB0
s√

2
(1 − η)x3, k3�

)
,

(5)

where MB0
s

is the mass of B0
s , and r = Mψ

M
B0
s

is the cor-

responding mass ratio. Mψ denotes the ψ(2S, 1D) mesons

123



Eur. Phys. J. C (2019) 79 :370 Page 3 of 9 370

mass. We have the variable η = ω2/(M2
B0
s

− Mψ
2), where

the pion-pair invariant mass ω2 and its momentum p satisfy
the relation ω2 = p2 and p = p1 + p2. The quantities x1,
z, and x3 indicate the momentum fractions of the spectator
quark inside the meson; they are in the range of 0 ∼ 1. By
introducing the kinematic variables, ζ , of the pion pair, we
define ζ = p+

1 /p+ as the π+ meson momentum fraction;
the other component’s kinematic variables of the pion pair
can be expressed as

p−
1 = MB0

s√
2

(1 − ζ )η,

p+
2 = MB0

s√
2

(1 − ζ )(1 − r2), (6)

p−
2 = MB0

s√
2

ζη.

In our calculations, the hadron B0
s is usually treated as a

heavy–light system, and the wave function of which can be
found in Refs. [52–54]. We have

�B0
s

= i√
2Nc

( 
 pB + MB0
s
)γ5φBs (xB, bB), (7)

where the distribution amplitude (DA) φBs (xB, bB) of the B0
s

meson is written in the form mostly used, which is

φBs (xB, bB) = NBxB
2(1 − xB)2

× exp

⎡
⎣−

M2
B0
s
xB2

2ω2
Bs

− 1

2
(ωBs bB)2

⎤
⎦ , (8)

the normalization factor NB can be calculated by the nor-
malization relation

∫ 1
0 dxφBs (xB, bB = 0) = fB0

s
/(2

√
2Nc)

with Nc = 3 being the number of colors. Here, we choose
the shape parameter ωBs = 0.50 ± 0.05 GeV [55].

The vector charmonium meson ψ(3770), as mentioned
above, is commonly regarded as a S-wave and D-wave mix-
ing state. We adopt the wave function form of this vector char-
monium meson on the basis of a harmonic-oscillator poten-
tial, which has been applied to the charmonium state success-
fully, such as J/ψ , ψ(2S), ψ(3S) and so on [50,56–58]. The
theoretical results agree well with the measured experimen-
tal data, which indicates the reasonableness of adopting this
form of the function. For the wave function of the pure 2S
state, ψ(2S), and the pure 1D state, ψ(1D), the longitudinal
polarized component is defined as [57,58]

�L
ψ = 1√

2Nc
[Mψ 
 εLψ L(x3, b3)+ 
 εL 
 p3ψ

t (x3, b3)] (9)

where p3 is the momentum of the charmonium mesons
ψ(2S) and ψ(1D), with the longitudinal polarization vec-

tor εL = M
B0
s√

2Mψ
(−r2, (1 − η), 0�). Mψ is the corresponding

mass. Here the ψL and ψ t correspond to twist-2 and twist-3
distribution amplitudes (DAs). The explicit forms are [50,57]

ψL(x3, b3) = f(2S,1D)

2
√

2Nc
NLx3x3I(x3)e

−x3x3
mc
ω

[
ω2b2

3+
(
x3−x3
2x3x3

)2
]
,

(10)

ψ t(x3, b3) = f(2S,1D)

2
√

2Nc
Nt(x3 − x3)2I(x3)e

−x3x3
mc
ω

[
ω2b2

3+
(
x3−x3
2x3x3

)2
]
,

(11)

with I(x3) = 1 − 4mcωx3x3b2
3 + mc(1−2x3)

2

ωx3x3
for ψ(2S) and

I(x3) = ( 1
x3x3

−mcωb2
3)(6x

4
3 −12x3

3 +7x2
3 −x3)− mc(1−2x3)

2

4ωx3x3
for ψ(1D). For the shape parameter ω1D in the DAs of the
ψ(1D), we choose ω1D = 0.5±0.05 GeV, for the reason we
have discussed in Ref. [50], and ω2S = 0.2 ± 0.1 GeV [57].
Ni(i = L , t) is the normalization constant, which satisfies
the normalization conditions:

∫ 1

0
ψ i(x3, b3 = 0)dx3 = f(2S,1D)

2
√

2Nc
, (12)

and the decay constants of the radially excited state ψ(2S)

and the angular excitation state ψ(1D) are given in Table
1. Both the wave functions of Eq. (10) and of Eq. (11) are
symmetric under x ↔ x.

