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Abstract We describe how NNLO final state quark-pair
corrections are computed in FDR by directly enforcing gauge
invariance and unitarity in the definition of the regularized
divergent integrals. We give details of our approach and show
how virtual and real contributions can be merged together
without relying, explicitly or implicitly, on dimensional regu-
larization. As an example, we recompute the H → bb̄+ jets
and γ ∗ → jets inclusive rates at the NNLO accuracy in the
large NF limit of QCD. This demonstrates, for the first time,
that physical results with intermediate infrared singularities
can be obtained at NNLO using a fully four-dimensional pro-
cedure.

1 Introduction

It is well known that calculations of observables in quan-
tum field theory (QFT) are complicated by divergences in
intermediate steps. On general grounds these divergences fall
into two categories – ultraviolet (UV) divergences, associ-
ated with short wavelengths, and infrared (IR) divergences,
associated with large wavelengths and/or collinear configu-
rations. They show up in the form of integrals which do not
exist in the four-dimensional physical space.

The customary way to deal with UV infinities is a two
step procedure. Firstly, one regularizes the divergent inte-
grals. Secondly, one reabsorbs the UV pieces into the free
parameters of the Lagrangian. As for the IR infinities, they
cancel when considering sufficiently inclusive observables,
or can be reabsorbed in the parton densities. Depending on
the approach, this cancellation can be achieved before or after
integration. In the latter case, IR divergent integrals also need
to be regulated.

When performing calculations of observables in QFT, the
exact method of regulating the UV/IR divergences is arbi-
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trary. Nevertheless, this freedom is not absolute as the chosen
method should not interfere with two core tenets of QFT, that
are

• gauge invariance; (1a)

• unitarity. (1b)

These general principles have concrete consequences in per-
turbative calculations. Gauge invariance implies a set of
graphical identities (see e.g. [1]) that need to be fulfilled to
all perturbative orders by the Feynman diagrams of the QFT.
Unitarity, meanwhile, demands the validity of the cutting
equations [2,3] corresponding to the relation

i(T − T †) = −T †T (2)

for the T matrix [4]. Both (1) are essential to preserve the
Ward/Slavnov-Taylor identities (WI) at the regularized level,
known as the regularized quantum action principle [5].

The most commonly used technique is dimensional reg-
ularization [6,7] (DReg). DReg exploits the fact that gauge
invariance and unitarity are naturally preserved as they hold
for the theory in all values of the dimensionality d of the
space-time. Hence, the divergent integrals are analytically
evaluated in d dimensions, and the asymptotic d → 4 limit
is eventually taken. By doing so, UV/IR divergences are
parametrized in terms of negative powers of a Laurent expan-
sion in (d−4). In this framework, one still has some freedom
to define objects in intermediate steps. Hence, several vari-
ants of DReg exist such as conventional dimensional regular-
ization [8], ’tHooft–Veltman [6], four-dimensional helicity
[9] and dimensional reduction [10]. We refer to [11] for an
exact definition of all of them.

In recent years, a considerable effort has been pursued
by several groups to introduce more four-dimensional ingre-
dients in the definition of regularization. The main motiva-
tion being an attempt to simplify analytical and numerical
methods, as well as to try to consider different theoretical
perspectives. This four-dimensional program has resulted in
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a number of methods such as the four-dimensional formu-
lation of FDH [12], implicit regularization [13,14], four-
dimensional unsubtraction [15–17] and FDR [18–22]. They
are described and compared in [23]. Whilst all approaches
are different, FDR is the only method that does not rely
on the customary UV renormalization procedure. Instead,
the result of an FDR calculation is directly a renormalized
quantity.

FDR treats UV divergences by performing a subtraction,
extracting from the loop integrands the divergent parts which
do not contain physical information – the so-called vacua. In
the case of IR finite amplitudes, the validity of the FDR strat-
egy has been explicitly demonstrated in [22]. In the presence
of IR divergent configurations, the IR regulator should not
interfere with principles (1). If this is achieved, the correct
physical result is obtained for IR safe quantities. At NLO,
it is known how to match real and one-loop contributions in
the presence of final state IR singularities [21,23], while, so
far, no FDR NNLO calculation has been performed involv-
ing infrared divergent configurations. In this paper we bridge
this gap and give the first example of such a computation. We
describe how NNLO final state quark-pair corrections can be
computed in FDR in a way that automatically respects the
principles (1). In particular, we reproduce the MS results for
the NF part of H → bb̄ + jets and γ ∗ → jets. Since
DReg is never used, explicitly or implicitly, this represents,
to our knowledge, the first example of a realistic fully four-
dimensional NNLO calculation.

The structure of the paper is as follows. In Sect. 2 we
present our definitions of the virtual and real integrals appear-
ing when computing NNLO quark-pair corrections. In Sect. 3
we discuss the relevant renormalization issues. Sections 4
and 5 give a detailed description of the H → bb̄ + jets and
γ ∗ → jets calculations. Finally, in Sect. 6 we summarize
our findings and discuss perspectives and directions opened
by the procedures introduced in this work.

2 Inclusive quark-pair corrections and FDR

Our aim is to compute the large NF limit of cross sec-
tions including NNLO quark-pair corrections. The rele-
vant contributions are the Born, Virtual and Real reactions
given by

σB ∝
∫

dΦn

∑
spin

|A(0)
n |2,

σV ∝
∫

dΦn

∑
spin

{
A(2)
n (A(0)

n )∗ + A(0)
n (A(2)

n )∗
}

,

σR ∝
∫

dΦn+2

∑
spin

{
A(0)
n+2(A

(0)
n+2)

∗} . (3)

A
(0)
n =

(a)

p

A
(2)
n,IR =

(b)

p

q1

q2q12

A
(0)
n+2,IR =

(c)

k1
k3

k4k34

Fig. 1 The lowest order amplitude (a), the IR divergent final-state vir-
tual quark-pair correction (b) and the IR divergent real component (c).
The blob stands for the emission of n−1 particles. Additional IR finite
corrections are created if the gluons with momenta q1 and k34 are emit-
ted by an off-shell particle in the blob

In (3), A( j)
n represents the amplitude for the emission of n

partons computed at the j th perturbative order, while dΦm

is the m-particle phase-space

dΦm := δ

(
P −

m∑
i=1

pi

)
m∏
i=1

d4 piδ+(p2
i ), (4)

with δ+(p2
i ) := δ(p2

i )Θ(p0
i ), in which P is the initial state

momentum. The amplitude A(0)
n is drawn in Fig. 1a, where

the line with momentum p is an on-shell QCD parton and the
blob denotes n-1 additional final-state particles. The NNLO
amplitudes can be split into IR divergent and finite parts

A(2)
n := A(2)

n,IR + A(2)
n,F,

A(0)
n+2 := A(0)

n+2,IR + A(0)
n+2,F. (5)

The infrared singular contributions are depicted in Fig. 1b, c,
while the finite pieces are created when the splitting gluons
with momenta q1 and k34 are emitted by an off-shell particle
contained in the blob.

Due to the presence of IR parts in (5), both σV and σR are
IR divergent, although, as is well known, their combination
in infrared safe quantities is IR finite. In addition, UV infini-
ties are present in σV that are renormalized away when bare
parameters are determined at the perturbative order appro-
priate to match the NNLO accuracy. In conclusion, the fully
inclusive sum

σ NNLO = σB + σV + σR (6)

is a physical quantity, although its parts are separately
plagued by IR and UV divergences. Indeed, it is the sim-
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Fig. 2 The indices ρ̂ and σ̂ are
external to the divergent
sub-diagram disconnected form
the rest

σ̂

ρ̂

plest case of an infrared safe observable, which must give
the same result when computed in any consistent scheme
used to deal with the divergences.

In this section we use the four-dimensional FDR frame-
work, and describe the procedures which allow one to com-
pute σ NNLO. We put particular emphasis on the steps needed to
cope with the simultaneous presence of IR and UV infinities
at two loops, and on how to merge virtual and real compo-
nents. Section 2.1 presents the steps needed to define σV ,
while 2.2 deals with σR . Section 2.3 contains an explicit
example which guides the reader across both real and virtual
procedures.

2.1 The NNLO definition of the virtual contribution

A generic two-loop integrand in A(2)
n,IR has the form

J (q1, q2) = Fρ̂σ̂ (q1, q2
1 )

D

qρ
2 q

σ
12 + qρ

12q
σ
2 − gρσ (q2 · q12)

q2
2q

2
12

:= N

Dq2
2q

2
12

, (7)

with internal loop momenta q1, q2 and q12 := q1 + q2. The
denominator D collects all q2-independent propagators

D = Dpq
4
1

(
Πk

i=1Di

)
, Dp = (q1 + p)2, (8)

where k is the number of propagators in the blob of Fig. 1b,
and N is the numerator of the integrand. The hats on Lorentz
indices means that they are external to the divergent sub-
diagram, as in Fig. 2. The difference between hatted and
un-hatted indices can be ignored until equation (23). Here
we just point out that hatted indices can be identified in more
general cases as described in [22].

We now analyze all possible divergences generated upon
loop integration. We do this to determine the form of the
FDR UV subtractions and the structure of the IR regulator
needed to define the FDR integration over (7) given in (35).
J (q1, q2) is quadratically divergent when q2 → ∞ at fixed
q1. Given the presence of many propagators in D, this is
the only possible UV sub-divergence. Depending on where
the lower gluon reconnects to the blob, it may also generate
global UV infinities. In addition, due to the on-shell condition
p2 = 0, a double collinear IR singularity arises when both q1

and q2 are proportional to p. A second potential IR divergent
configuration is q2

1 → 0 but q2
2 �= 0. Nevertheless, this diver-

gence is cancelled by the UV behavior of the q2 integration.

This can be understood by noticing that a scaleless q2-type
sub-integral is generated in this case, that vanishes in FDR.1

An additional double collinear IR singularity is created if the
lower gluon is attached to a second external massless parton.

In FDR, a common unphysical scale μ2 is added to all
propagators in order to regulate divergences. As is well
known, performing this operation only in the denominator
is contrary to the core principle (1a) of gauge invariance. As
such, in FDR one performs a Global Prescription (GP) [18],
also making the replacement in the numerator such that all
integrand cancellations between numerator and denomina-
tor take place at the regulated level.2 These cancellations are
called “gauge cancellations”. In practice, one first determines
the dependence of J (q1, q2) on q2

1 , q2
2 and q2

12 generated by
Feynman rules. This is the reason for the explicit q2

1 as an
argument of F in (7). Subsequently, one adds an unphysical
scale μ2 to all such self-contractions

q2
i → q2

i − μ2 := q̄2
i (i = 1, 2, 12). (9)

We denote this procedure by the symbol →GP
. Therefore, the

replacement f →GP
f̄ , applied to any function f (q2

1 , q2
2 , q2

12),
produces a new function f̄ with arguments replaced as in (9),

f̄ (q̄2
1 , q̄2

2 , q̄2
12) := f (q̄2

1 , q̄2
2 , q̄2

12). (10)

Note that f̄ has the same functional form as f . Nevertheless,
we keep the bar to make explicit that GP has been imple-
mented on f . In the case at hand one has

J (q1, q2) →GP
J̄ (q1, q2) := F̄ρ̂σ̂ (q1, q̄2

1 )

D̄
Ḡρσ= N̄

D̄q̄2
2 q̄

2
12

,

(11)

with

D̄ := D̄pq̄
4
1

(
Πk

i=1 D̄i

)
, D̄p,i := Dp,i − μ2, (12)

and

Ḡρσ := qρ
2 q

σ
12 + qρ

12q
σ
2 − gρσ (q̄2

12 + q̄2
2 − q̄2

1 )/2

q̄2
2 q̄

2
12

. (13)

In our calculation, we simplify the q̄2
i s in N̄ with the denom-

inators of (11),

q̄2
i

q̄2
i

= 1,
q̄2

1

D̄p
= 1 − 2

(q1 · p)
D̄p

. (14)

After this is done, μ2 only appears in the propagators.
The IR singularities of J (q1, q2) are now regulated by the

addition of μ2 in the propagators. As we shall see, the asymp-
totic limit μ2 → 0 will be eventually taken after integration.
That generates logarithms of μ2 of IR origin. Nevertheless

1 See Appendix B.
2 This, combined with the shift invariance of FDR integrals is sufficient
to prove all Ward identities graphically [20].
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J̄ (q1, q2) is still UV divergent. The global UV infinities are
subtracted by separating physical and non-physical scales in
D̄p. That means using the identity

1

D̄p
= 1

q̄2
1

− 2(q1 · p)
q̄2

1 D̄p
, (15)

and noticing that the second term is more UV convergent
than the original propagator. The same expansion has to be
applied to the other propagators in 1/D̄, until F̄/D̄ is written
as follows

F̄ρ̂σ̂ (q1, q̄2
1 )

D̄
=

[
F̄ρ̂σ̂ (q1, q̄2

1 )

D̄

]

V

+
(
F̄ρ̂σ̂ (q1, q̄2

1 )

D̄

)

F

,

(16)

where [F̄/D̄]V do not depend on physical scales. Since also
Ḡρσ does not contain physical scales, [F̄/D̄]V defines the
global UV divergent behavior of J̄ (q1, q2):

[ J̄ (q1, q2)]GV :=
[
F̄ρ̂σ̂ (q1, q̄2

1 )

D̄

]

V

Ḡρσ . (17)

[ J̄ (q1, q2)]GV is called a Global Vacuum (GV) and is written
between square brackets, that is the standard FDR notation
to indicate the vacuum part of an object. Note that (F̄/D̄)F
in (16) gives rise to a subtracted integrand which is globally
UV convergent but still divergent when q2 → ∞:(

F̄ρ̂σ̂ (q1, q̄2
1 )

D̄

)

F

Ḡρσ . (18)

This is fixed by subtracting the Sub-Vacuum (SV) from Ḡρσ

by means of the expansion

1

q̄2
12

= 1

q̄2
2

− q2
1 + 2(q1 · q2)

q̄2
2 q̄

2
12

. (19)

The final result has the form

Ḡρσ = [
Ḡρσ

]
SV + (

Ḡρσ
)
F , (20)

so that the fully UV subtracted integrand(
F̄ρ̂σ̂ (q1, q̄2

1 )

D̄
−

[
F̄ρ̂σ̂ (q1, q̄2

1 )

D̄

]

V

) (
Ḡρσ − [

Ḡρσ
]
SV

)

(21)

is integrable in four dimensions.3 Upon integration, the vacua
subtracted in (21) induce the appearance of logarithms of
μ2 of UV origin, so that both IR and UV singularities are
regulated by the same regulator.

3 The described procedure is quite general. For example, despite the
fact that subtracting sub-divergences via (19) potentially re-introduces
UV singularities due toq1, the expressions can be arranged in such a way
that fully subtracted integrands can be always written down. Indeed, this
has been automated in the case of two-loop off-shell QCD amplitudes
in [22].

The procedure leading to (21) is conveniently encoded in
a linear integral operator∫

[d4q1][d4q2], (22)

whose action on a two-loop integrand is defined by three
subsequent operations:

– subtract the vacua;
– integrate over q1 and q2;
– take the asymptotic limit μ2 → 0.

The last operation means retaining only the logarithmic
pieces in the asymptotic expansion, neglecting O(μ2) terms.
Thus, the FDR two-loop integration over J̄ (q1, q2) in (11) is
defined as follows4

Ī :=
∫

[d4q1][d4q2] N̄

D̄q̄2
2 q̄

2
12

=
∫

d4q1d
4q2

(
F̄ρ̂σ̂ (q1, q̄2

1 )

D̄

)

F

(
Ḡρσ

)
F . (23)

In the following, we will often omit terms that integrate to
zero in globally prescribed numerators. Hence, it is conve-
nient to introduce a notation for that, that is N̄ ′ � N̄ if both
numerators give the same result upon FDR integration.

Equation (23) defines a gauge-invariant object, in which
the necessary gauge cancellations are preserved by the GP
operation. By “gauge-invariant object” we mean that a cal-
culation of Ī in a different gauge will give the same result. It
is instructive to check that no change in Ī is produced if one
shifts the numerator of the gluon propagator as

gρρ̂ → gρρ̂ + λ1
qρ

1 q
ρ̂
1

q̄2
1

, gσ σ̂ → gσ σ̂ + λ2
qσ

1 q σ̂
1

q̄2
1

, ∀λ1,2.