In the light of Refs. [59,60], we adopt the distribution
amplitudes for the S-wave pion pair as

�S
ππ = 1√

2Nc
[
 pφ I=0

vν=−(z, ζ, ω2) + ωφ I=0
s (z, ζ, ω2)

+ω( 
 n 
 v − 1)φ I=0
tν=+(z, ζ, ω2)]. (13)

For simplicity, we put φ I=0
vν=−(z, ζ, ω2), φ I=0

s (z, ζ, ω2) and
φ I=0
tν=+(z, ζ, ω2), abbreviated to φ0, φs , and φσ , respectively.

The relevant DAs and time-like scalar form factor can be
found in Refs. [34,61,62].

The differential branching ratios for the B0
s → ψ(2S, 1D)

π+π− decay in the B0
s meson rest frame can be written

as [63]

dB
dω

= τB0
s
ω | −→p1 || −→p3 |

32(πMB0
s
)3 | A |2, (14)

with p1 = 1
2

√
ω2 − 4m2

π± and p3 = 1
2ω√

[M2
B0
s

− (ω + Mψ)2][M2
B0
s

− (ω − Mψ)2] in the pion-pair

center-of-mass system and with the B0
s meson lifetime τB0

s
.
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3 The decay amplitudes

In the pQCD factorization approach, the B0
s → ψ(2S)π+π−

decay amplitude A can be expressed in form of

A = V ∗
cbVcs(F

(V−A)(V−A)

+M(V−A)(V−A)) − V ∗
tbVts(F

′(V−A)(V−A)

+F(V−A)(V+A) + M
′(V−A)(V−A) + M(S−P)(S+P)),

(15)

where the explicit forms of F(V−A)(V−A), F
′(V−A)(V−A),

F(V−A)(V+A), and M(V−A)(V−A), M
′(V−A)(V−A),

M(S−P)(S+P) are listed in the following formula, and F, M
denote the factorization and non-factorization contribution,
respectively. (V − A)(V − A) and (V − A)(V + A) are the
weak vertices of the operators, and (S − P)(S + P) denotes
the Fierz transformation of (V − A)(V + A). We have

F(V−A)(V−A) = 8πCF fψ M4
B0
s

×
∫ 1

0
dxBdz

∫ ∞

0
bBbdbBdbφBs (xB , bB)

× {[(η(1 + z(1 − 2r2)) − r2)φ0

+
√

η(1 − r2)[((1 − 2z(1 − r2))η − r2)

× (φs + φσ ) + 2r2φσ ]]
× αs(ta)a1(ta)ha(xB , z, bB , b)

× St (z) exp[−SB0
s
(ta) − SM (ta)]

+ [(r2 − 1)[ηη + r2(xB − η)]φ0

+ 2
√

η(1 − r2)[η − r2(1 − xB)]φs ]
× αs(tb)a1(tb)hb(xB , z, bB , b)

× St (|xB − η|) exp[−SB0
s
(tb) − SM (tb)]}, (16)

F
′(V−A)(V−A) = F(V−A)(V−A)|a1→a2 , (17)

F(V−A)(V+A) = F(V−A)(V−A)|a1→a3 , (18)

M(V−A)(V−A) =
−32πCFM4

B0
s√

2Nc

×
∫ 1

0
dxBdzdx3

∫ ∞

0
bBb3dbBdb3φBs (xB , bB)

× {[(η − r2)[((1 − x3 − xB)(1 − r2)

+ η(x3(1 − 2r2)

− (1 − r2)(1 − z) + r2))ψ L (x3, b3)

+ rrcηψ t (x3, b3)]φ0

+
√

η(1 − r2)[η(z(1 − r2)

+ 2r2(1 − x3) − r2xB)φσ

− (zη(1 − r2) + r2xB)φs ]ψ L (x3, b3)]
× αs(tc)C2(tc)hc(xB , z, x3, bB , b3)

× exp[−SB0
s
(tc) − SM (tc) − Sψ(tc)]

+ [(η − r2)[(xB − z(1 − r2)

− x3(η + r2))ψ L (x3, b3)

+ rrcηψ t (x3, b3)]φ0

−
√

η(1 − r2)[((r2xB − η(2r2x3

+ z(1 − r2)))ψ L (x3, b3) + 4rrcηψ t (x3, b3))φσ

− (r2xB + zη(1 − r2))φsψ
L (x3, b3)]]