(24)

Thus, Ī gives the same result when computed in any gauge.
Another consequence of the WIs is that the term proportional
qρ

2 q
σ
1 + qρ

1 q
σ
2 in (13) should not contribute to Ī when con-

tracted with F̄ρ̂σ̂ . That is,

∫
[d4q1][d4q2] F̄ρ̂σ̂ (q1, q̄2

1 )

D̄q̄2
2 q̄

2
12

(
qρ

1 q
σ
2 + qρ

2 q
σ
1

) = 0. (25)

After taking into account the vanishing of scaleless integrals,
this corresponds to the WI depicted in Fig. 3. Nevertheless,
we keep this piece in (13), as we will explicitly show in our
calculation that it never contributes.

4 Due to the vacuum subtraction, q2
i /q̄2

i �= 1 under FDR integration.
This is the reason why we perform the explicit gauge cancellations of
(14).
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⊗

+ ⊗ = 0

Fig. 3 The graphical version of the WI in (25). The scalar gluon, with
coupling proportional to the gluon momentum, is denoted by a dashed
arrow. The symbol ⊗ indicates that it is emitted by the quark loop

Disc =

Fig. 4 Perturbative expansion of (2) for H → bb̄ + jets in the large
NF limit

Let us now consider the unitarity properties of this pre-
scription. Equation (2) relates different orders of perturbation
theory, so a given divergent subgraph SG can appear embed-
ded in loop diagrams of different orders 
. If the result of SG

depends on 
 then the relation (2) will in general not survive.
For a more concrete example relevant to the calculations of
this paper, consider the consequence of (2) shown in Fig. 4.
This specifies that the discontinuity of a two-loop graph is
given in terms of a one-loop graph. As such, the higher loop
regularization must be consistent with the lower loop one. In
FDR this places strong constraints on the GP. In our example
of Fig. 4 we see that on the left hand side, the momenta asso-
ciated to the gluon lines take part in the GP, but this is not
true for the right hand side. In FDR, this tension is resolved
by enforcing “sub-integration consistency” (SIC) [22].

We now consider this procedure in detail for the integrand
J (q1, q2). We analyze a subset of the full integrand, specif-
ically the numerator of the gluonic self-energy of Fig. 2,
qρ

2 q
σ
12 + qρ

12q
σ
2 − gρσ (q2 · q12), which appears in (7). This is

the piece that needs to be treated carefully to maintain SIC.
We consider, in particular, the result of the contraction with
a gρ̂σ̂

5 (potentially) contained in Fρ̂σ̂ . It reads

Ns(q
2
1 , q2

2 , q2
12, q̂

2
2 ) := q2

1 − 3q2
2 − q2

12 + 2q̂2
2 , (26)

where we have explicitly separated the contribution q̂2
2 :=

gρ̂σ̂q
ρ
2 q

σ
2 . From the point of view of the sub-diagram discon-

nected from the rest, q̂2
2 should not be globally prescribed,

hence the GP replacement to be performed is

Ns(q
2
1 , q2

2 , q2
12, q̂

2
2 ) → Ns(q

2
1 , q̄2

2 , q̄2
12, q

2
2 ). (27)

5 The analysis for terms like γρ̂γσ̂ is also required, but equivalent.

On the other hand, embedding this in the full diagram requires
integrating over q1, therefore q2

1 needs to be barred

Ns(q
2
1 , q2

2 , q2
12, q̂

2
2 ) → Ns(q̄

2
1 , q̄2

2 , q̄2
12, q

2
2 ). (28)

Nevertheless, ρ and σ are internal indices of the two-loop
diagrams of Fig. 1b, so that GP is needed for q̂2

2 as well

Ns(q
2
1 , q2

2 , q2
12, q̂

2
2 ) →GP

Ns(q̄
2
1 , q̄2

2 , q̄2
12, q̄

2
2 ), (29)

which is the prescription used in (23). It is the mismatch
among (27)–(29) which violates SIC. Our solution to this
problem is modifying the integrand in (23) as follows:

– we do not apply GP to q̂2
2 terms whose origin is a con-

traction with indices external to the UV divergent sub-
diagram;6

– we replace back everywhere q̄2
1 → q2

1 after GV subtrac-
tion.

Note that the last operation is possible because barring q2
2

and q2
12 is sufficient to regulate the IR divergences. This is a

consequence of the fact that the only IR divergent configura-
tion is the double collinear limit. Furthermore, this solution
does not affect any of the WIs and so still defines a gauge
invariant object. In summary, after GV subtraction, (27) is
maintained as it is also when embedded in a two-loop calcu-
lation. A comparison between this solution and the IR-free
case in given in Appendix A.

Let us now return to the matter of enforcing SIC in the
entirety of (23), and how one applies our solution. We enforce
SIC by rewriting (23) as

Ī =
∫

[d4q1][d4q2]
(
F̄ρ̂σ̂ (q1, q̄2

1 )

D̄

)

F

Ḡρσ (q̄2
1 ), (30)

where we have used the fact that [F̄/D̄]V is subtracted by
the integral operator. The structure of the expansions needed
to extract the GV is such that D̄ can be always pulled out
from the rest. Thus, it is possible to rewrite(

F̄ρ̂σ̂ (q1, q̄2
1 )

D̄

)

F

= H̄ρ̂σ̂ (q1, q̄2
1 )

D̄
. (31)

Next, we introduce the numerator function

Z̄(q̄2
1 , q̂2

2 ) := H̄ρ̂σ̂ (q1, q̄
2
1 )Ḡρσ (q̄2

1 )q̄2
2 q̄

2
12, (32)

where the explicit dependence on q̂2
2 is generated by the l.h.s

of (27). In practice, Z̄(q̄2
1 , q̂2

2 ) is constructed from N in (7)
as follows:

– globally prescribe N , N →GP
N̄ , leaving q̂2

2 unbarred;

6 This reproduces the effect of the evanescent operators needed in the
four-dimensional helicity scheme and dimensional reduction to restore
renormalizability [24].
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– perform GV subtraction and determine, for each term
T in N̄ , the appropriate function H̄ to be used in (32).
The result of this will always have a factorized form. For
instance, if (15) has to be used once to subtract the global
vacuum, the contribution of T to Z̄(q̄2

1 , q̂2
2 ) is −2(q1 ·

p)/q̄2
1 × T ;

– eliminates the bars from the q̄2
1 s;

– identify q̂2
2 with q2

2 .

We denote the last two operations with the symbol →SIC
. Thus,

the change f̄ →SIC
f̃ , applied to any globally prescribed and

GV subtracted function f̄ (q̄2
1 , q̂2

2 ), produces a new function
defined as

f̃ (q2
1 , q2

2 ) := f̄ (q2
1 , q2

2 ). (33)

In the equation above, f̃ has the same functional form as f̄ ,
but we use the tilded notation to denote that the SIC operation
has been imposed on f̄ . Thus, the SIC compatible version of
(32) reads

Z̄(q̄2
1 , q̂2

2 ) →SIC Z̃(q2
1 , q2

2 ). (34)

To continue to ensure gauge cancellations, we unbar also the
propagators, that leads to

Ĩ :=
∫

d4q1[d4q2] Z̃(q2
1 , q2

2 )

Dq̄2
2 q̄

2
12

. (35)

Equation (35) defines the SIC preserving four-dimensional
integration over the integrand in (7). Note that, since the GV
has been subtracted in it, [d4q1] is replaced by a customary
integration d4q1. The asymptotic limit μ2 → 0 is understood
after taking the two integrations.

A first consequence of this definition is that external wave-
function corrections vanish for massless particles, so that they
can always be neglected in actual calculations. The proof is
given in Appendix B.

2.2 The NNLO definition of the real component

Given the propagator structure of Fig. 1c, the integrands con-
tributing to σR in (3) have the following form

JR = NR

Ssα
34s

β
134

, si ... j := (ki + · · · + k j )
2, (36)

where 0 ≤ α, β ≤ 2. The symbol S collects all the remain-
ing propagators and NR is the numerator of the amplitude
squared. Depending on the value of the exponents α and β,
JR becomes IR divergent under integration over Φn+2. These
IR singularities must be regulated coherently with our treat-
ment of the virtual component, without violating unitarity
and gauge invariance. In this section, we determine a four-
dimensional integration that achieves this.

ρ̂

σ̂

pq1+p

(a)

q2q12

ρ̂

σ̂

(b)

k1
ρ̂

σ̂

k3

k4

(c)

ρ̂

σ̂

k1

k3

k4

(d)

.

Fig. 5 Virtual and real cuts contributing to the IR divergent parts of
σV (a, b) and σR (c, d). The special indices needed to enforce (27) and
(38b) are denoted by ρ̂ and σ̂

Our starting point is the representation of σV and σR in
terms of cut diagrams, in which we put the complex con-
jugate amplitudes on the right side. With this convention,
normal Feynman rules are assumed on the left and complex
conjugate ones on the right. The cuts generating IR diver-
gent configurations are obtained by squaring the amplitudes
in Fig. 1b, c and are depicted in Fig. 5. IR divergences mani-
fest themselves as pinch singularities of the loop integrals in
(a,b) and endpoint phase-space singularities in (c,d). These
two kinds of singularities are related to each other by the
identity

1

k2 + i0+ = 2π

i
δ+(k2) + 1

k2 + ik00+ , (37)

in which the poles of the propagator on the l.h.s. may create
a pinch in the complex plane of the loop integration and the
δ+(k2) on the r.h.s. may induce a non-integrable end-point
configuration. Dubbing Σc the sum over all cuts that appears
in the r.h.s. of (2), the cutting equations [2,3] ensure that the
last term in (37) does not contribute to the singular part of
each cut in Σc, and that Σc is IR finite. This theorem implies
a unitarity-preserving cancellation of the IR singularities if
the Cutkosky relation

1

k2 + i0+ ↔ 2π

i
δ+(k2), (38a)

giving the possibility of a one-to-one integrand level identifi-
cation of the infrared divergent parts contributing to different
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cuts in Σc, is preserved. However, one should also prove that
Σc = σR + σV . The reason for this second requirement is
the different origin of the potential numerators multiplying
the two sides of (38a). In the case of a fermion line, that is
the only cut relevant for this paper, the l.h.s. gets multiplied
by the numerator of the propagator /k := /kprop, while the
r.h.s. by

∑
spin u(k)ū(k) = ∑

spin v(k)v̄(k) := /kspin. Hence,
in addition to (38a), the identity

/kprop = /kspin (38b)

must hold to guarantee the validity of (2). Equation (38b)
states that the numerators of the loop propagators in Fig. 5a,
b should be treated consistently with the sum over the spin
polarizations of the cut lines in Fig. 5c, d. Note that (38b)
also guarantees consistent gauge cancellations in all terms
contributing to Σc.

Let us consider how to make these relations consistent
with the procedure from the previous section where we make
two modifications to the integrand:

– adding μ2 to the propagators with momenta q2 and q12;
– SV and GV subtraction from the integrand.

We first study how FDR preserves (38a). We start dealing
with the effect of the q2

2 →GP
q̄2

2 and q2
12 →GP

q̄2
12 replacements

in cuts (a,b). Equation (38a) is preserved if

1

(q̄2
2 + i0+)(q̄2

12 + i0+)
↔

(
2π

i

)2

δ+(k̄2
3)δ+(k̄2

4), (39)

with k̄2
3,4 := k2

3,4 − μ2. Thus, the q̄2
2 and q̄2

12 propagators in
σV must correspond to external particles in σR obeying

k2
3,4 = μ2. (40)

Hence, we replace in (3) Φn+2 → Φ̃n+2, where the phase-
space Φ̃n+2 is such that k2

3 = k2
4 = μ2 and k2

i = 0 when
i �= 3, 4. However, this is not enough. One also needs to
show that (39) survives the SV subtraction of (21). We prove
this explicitly in the case of the last term in (13). The proof is
unchanged for the other contributions. The relevant expan-
sion is

1

q̄2
2 q̄

2
12

=
[

1

q̄4
2

]

SV

− q2
1 + 2(q1 · q2)

q̄4
2 q̄

2
12

, (41)

where SV is the term to be subtracted. We consider a piece
of the finite part of (41) as a numerator factor λ

− q2
1 + 2(q1 · q2)

q̄4
2 q̄

2
12

= λ

q̄2
2 q̄

2
12

, λ := −q2
1 + 2(q1 · q2)

q̄2
2

(42)

and observe that λ → 1 when q̄2
12 → 0. We therefore first

put the q̄2
12 propagator on-shell, giving

1

q̄2
2 q̄

2
12

↔ (2π)

i
δ+(k̄2

4)

{
2(k3 · k34) − k2

34

k̄4
3

}

= (2π)

i

δ+(k̄2
4)

k̄2
3

. (43)

When also k̄2
3 goes on-shell, one obtains the same result as

applying (39) before subtracting the vacuum. Hence, the SV
subtraction is “invisible” from the point of view of (39), and
(38a) is fulfilled if k3,4 obey (40).

As for (38b), in order to preserve it, one must treat k2
3, k2

4
and (k3 + k4)

2 = s34 in the numerator NR of (36) using the
same prescriptions imposed on q2

2 , q2
12 and q2

1 in N of (7).
This means replacing in NR

k2
3,4 → k̄2

3,4 = 0,

(k3 · k4) = s34 − k2
3 − k2

4

2
→ s34 − k̄2

3 − k̄2
4

2
= s34

2
, (44)

where the last equalities are induced by the delta functions
in (39). These changes should be performed everywhere in
NR except in contractions induced by the external indices ρ̂

and σ̂ in cuts (c,d). In this case

k̂2
3,4→k2

3,4 = μ2, (k̂3 · k̂4)→(k3 · k4) = s34 − 2μ2

2
, (45)

in accordance to the SIC preserving requirement we have
used to construct Z̃(q2

1 , q2
2 ) from N . 7 We denote all of this by

introducing a globally prescribed and SIC preserving version
of NR

NR →GS
ÑR(μ2), (46)

where the action of →GS
on a function f (k2

3, k2
4, k̂2

3, k̂2
4) is

defined to be

f (k2
3, k2

4, k̂2
3, k̂2

4) →GS
f̃ (k̄2

3, k̄2
4, k2

3, k2
4)

:= f (k̄2
3, k̄2

4, k2
3, k2

4), (47)

in which the tilde on f̃ expresses the fact that GS has been
imposed. Only a dependence on μ2 is left in the r.h.s. of (46)
because of the deltas in Φ̃n+2.

The only remaining propagator involved in our definition
of the virtual component is in the top-left line of cut (a), that

7 Although it does not occur in our calculation, it is worth mentioning
what happens when loop propagators and cut lines refer to spin-1 parti-
cles. In this case (38b) is replaced by gμν

prop = gμν
spin, which states that the

metric tensor in the numerator of a loop propagator should be handled
consistently with the one generated by the sum over polarizations. This
is again achieved by treating the self contractions k2

3 , k2
4 , (k3 + k4)

2 in
σR exactly as their counterparts q2

2 , q2
12, q2

1 in σV , as done in (44) and
(45).
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must correspond to the cut k1 propagator in (d) through the
relation8

1

(q1 + p)2 + i0+ ↔ 2π

i
δ+(k2

1). (48)

Everything is massless in this case, so that (38b) is fulfilled
and it is sufficient to check that GV subtraction does not alter
(48). The proof is similar to the one used for the SV. In fact,
if m expansions

1

(q1 + p)2 − μ2 = 1

q̄2
1

− 2(q1 · p)
q̄2

1 ((q1 + p)2 − μ2)
(49)

are needed to subtract the vacuum in front of a term in
Z̄(q̄2

1 , q̂2
2 ), this term gets multiplied by a factor λm in

Z̃(q2
1 , q2

2 ), where

λ := −2(q1 · p)
q2

1

. (50)

But λ = 1 when the propagator goes on-shell. So that (48)
survives the GV subtraction.

In summary, we define the four-dimensional integration
over the integrand in (36) as follows

R̃ :=
∫

dΦ̃n+2
ÑR(μ2)

Ssα
34s

β
134

≡
∫

dΦ̃n+2 J̃R . (51)

By doing that, unitarity preserving IR cancellations occur by
construction between σR and σV , without violating gauge
invariance.