× αs(td )C2(td )hd (xB , z, x3, bB , b3)

× exp[−SB0
s
(td ) − SM (td ) − Sψ(td )]}, (19)

M
′(V−A)(V−A) =M(V−A)(V−A)|C2→a4 , (20)

M(S−P)(S+P) =
32πCFM4

B0
s√

2Nc

×
∫ 1

0
dxBdzdx3

×
∫ ∞

0
bBb3dbBdb3φBs (xB , bB)

× {[(η − r2)[((1 − x3)(η + r2)

+ z(1 − r2) − xB)ψ L (x3, b3)

− rrcηψ t (x3, b3)]φ0

+
√

η(1 − r2)[(ηz(r2 − 1)

− r2xB)φsψ
L (x3, b3)

+ [(η(z(r2 − 1) − 2r2(1 − x3))

+ r2xB)ψ L (x3, b3) + 4rrcηψ t (x3, b3)]φσ ]]
× αs(tc)a5(tc)hc(xB , z, x3, bB , b3)

× exp[−SB0
s
(tc) − SM (tc) − Sψ(tc)]

+ [(η − r2)[((1 − r2)(xB − zη)

+ x3(r
2(η − η) − η))ψ L (x3, b3)

− rrcηψ t (x3, b3)]φ0

+
√

η(1 − r2)[(zη(1 − r2) + r2xB)φs

+ (η(z(r2 − 1) − 2r2x3) + r2xB)φσ ]ψ L (x3, b3)]
× αs(td )a5(td )hd (xB , z, x3, bB , b3)

× exp[−SB0
s
(td ) − SM (td ) − Sψ(td )]}, (21)

with rc = mc
M

B0
s

. CF = 4
3 is the group factor of the SU (3)c

gauge group. The SB0
s
(t), SM (t), Sψ(t) used in the decay

amplitudes, the hard functions hi (i = a, b, c, d), and the
hard scales ti are collected in the appendix.

In our work, we also take vertex corrections into account
in the factorization diagrams, and the Wilson coefficients are
combined in the NDR scheme [64–66] as follows:

a1 = C1 + C2

Nc
+ αs

9π
C2

×[−18 − 12 ln(μ/mb) + f I + gI (1 − r2)],
a2 = C3 + C4

Nc
+ C9 + C10

Nc
+ αs

9π

×(C4 + C10) × [−18 − 12 ln(μ/mb) + f I + gI (1 − r2)],
a3 = C5 + C6

Nc
+ C7 + C8

Nc
+ αs

9π

×(C6 + C8)[6 + 12 ln(μ/mb) − f I − gI (1 − r2)],

123
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a4 = C4 + C10,

a5 = C6 + C8. (22)

The hard scattering functions f I and gI are given in Ref. [67],
the renormalization scale μ is chosen at the order of mb.

For the B0
s → ψ(1D)π+π− decay, the amplitude is sim-

ilar to the decay amplitude of B0
s → ψ(2S)π+π−, just

replacing the DAs of ψ(2S) with the corresponding DAs
of ψ(1D) in Eq. (15).

As for the decay amplitude of the B0
s → ψ(3770)

(ψ(3686))π+π− decay, we give the expression based on
the idea of the S–D mixing scheme:

A(B0
s → ψ(3770)π+π−) = cos θA(Bs → ψ(1D)π+π−)

− sin θA(Bs → ψ(2S)π+π−). (23)

A(B0
s → ψ(3686)π+π−) = cos θA(Bs → ψ(1D)π+π−)

+ sin θA(Bs → ψ(2S)π+π−). (24)

4 Numerical results and discussions

In our numerical calculation, the input parameters are listed
in Table 1, where the masses of the involved mesons, the life-
time of meson and the Wolfenstein parameters are obtained
from the 2018 PDG [63]. The decay constant of ψ(2S) is cal-
culated by the leptonic decay process ψ(2S) → e+e− [58]
and the decay constant of ψ(1D) was calculated in Ref. [68].
The masses of the b quark and c quark are running masses
which are calculated under the modified minimal subtraction
scheme at the renormalization scale μ, which is equal to the
quark mass.