2.3 An example of cancellation

The integrals in (35) and (51) can be computed indepen-
dently, and this is the strategy we adopt in this paper. In fact,
term by term cancellations in Σc are difficult to find. The rea-
son is that one can add to the numerator of the virtual piece
arbitrary vanishing terms that nevertheless contribute to the
real part, and vice-versa. This is due to the different structure
of the deltas contained in dΦn and dΦ̃n+2. However, if the
numerator of a term does not change – modulo a relabelling
of the momenta – when multiplied by both phase-spaces, the
IR cancellation must occur between integrals constructed one
from the other via the replacement in (38a). In this section
we illustrate this phenomenon by considering a piece of the
full H → bb̄ + jets calculation presented in the following
section. This also serves us as a concrete example on how
the procedures of Sects. 2.1 and 2.2 work in practice.

The two-loop contribution to σV is depicted in Fig. 6. We
focus on the term generated by the gρσ piece of the internal
trace. It reads

Γ̄V = − 1

(2π)10

∫
d4 p1d

4 p2[d4q1][d4q2]δ−(p2
1)δ+(p2

2)

8 The complex conjugate of (48) links cuts (b) and (c).

q1

q1

ρ̂

ρ

σ

σ̂

q2
q12

p2

p1

q1+p2

q1+p1

P

Fig. 6 A cut contributing to H → bb̄ at NNLO. Only the term pro-
portional to gρσ is considered in (52)

k34

k3

k4

ρ̂

ρ

σ

σ̂

k2

k134

k234

k1

P

Fig. 7 A cut contributing to H → bb̄qq̄ . Only the gρσ term is consid-
ered in (61)

× δ4(P − p2 + p1)
N̄V

q̄4
1 D̄1 D̄2q̄2

2 q̄
2
12

, (52)

with Di := (q1 + pi )2. The numerator N̄V is obtained via
GP from its unbarred version

NV = −64(p1 · p2)(q2 · q12)(q1 + p1)·(q1 + p2), (53)

where we have neglected couplings and color factors, but not
phases needed to compute the overall sign. We rewrite

NV = 16s(q2
12 + q2

2 − q2
1 )

(
D1 + (P · q1) − s

2

)
, (54)

with s = P2, that gives

NV →GP
N̄V = 16s(q̄2

12 + q̄2
2 − q̄2

1 )
(
D̄1 + (P · q1) − s

2

)
.

(55)

This expression can be simplified by dropping terms which
integrate to zero, for example q̄2

2 and q̄2
12 generate vacua and

D̄1 gives a scale-less integral. Furthermore, (P ·q1) does not
contribute because it is antisymmetric when p1 ↔ p2, while
the denominator in (52) is symmetric. Thus N̄V � N̄ ′

V , with

N̄ ′
V (q̄2

1 ) = 8s2q̄2
1 . (56)
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The GV in (52) is fully removed by the subtraction of the
scale-less integral. Thus, Z̄V (q̄2

1 ) = N̄ ′
V (q̄2

1 ) and

Z̄V (q̄2
1 ) →SIC Z̃V (q2

1 ) = N̄ ′
V (q2

1 ) = 8s2q2
1 , (57)

so that the physically relevant two-loop contribution reads

Γ̃V = 1

(2π)10

∫
d4 p1d

4 p2d
4q1[d4q2]δ−(p2

1)δ+(p2
2)

× δ4(P − p2 + p1)
Z̃V (q2

1 )

q4
1 D1D2q̄2

2 q̄
2
12

. (58)

Γ̃V develops IR divergences in the form of powers of

L := ln
μ2

s
. (59)

When splitting the result of the integration in a part which
collects all terms containing powers of L , dubbed logarithmic
part (L .P.), plus a remainder, one finds

L .P.(Re(Γ̃V ))

= − s

64π5

(
L

(
1 − π2

12

)
+ L2

4
+ L3

24

)
. (60)

These logarithms are cancelled by a term contributing to the
four-particle cut-diagram in Fig. 7

Γ̃R = 1

(2π)8

∫
d4k1d

4k2d
4k3d

4k4δ+(k2
1)δ+(k2

2)

× δ+(k̄2
3)δ+(k̄2

4)δ4(P − k1234)
ÑR

s2
34s134s234

, (61)

where the IR behavior is now regulated by the two external
massive lines k2

3 = k2
4 = μ2. ÑR is obtained by applying the

GS operation defined in (47) to the numerator of the diagram

NR = 64(k3 · k4)(k1 · k234)(k2 · k134). (62)

the result reads

ÑR = 8s34(s − s234)(s − s134). (63)

ÑR does not depend on μ2 because in this case there are no
contractions of k3,4 vectors with the external indices ρ̂ and
σ̂ .

We now can check that the integrand in (61) is the correct
object to cancel the logarithms in (60). In fact, it can be
obtained from (58) by means of the Cutkosky replacement
in (38a), together with the relabellings

q1 → k34, q2 → −k3, p2 → k2, p1 → −k134, (64)

inferred by comparing Figs. 6 and 7, and the substitution

1

(q2
1 + i0+)2

→ − 1

(s34 + i0+)(s34 − i0+)
, (65)

which is necessary because of the gluon propagator appear-
ing on the r.h.s. of Fig. 7. Therefore, Γ̃R must contain a con-
tribution with the same singular behavior of −Γ̃V . We dub

Γ̃ ′
R such a contribution, and Ñ ′

R its numerator function. The
terms proportional to s234 or s134 in (63) give zero when eval-
uated at the two-particle cut: they cannot be “seen” by Γ̃V .
This leads us to the conclusion that

Ñ ′
R = 8s2s34, (66)

which corresponds to Z̃V (q2
1 ) in (57), modulo the first

replacement in (64). Thus, Γ̃ ′
R is obtained by replacing

ÑR → Ñ ′
R in (61). An explicit calculation confirms that

L .P.(Re(Γ̃V ) + Γ̃ ′
R) = 0. (67)

3 Renormalization

In this section, we discuss and implement the FDR renormal-
ization program in the context of our calculation. To do this
we need to distinguish, at least conceptually, between UV
regulator, IR regulator and renormalization scale. We denote
them by μUV, μIR and μR, respectively.

In the case of IR free observables, the FDR integral oper-
ator in (22) subtracts the UV infinities before integration.
For this reason, after taking the asymptotic limit μUV → 0,
μUV can be directly interpreted as the finite renormalization
scale μR [18]. In this sense, FDR directly produces a finite,
renormalized result for the loop part: nothing needs to be
subtracted from it. However, this result is arbitrary until bare
parameters are fixed by experimental measurements. After
doing so, if the theory is renormalizable, the scale μR gets
replaced by physical scales, leading to an unambiguous pre-
diction. This can be understood as a finite renormalization
necessary to make the theory predictive [25].

In the presence of IR divergences, no distinction is made
in the virtual component between μUV and μIR. As a matter
of fact, the procedure in Sect. 2.1 assumes μ = μUV = μIR,
preventing one from setting μ = μUV = μR, as is possible in
the IR free case. Our solution is fixing the bare parameters in
terms of physical quantities before combining virtual and real
components. After this is done, the μR scales get automati-
cally replaced by physical scales, hence the left over μs are
the μIRs which cancel the IR behavior of the real counterpart.

The bare parameters in our calculation are α0
S and the

Yukawa coupling y0
b . In order to implement our renormal-

ization program we need relations linking them to measured
quantities at the appropriate perturbative order, which is one
loop for α0

S and two loops for y0
b .

We are interested in corrections proportional to NF .
Hence, α0

S can be linked to the customary αMS
S (s) by using

the fact that the NF contribution to the running coincides in
FDR and MS [21]. As a consequence, we choose our renor-
malized strong coupling constant to be αS = αMS

S (s), that
gives the relation
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a0 = a
(

1 + aδ(1)
a

)
, (68)

with

a0 := α0
S

4π
, a := αS

4π
, δ(1)

a = 2

3
NF L , (69)

where L is given in (59).
The Yukawa coupling is renormalized by using its propor-

tionality to the bottom mass. The corrected bottom propaga-
tor at the pole is proportional to

1

/p − m0 + Σ(1) + Σ(2)
, (70)

where m0 is the bare mass and the Σ( j)s are computed in
Appendix C. This gives a relation between m0 and the pole
mass m

m0 = m + Σ(1) + Σ(2), (71)

which translates into

y0
b = yb(1 + a0δ(1)

y + a2δ(2)
y ), (72)

with

δ(1)
y = −CF (3L ′′ + 5),

δ(2)
y = CF NF

(
L ′′2 + 13

3
L ′′ + 2

3
π2 + 151

18

)
, (73)

where

L ′′ := ln
μ2

m2 . (74)

Equation (72) contains the bare QCD coupling. Inserting (68)
gives the desired two-loop relation between bare and renor-
malized Yukawa coupling

y0
b = yb(1 + aδ(1)

y + a2(δ(2)
y + δ(1)

a δ(1)
y )). (75)

4 H → bb̄ + j et s

In this section, we use FDR to reproduce the physical pre-
diction for the inclusive decay width of the Higgs into two b
jets up to the NNLO accuracy in the large NF limit of QCD.
That means computing the observable

Γ NNLO(yb) = Γ
(0)

2 (yb) + δΓ NF , (76)

where Γ
(0)

2 (yb) is the tree-level decay width and δΓ NF col-
lects all the NNLO terms proportional to α2

SNF .
The correction factor δΓ NF receives contributions from

processes with up to four final-state particles, namely:

– H → bb̄ up to two loops;
– H → bb̄g at the tree level;
– H → bb̄qq̄ at the tree level.

V
(1)
2 =

Fig. 8 The one-loop QCD correction to the Hbb̄ vertex

The tree- and one-loop two- and three-body decays in the
above list contribute to δΓ NF through renormalization. As a
matter of fact, due to the scalar nature of the Yukawa cou-
pling, Γ NNLO(yb) is a simple process in terms of the contribut-
ing tensor structures. Nevertheless, it requires the two-loop
renormalization of (75).

In the following, we compute all components in the mass-
less limit of QCD, namely with m �= 0 only in yb. Our nota-
tion is as follows. We dub V ( j)

i the H decay amplitudes into
i final state partons computed at the j th order of the QCD
perturbative expansion. We shall omit for brevity the multi-
plication of the appropriate quark spinors in any expressions
for the V ( j)

i . The decay widths are obtained by squaring the

amplitudes and are denoted by Γ
( j)
i .

In this paper we focus on the new aspects of FDR
at NNLO, namely the procedures presented in Sects. 2.1
and 2.2. For this reason we do not go into detail of the calcu-
lation of the NLO part. The corresponding expressions can
be computed as described in references [21,23]. However,
we emphasize that FDR NLO formulae stay the same also
when they contribute to a NNLO calculation. The same holds
true for LO expressions multiplying higher order corrections.
This is in contrast to d-dimensional regularization methods,
in which higher powers in the (d − 4) expansion must be
added.

4.1 H → bb̄ up to two loops

In our conventions, the lowest order H → bb̄ vertex is

V (0)
2 = δkl y

0
b , (77)

where k and l are the color indices of the bottom quarks.
Squaring V (0)

2 gives the LO H → bb̄ decay width

Γ
(0)

2 (y0
b ) = (y0

b )
2MH

NC

8π
, (78)

in which NC is the number of colors.
The one-loop correction is depicted in Fig. 8. Following

reference [21] one obtains

V (1)
2 = −δkl

(
α0
S

4π

)
y0
bCF L

′2, (79)
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with

L ′ := ln
μ2

−s − i0+ , s = M2
H , CF = N 2

C − 1

2NC
. (80)

The globally prescribed integral needed to compute the
two-loop correction is given by left part of Fig. 6. It reads

V̄ (2)
2 = δkl

yb
8
CF NF

α2
S

π6

∫
[d4q1][d4q2] N̄A + N̄B

q̄4
1 D̄1 D̄2q̄2

2 q̄
2
12

,

(81)

with D̄i given right after (52). Here we have replaced bare
quantities with renormalized ones, because the difference is
O(α3

S). In the following, we compute N̄A,B starting form
their unbarred counterparts NA,B , which can be obtained
from (7) by taking Fρ̂σ̂ = γρ̂(/q1 +/p1)(/q1 +/p2)γσ̂ . By denot-
ing /̂q2 := γρ̂q

ρ
2 = γσ̂q

σ
2 one finds

NA = /q1(/q1 + /p1)(/q1 + /p2)/q2 + /q2(/q1 + /p1)(/q1 + /p2)/q1,

NB = 2/̂q2(/q1 + /p1)(/q1 + /p2)/̂q2 − NV

8s
, (82)

where the last term originates from the piece we have studied
in detail in Sect. 2.3, with NV given in (53). NA does not
contribute to V̄ (2)

2 . In fact, a ū(p1)(u(p2)) is understood on
the l.h.s.(r.h.s.), so that, by virtue of the Dirac equation, one
can replace NA → N ′

A = D1(/q1 + /p2)/q2 + /q2(/q1 + /p1)D2,
giving

N ′
A →GP

N̄ ′
A = D̄1(/q1 + /p2)/q2 + /q2(/q1 + /p1)D̄2, (83)

which generates scale-less integrals. That explicitly proves
the WI in (25). As for the NB piece, there are several ways
[19,20] to deal with strings of γ -matrices to extract the
dependence on (qi · q j ) and q2

i needed to implement GP.
They are based on replacements of the type /qi → /qi − μi ,
where the “masses” μi serve as a bookkeeping tool. In this
paper we find it more convenient to use Clifford algebra until
we reach the configurations9

/qi/qi →GP
q̄2
i , /qi/q j →GP 1

2
(q̄2

i j − q̄2
i − q̄2

j + /qi/q j − /q j/qi ). (84)

9 Note the invariance of the last term under /qi → /qi − μi .

V
(0)
3 = +

Fig. 9 The LO Hbb̄g vertex

By using this method one finds NB →GP
N̄B � N̄ ′

B with

N̄ ′
B(q̄2

1 , q̂2
2 )

= −4(q1 · p1)q̂
2
2 + 8(q2 · p2)((q2 · q1) + (q2 · p1))

− 8

s
(P · q2)((q1 · p2)(q2 · p1) − (q1 · p1)(q2 · p2))

− sq̄2
1 . (85)

N̄ ′
B does not induce the appearance of global UV diver-

gences in (81), hence the numerator function directly reads
Z̄(q̄2

1 , q̂2
2 ) = N̄ ′

B(q̄2
1 , q̂2

2 ). Thus, the SIC preserving numer-
ator function is Z̃(q2

1 , q2
2 ) = N̄ ′

B(q2
1 , q2

2 ), and the two-loop
correction is

V (2)
2 = δkl

yb
8
CF NF

α2
S

π6

∫
d4q1[d4q2] Z̃(q2

1 , q2
2 )

q4
1 D1D2q̄2

2 q̄
2
12

. (86)

In terms of the master integrals listed in Appendix D it reads

V (2)
2 = δkl

4

3
ybCF NF

( αS

4π

)2
Ĩ1. (87)

4.2 H → bb̄g and H → bb̄qq̄ at the tree level

The LO H → bb̄g decay width is obtained by squaring the
V (0)

3 vertex drawn in Fig. 9 and integrating over a phase-
space in which all final-state particles acquire a small mass
μ, as described in reference [21]. The result is

Γ
(0)

3 =
(

α0
S

4π

)
Γ

(0)
2 (y0

b )CF (2L2 + 6L + 19 − 2π2), (88)

with L defined in (59).
As for H → bb̄qq̄ , two diagrams contribute to the ampli-

tude V (0)
4 . They can be read from Fig. 9 by allowing the

gluon to split into a qq̄ pair. As described in Sect. 2.2, Γ
(0)

4

is obtained by squaring V (0)
4 and integrating over a mas-

sive 4-particle phase-space Φ̃4 such that k2
1 = k2

2 = 0 and
k2

3 = k2
4 = μ2. Prior to integration, the integrand should be

modified according to the GP and SIC replacements given in
(46). As a result of this, the function to be integrated in (51)
is a rational combination of the invariants s34, s134, s234 and
μ2:

J̃R = J̃R(s34, s134, s234, μ
2), (89)
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where the μ2 dependence is induced by (45). It is interesting
to note this μ2 dependence factorizes. In particular, one finds

J̃R(s34, s134, s234, μ
2) = J̃ ′

R(s34, s134, s234)w(μ2), (90)

with

w(μ2) =
(

1 + 2
μ2

s34

)
. (91)

Therefore, (51) has the form of a massless-like matrix ele-
ment J̃ ′

R(s34, s134, s234), obeying all relevant WIs, times a
global factor w(μ2) integrated over a massive phase-space.
We conjecture that a similar gauge-invariant structure should
naturally appear also when dealing with more complicated
cases involving, for instance, IR divergences induced by vec-
tor particles like gluons.