By using the differential branching ratio formula Eq. (14),
first we make predictions of the branching ratios of the decay
mode B0

s → ψ(2S)π+π− for different intermediate states,
including the f0(980) and f0(1500) resonances, and the
numerical results are listed as follows:

B(B0
s → ψ(2S) f0(980) → ψ(2S)π+π−)

= [7.2+1.0+0.1+0.2
−0.7−0.0−0.0] × 10−5, (25)

B(B0
s → ψ(2S) f0(1500) → ψ(2S)π+π−)

= [8.8+1.0+0.4+0.4
−1.5−0.0−0.1] × 10−7, (26)

where the three main errors come from the shape parameter
ωBs of the wave function of B0

s meson, the hard scale t , which
varies from 0.9t ∼ 1.1t (not changing 1/bi , i = 1, 2, 3), and
the Gegenbauer moment a2 = 0.2 ± 0.2 [11] in the ππ dis-
tribution amplitude, respectively. The other errors from the
uncertainty of the input parameters, for example, the decay
constants of the B0

s and charmonium mesons and the Wolfen-
stein parameters, are tiny and can be neglected safely. We see
that the input parameter ωBs of the B0

s meson is the primary
source of the uncertainties, which range approximately in

9.7–17.1%, and then the Gegenbauer moment and the hard
scale t , which characterizes the size of the next-leading-order
contribution. When we consider the total S-wave contribu-
tions of the f0(980) and f0(1500), we can get

B(B0
s → ψ(2S)(π+π−)S) =

[
7.6+0.9+0.1+0.1

−0.6−0.0−0.1

]
× 10−5,

(27)

which is in agreement with the new experiment data (7.1 ±
1.3) × 10−5 within the allowed errors [63]. Comparing with
previous work [39], we find that our calculation of the branch-
ing ratio of the B0

s → ψ(2S)π+π− is closer to the latest
experimental results, for which the main reason is that we
adopt the new input parameters in 2018 PDG, and the latest
parameters lead to our uncertainties being smaller.

From the numerical results, we can see that f0(980) is the
principal contribution, which reaches a percentage of 94.7%,
just as the experiment observed, and the f0(1500) is 1.2%,
while the constructive interference between these two res-
onances can contribute nearly 4.1% to the total branching
ratio.

In experiment, the calculated ratio of the branching frac-
tion has been given in Ref. [7], which is

B(B0
s → ψ(2S)π+π−)

B(B0
s → J/ψπ+π−)

= 0.34 ± 0.04(stat)

± 0.03(syst) ± 0.01(B).

(28)

By using the previous prediction as regards the branching
ratio of the decay mode B0

s → J/ψ(π+π−)S [34], we obtain
the ratio B(B0

s → ψ(2S)π+π−)/B(B0
s → J/ψπ+π−) =

0.46+0.16
−0.18, which is consistent with the experiment’s mea-

surement, and which indicates that the harmonic-oscillator
wave function for excited charmonium is applicable and rea-
sonable. Besides the decay mode B0

s → ψ(2S)π+π−, we
make a calculation for the part of 1D, and we consider similar
contributions from the containing S-wave resonance state,
f0(980) and f0(1500). The reason is that these two reso-
nances masses are also within the scope of the ππ invariant
mass spectra, which is 2mπ < ω < MB0

s
− Mψ . After taking

the integral over ω, the results are

B(B0
s → ψ(1D) f0(980) → ψ(1D)π+π−)

=
[
1.2+0.1+0.0+0.8

−0.2−0.1−0.9

]
× 10−5, (29)

B(B0
s → ψ(1D) f0(1500) → ψ(1D)π+π−)

=
[
4.6+0.3+0.0+1.5

−0.2−0.5−2.1

]
× 10−7. (30)

Also, the total S-wave contribution of the B0
s → ψ

(1D)π+π− decay is
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Table 1 The input parameters of the B0
s → ψ(2S, 1D)π+π− decay

Mass of the involved mesons Mψ(2S) = 3.686 GeV Mψ(1D) = 3.77 GeV MB0
s

= 5.367 GeV

mb = 4.2 GeV mc = 1.27 GeV mπ± = 0.140 GeV

m f0(980) = 0.99 ± 0.02 GeV m f0(1500) = 1.50 GeV

Decay constants fψ(2S) = 296+3
−2 MeV fψ(1D) = 47.8 MeV [68] fB0

s
= 227.2 ± 3.4 MeV

Lifetime of meson τB0
s

= 1.509 ps

Wolfenstein parameters λ = 0.22453 ± 0.00044 A = 0.836 ± 0.015

ρ̄ = 0.122+0.018
−0.017 η̄ = 0.355+0.012

−0.011

(a) (b)

Fig. 2 The S-wave differential branching ratio of the B0
s → ψ(2S)π+π− decay

B(B0
s → ψ(1D)(π+π−)S) =

[
1.3+0.1+0.0+0.8

−0.1−0.0−0.6

]
× 10−5.