In terms of the integrals reported in Appendix E the result
reads

Γ
(0)

4 = 64

3
CF NFΓ

(0)
2 (yb)

×
( αS

4π

)2 (
R̃8 + R̃7 + R̃6 − 2R̃5 − R̃4

)
. (92)

4.3 The large NF limit of the inclusive width

Here we gather all the calculated components and compute
Γ NNLO(yb) in (76). The correction factor δΓ NF receives con-
tributions from processes with up to four partons

δΓ NF = Γ
NF

2 + Γ
NF

3 + Γ
NF

4 , (93)

that are obtained by inserting the renormalization equations
(68) and (75) in the amplitudes given in the previous sections.

One finds

Γ
NF

2 = Γ 0
2 (yb)a

2

× 2�e
(
δV (2)

2 + δ(1)
a δV (1)

2 + δ(2)
y + δ(1)

a δ(1)
y

)
,

Γ
NF

3 = a2δ(1)
a Γ 0

2 (yb)CF (2L2 + 6L + 19 − 2π2),

Γ
NF

4 = a2CF NFΓ
(0)

2 (yb)

× 4

9

{
−L3 − 19

2
L2 − L

(
155

3
− 2π2

)
+ 30ζ3

+ 29

6
π2 − 4345

36

}
, (94)

where

δV (1)
2 = −CF (L ′)2,

δV (2)
2 = 2

9
CF NF

(
L ′3 + 5L ′2 + L ′

(
56

3
+ π2

)
− 12ζ3

+5

3
π2 + 328

9

)
. (95)

Equations (94) are written in a form that highlights the con-
tributions generated by renormalization. Collecting all the
pieces gives the IR finite result

Γ NNLO(yb) = Γ
(0)

2 (yb)

{
1 + a2CF NF

×
(

2 ln2 m2

s
− 26

3
ln

m2

s
+ 8ζ3 + 2π2 − 62

3

)}
. (96)

Equation (96) is written in terms of the pole mass m. It is
possible to reabsorb the large logarithms of the ratio m2/s
in a new Yukawa coupling yMS

b defined through the known
two-loop relation between m and the MS mass [26]. Using
the NF part of it gives

Γ
(0)

2 (yb) = Γ
(0)

2 (yMS
b (s))

{
1 + a2CF NF

×
(

−2 ln2 m2

s
+ 26

3
ln

m2

s
− 4

3
π2 − 71

6

) }
, (97)

hence

Γ NNLO(yMS
b (s)) = Γ

(0)
2 (yMS

b (s))

{
1 + a2CF NF

×
(

8ζ3 + 2

3
π2 − 65

2

) }
. (98)

Equation (98) coincides with the known MS result [27,28].

5 γ ∗ → j et s

In this section we compute the large NF limit of the inclu-
sive e+e− → γ ∗ → jets production rate up to the NNLO
accuracy. That is the observable

σ NNLO = σ
(0)
2 + δσ NF , (99)

where σ
(0)
2 is the tree-level e+e− → γ ∗ → qq̄ cross-

section and δσ NF contains the QCD corrections proportional
to α2

SNF . QCD renormalization only involves αS , in this case.
Nevertheless, higher rank tensors contribute, so that preserv-
ing gauge cancellations and unitarity in such an environment
provides a more stringent test for our procedures. In this
respect, γ ∗ → jets is complementary to H → bb̄ + jets.

The processes which contribute to δσ NF are

– e+e− → qq̄ up to two loops;
– e+e− → qq̄g at the tree level;
– e+e− → qq̄q ′q̄ ′ at the tree level,

where we understand a photon mediating the reactions. We
dub V ( j)β

i the final-state current producing i partons com-
puted at the j th QCD order, where β is the Lorentz index
of the virtual photon. The Feynman diagrams representing
the vertices are obtained from those in the previous section
by replacing the Higgs with a photon. Hence, we do not
draw them. Contracting V ( j)β

i with the initial-state current,
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squaring and integrating over the phase-space gives the cor-
responding cross section, denoted by σ

( j)
i .

In the following, we describe the FDR computation of the
various components.

5.1 e+e− → qq̄ up to two loops

The lowest order vertex is

V (0)β
2 = −ieQqδklγ

β, (100)

where Qq is the electric charge of the quark. The correspond-
ing cross section reads

σ
(0)
2 = NC

4

3
π

α2

s
Q2

q , (101)

in which α is the fine-structure constant.
The computation of V (1)β

2 is described in [23]. The result
is

V (1)β
2 = −a0CFV

(0)β
2 (L ′2 + 3L ′ + 7), (102)

with a0 and L ′ defined in (69) and (80), respectively.
The globally prescribed two-loop integral we need to com-

pute V (2)β
2 reads

V̄ (2)β
2 = (−ieQqδkl)

CF NF

8

α2
S

π6

×
∫

[d4q1][d4q2] N̄β

q̄4
1 D̄1 D̄2q̄2

2 q̄
2
12

. (103)

The unbarred Nβ is obtained from (7) with Fρ̂σ̂ = γρ̂(/q1 +
/p1)γ

β(/q1 + /p2)γσ̂ by using the fact that, according to the WI
in (25), the term proportional to qρ

2 q
σ
1 +qρ

1 q
σ
2 in the fermion

trace does not contribute.10 Hence

Nβ = +2(q2 · q12)(/q1 + /p2)γ
β(/q1 + /p1)

+ 2/̂q2(/q1 + /p1)γ
β(/q1 + /p2)/̂q2. (104)

Using tensor decomposition and the p1 ↔ p2 symmetry
gives Nβ →GP

N̄β � M̄β with

M̄β(q̄2
1 , q̂2

2 )

= +2γ β

{
4(q2 · p1)(q2 · p2)

+ 4

s
(q2 · P)

(
(q1 · p1)(q2 · p2) − (q1 · p2)(q2 · p1)

)

+ 2q̄2
1 (q1 · p1) − s

2
q̄2

1

}
+ 8(q1 · p1)/q2γ

β

− 4q̂2
2

{
(q1 · p1)γ

β + qβ
1 /q1

−2(q1 · p1)

q̄2
1

}
, (105)

where the factor −2(q1 · p1)/q̄2
1 multiplying the last term

subtracts its GV. Thus, the SIC preserving numerator function

10 The proof is analogous to the one given in Sect. 4.1.

is Z̃β(q2
1 , q2

2 ) = M̄β(q2
1 , q2

2 ), giving

V (2)β
2 = (−ieQqδkl)

CF NF

8

α2
S

π6

×
∫

d4q1[d4q2] Z̃β(q2
1 , q2

2 )

q4
1 D1D2q̄2

2 q̄
2
12

. (106)

In terms of the two-loop integrals in Appendix D one finds

V (2)β
2 = V (0)β

2
16CF NF

3
a2

(
Ĩ3 − Ĩ2 + Ĩ1

4

)
. (107)

5.2 e+e− → qq̄g and e+e− → qq̄q ′q̄ ′ at the tree level

A NLO computation produces

σ
(0)
3 = a0σ

(0)
2 CF (2L2 + 6L + 17 − 2π2), (108)

with L is given in (59).
As for σ

(0)
4 , it is obtained by computing the amplitude

squared, modifying it according to the prescription in (46)
and integrating over the Φ̃4 phase-space. In terms of the inte-
grals in Appendix E the result reads

σ
(0)
4 = 64

3
CF NFσ

(0)
2 a2

×(R̃7 + R̃6 − 2R̃5 − R̃4 + R̃3 + 2R̃2 − 2R̃1). (109)