(31)

In Figs. 2a and 3, we plot the differential branching ratio
of the B0

s → ψ(2S, 1D)π+π− decay as a function of the
ππ invariant mass ω, in which we can clearly see that the
peak arises from f0(980), while f0(1500) is unsharp, which
also makes a contribution to the decay. For comparison, at the
same time, we present the experiment data from LHCb [7]
in Fig. 2b, which shows a basic agreement with our predic-
tive results. Comparing the results of ψ(2S) and ψ(1D), it
is easy to see that the results of ψ(1D) are more sensitive to
the Gegenbauer moment, a2 = 0.2 ± 0.2. This means that,
although the value is in good agreement with many decay
modes, there is still a necessity to explore more accurate
data to facilitate a better understanding of the nonperturba-
tive hadron dynamics. In the ψ(2S) and ψ(1D) modes, since
the f0(1500) mass is near the maximum of the ππ invariant
mass, the corresponding contributions are very small com-
pared to the total contributions of the S-wave. We note that
the branching ratio of the ψ(1D) is smaller than that of the
ψ(2S), which should be attributed to the dependence of the
corresponding wave function and the decay constant.

Fig. 3 The S-wave differential branching ratio of the B0
s →

ψ(1D)π+π− decay

Furthermore, we calculate the branching fraction of the
mode B0

s → ψ(3770)(ψ(3686))π+π− based on the S–D
mixing scheme, whose two sets of mixing angles have been
introduced in Sect. 1, and we list the computational results
in Table 2.

123



Eur. Phys. J. C (2019) 79 :370 Page 7 of 9 370

Table 2 Branching ratios of the quasi-two-decay B0
s → ψ(3686, 3770) f0(→ π+π−) in the pQCD approach based on two sets of S–D mixing

angles, where the uncertainties are similar to the previous ones except the last one, which shows dependence of the mixing angle

θ = −(12 ± 2)◦ θ = (27 ± 2)◦

B0
s → ψ(3686) f0(980)(→ π+π−) 5.8+0.9+0.1+0.5+0.3

−0.7−0.0−0.3−0.3 × 10−5 8.3+1.0+0.0+0.7+0.0
−0.8−0.0−0.8−0.1 × 10−5

B0
s → ψ(3686) f0(1500)(→ π+π−) 6.3+0.7+0.3+0.7+0.4

−1.0−0.0−0.7−0.5 × 10−7 1.3+0.1+0.0+0.2+0.0
−0.2−0.0−0.1−0.0 × 10−6

B0
s → ψ(3686)(π+π−)S 6.1+0.7+0.0+0.5+0.3

−0.6−0.0−0.3−0.3 × 10−5 8.8+0.9+0.1+0.8+0.1
−0.7−0.0−0.8−0.0 × 10−5

B0
s → ψ(3770) f0(980)(→ π+π−) 2.7+0.2+0.0+0.9+0.2

−0.3−0.0−1.1−0.3 × 10−5 2.1+1.0+0.0+2.2+0.6
−0.7−0.1−0.1−0.5 × 10−6

B0
s → ψ(3770) f0(1500)(→ π+π−) 8.5+0.1+0.3+3.5+0.5

−0.1−0.0−2.3−0.4 × 10−7 1.7+0.3+0.0+1.4+0.2
−0.9−0.4−0.5−0.1 × 10−7

B0
s → ψ(3770)(π+π−)S 3.0+0.2+0.0+1.1+0.3

−0.5−0.0−1.1−0.3 × 10−5 2.4+1.1+0.0+2.1+0.6
−0.8−0.1−0.4−0.3 × 10−6

Comparing with the pure D-wave state, we can notice
that the branching ratio of the S–D mixing state for B0

s →
ψ(3770)π+π− will be increased approximately by a factor
2 when the mixing angle is −12◦; the reason is mainly the
small decay constant of ψ(1D), which is compatible with
the summaries in Refs. [46,49,68–70]. Moreover, we can
observe that the results of the B0

s → ψ(3686)π+π− change
a little comparing with the pure 2S mode when taking the
mixing effect into account, so ψ(3686) may be regarded as
ψ(2S) state. Considering the size of the data collected in
LHCb, we may expect the measurement of this decay mode
to come in the near future; this will help us to understand the
structure of ψ(3770) and the three-body decay mechanism.

5 Summary

In this work, we have calculated the contributions from the
S-wave resonances, f0(980) and f0(1500), to the B0

s →
ψ(3770)(ψ(3686))π+π− decay by introducing the S-wave
ππ distribution amplitudes within the framework of the per-
turbative QCD approach. Due to the 2S–1D mixing scheme
character of ψ(3770), we calculate the branching ratios of S-
wave and D-wave, respectively, and the results indicate that
f0(980) is the main contribution of the considered decay, and
the differential result of the ψ(2S) mode is in good agreement
with the experimental data. We also analyzed the theoretical
uncertainties in this paper, to find that the result of ψ(1D) is
sensitive to the Gegenbauer coefficient, because of which we
need more accurate data to understand the nonperturbative
hadron dynamics. Finally, by introducing the mixing angle
θ = −12◦ and θ = 27◦, we make a further calculation of
B0
s → ψ(3770)(ψ(3686))π+π−, and our calculations show

that the branching ratio may be of the order of 10−5 based
on the small mixing angle θ = −12◦, which will be tested
by the running LHCb experiments.
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Appendix: Formulas for the calculation used in the text

In this section, we list the explicit form of the formulas used
above. The Sudakov exponents are defined by

SB0
s

= s(xB p
+
1 , bB) + 5

3

∫ t

1/bB

dμ̄

μ̄
γq(αs(μ̄)),

SM = s(zp+, b) + s(z̄ p+, b) + 2
∫ t

1/b

dμ̄

μ̄
γq(αs(μ̄)),

Sψ = s(x3 p
−
3 , b3) + s(x̄3 p

−
3 , b3) + 2

∫ t

1/b3

dμ̄

μ̄
γq(αs(μ̄)),

(A.1)

where the Sudakov factor s(Q, b) results from the resum-
mation of double logarithms; it can be found in Ref. [71].
γq = −αs/π is the anomalous dimension of the quark. The
hard scattering kernel function hi (i = a, b, c, d) arises from
the Fourier transform of the virtual quark and gluon propa-
gators and are written as follows:

ha(xB, z, bB, b) = K0(MBsbB
√
xBz(1 − r2))

× [θ(b − bB)K0(MBsb
√
z(1 − r2))I0(MBsbB

√
z(1 − r2))

+ (bB ↔ b)],
hb(xB, z, bB, b) = K0(MBsb

√
xBz(1 − r2))
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×

⎧⎪⎪⎨
⎪⎪⎩

[θ(b−bB)K0(MBsb
√

κ)I0(MBsbB
√

κ)

+(bB ↔ b)], κ≥0,

[ iπ2 θ(b−bB)H (1)
0 (MBsb

√|κ|)J0(MBsbB
√|κ|)

+(bB ↔ b)], κ<0,

hc(xB, z, x3, bB, b3)

= [θ(b3 − bB)K0(MBsb3

√
xBz(1 − r2))

I0(MBsbB
√
xBz(1 − r2)) + (bB ↔ b3)]

×
{
K0(MBsb3

√
β), β ≥ 0,

iπ
2 H (1)

0 (MBsb3
√|β|), β < 0,

hd(xB, z, x3, bB, b3) = hc(xB, z, x̄3, bB, b3), (A.2)

with the κ = (1 − r2)(xB − η), β = r2
c − (z(1 − r2) +

r2x̄3)(η̄x̄3 − xB), where J0 is the Bessel function and K0,
I0 are modified Bessel function with H (1)

0 (x) = J0(x) +
iY0(x). The threshold resummation factor St (x) has been
parameterized in [72],

St (x) = 21+2c�( 3
2 + c)√

π�(1 + c)
[x(1 − x)]c, (A.3)

with the parameter c = 0.04Q2 − 0.51Q + 1.87 and Q2 =
M2

B(1 − r2) [73].
For killing the large logarithmic radiative corrections, the

hard scales ti in the amplitudes are chosen as

ta = max{MBs

√
z(1 − r2), 1/b, 1/bB},

tb = max{MBs

√|κ|, 1/b, 1/bB},
tc = max{MBs

√
xBz(1 − r2), MBs

√|β|, 1/bB, 1/b3},
td = tc|x3→x̄3 .

(A.4)
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