5.3 The large NF limit of the inclusive jet production rate

Here we collect all components needed to compute σ NNLO.
The correction can be split as follows

δσ NF = σ
NF
2 + σ

NF
3 + σ

NF
4 , (110)

where the various contributions are obtained by inserting (68)
in the results of the previous sections. One has

σ
NF
2 = σ

(0)
2 a22�e

(
δV̂ (2)

2 + δ(1)
a δV̂ (1)

2

)
,

σ
NF
3 = a2δ(1)

a σ
(0)
2 CF

(
2L2 + 6L + 17 − 2π2),

σ
NF
4 = a2CF NFσ

(0)
2

4

9

{
− L3 − 19

2
L2

− L

(
146

3
− 2π2

)

+ 30ζ3 + 19

3
π2 − 2123

18

}
, (111)

with

δV̂ (1)
2 = −CF

(
L ′2 + 3L ′ + 7

)
,

δV̂ (2)
2 = 2

9
CF NF

{
L ′3 + 19

2
L ′2 + L ′

(
265

6
+ π2

)

−12ζ3 + 19

6
π2 + 3355

36

}
. (112)
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Gathering all the pieces gives

σ NNLO = σ
(0)
2 {1 + a2CF NF (8ζ3 − 11)}, (113)

which reproduces the MS result [29,30].

6 Conclusion and outlook

In this paper we have demonstrated that a fully four-
dimensional framework to compute NNLO quark-pair cor-
rections can be constructed based on the requirement of pre-
serving the two principles given in (1). The FDR idea of
enforcing gauge invariance and unitarity at the level of the
UV subtracted integrands is at the base of the procedures we
have used to define UV and IR divergent integrals.

A few advantages of such an approach that have appeared
in our calculation are, for the UV part

– no (explicit or implicit) UV counterterms have to be
included in the Lagrangian;

– lower-order substructures are used in higher-order calcu-
lations without any modification (see e.g. (79) and (102)).

For the IR sector

– infrared divergences in the real component directly show
up in terms of logarithms of a small cut-off parameter
μIR, with no need for a prior subtraction of 1/(d − 4)

poles (see, for instance, the four-parton rates in (94) and
(111));

– one-to-one integrand correspondences can be written
down between virtual and real contributions
(see Sect. 2.3).

In this paper we have focused our attention on a special
class of NNLO corrections. However, we believe that the
basic principles that have guided us towards a consistent
treatment of all the pieces contributing to the final NNLO
answer will remain valid also when considering more com-
plicated environments, with the final aim of constructing a
completely general procedure including also initial state IR
singularities. This is certainly the main subject of our future
investigations. Other possible directions are: using μIR as a
separation parameter in slicing-based subtraction methods
at NNLO [31], or exploiting the virtual/real integrand corre-
spondence to construct four-dimensional local counter-terms
directly from the virtuals,11 in the same spirit of the proce-
dure presented at NLO in the FDR section of [23].

11 A two-loop DReg algorithm along these lines has been recently pro-
posed in [32].

On a more general ground, we envisage that the intrinsic
four-dimensionality of FDR can pave the way to new numer-
ical methods and that there is room for fully exploiting its
potential in NNLO calculations.
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Appendix A: Sub-integration consistency with and w/o
IR divergences

When no IR infinities are present, the mismatch between
Eqs. (28) and (29) is cured by adding the so called extra-extra
integrals (EEI) introduced in [22]. Their exact definition is
not needed here. It suffices to say that terms proportional to
the difference

q2
2 − q̄2

2 = μ2 (A.1)

are included. They multiply UV 1/μ2 poles and generate log-
arithms of μ2 that restore the correct renormalization proper-
ties of the two-loop amplitude. Such contributions are missed
by (29).

In the presence of IR divergences an additional complica-
tion is generated by the GP q2

1 → q̄2
1 in (28) and (29). After

GV subtraction, the difference

μ2 = q2
1 − q̄2

1 (A.2)

also hits 1/μ2 poles of IR origin. This gives rise to different
renormalization constants for processes with or without IR
divergences, which is unacceptable. This leads to the choice
of letting q2

1 unbarred, as discussed in Sect. 2.1. For the
sake of consistency, also the EEIs part needs to be modified
accordingly. The problem is that the EEIs become unregu-
lated when unbarring q̄2

1 at the integrand level. The solution
to this is replacing EEIs with the difference of two ordinary
FDR integrals, generated by the combination

q2
2 − q̄2

2 , (A.3)

which is sometimes referred as an extra-integral (EI). One
shows that EEIs and EIs share the same logarithmic content,
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which fixes the correct UV behavior. In addition, EIs admit
the q̄2

1 → q2
1 limit that matches the rest of the calculation.

In summary, the solution presented in Sect. 2.1 is equiva-
lent to the following procedure:

– apply GP;
– subtract GV;
– downgrade q̄2

1 → q2
1 in the result;

– identify the EEIs to be added (using the same algorithm
as in the IR-free case);

– replace each EEI with the corresponding EI.

It would be interesting to establish whether this strategy
works also for IR finite two-loop calculations. That would
make unnecessary the use of the EEIs. We leave this to fur-
ther investigations.

Appendix B: Massless wave-function corrections

Wave function corrections are generated when the lower
gluon in Fig. 1b reconnects to the emitting massless parton. In
this appendix, we use the results of Sect. 2.1 to demonstrate
that they vanish.

The relevant integrand is obtained by taking Fρ̂σ̂ =
γρ̂(/q1 + /p)γσ̂ in (7), that gives N = NA + NB with

NA = /q1(/q1 + /p)/q2 + /q2(/q1 + /p)/q1,

NB = 2/̂q2(/q1 + /p)/̂q2 + 2(q2 · q12)(/q1 + /p). (B.4)

Furthermore, D = q4
1 Dp, so that the integrals we have to

consider are

ĪA,B =
∫

[d4q1][d4q2] N̄A,B

q̄4
1 D̄pq̄2

2 q̄
2
12

. (B.5)

One finds

NA →GP
N̄A= 2/q2 D̄p − /p(q̄2

12 − q̄2
1 − q̄2

2 )

−1

2
/p (/q1/q2 − /q2/q1) − 1

2
(/q2/q1 − /q1/q2) /p.

(B.6)

Only the third term contributes to ĪA. All the others generate
vacua or result from contractions of antisymmetric combina-
tions of γ -matrices with symmetric integrals. Thus

ĪA = /p
∫

[d4q1][d4q2] 1

q̄2
1 D̄pq̄2

2 q̄
2
12

. (B.7)

ĪA only depends on p2 = 0. In addition, it is both UV diver-
gent and logarithmically IR divergent, so that it is a scale-
less integral. Such integrals vanish in FDR as a consequence
of an exact cancellation between UV and IR singularities,

therefore ĪA = 0, as required by (25). In the same way, ĪB is
fully scale-less

ĪB =
∫

[d4q1][d4q2] 1

q̄4
1 D̄pq̄2

2 q̄
2
12

(−2q̂2
2 (/q1 + /p)

−q̄2
1 (/q1 + /p) − 2q̄2

1/q2 + 4(q2 · p)/q2) = 0, (B.8)

so that self-energy corrections ĪA + ĪB vanish.
The proof that scale-less integrals do not contribute can

be found in [20]. Here we prove that they vanish also when
q2

1 is unbarred, as in (35). We concentrate on first term of
(B.8)

ĪC :=
∫

[d4q1][d4q2] N̄C

q̄4
1 D̄pq̄2

2 q̄
2
12

, N̄C := q̂2
2 (/q1 + /p).

(B.9)

The proof is unchanged for all the other contributions. A GV
subtraction is needed in front of q̂2

2/q1. This is achieved by
using twice the identity in (15)

1

D̄p
=

[
1

q̄2
1

− 2(q1 · p)
q̄4

1

]

V

+ 4
(q1 · p)2

q̄4
1 D̄p

. (B.10)

The q̂2
2/p piece is less UV divergent, so that a single subtrac-

tion is sufficient

1

D̄p
=

[
1

q̄2
1

]

V

− 2(q1 · p)
q̄2

1 D̄p
. (B.11)

The vacua are subtracted by the integral operator. That
defines the numerator function associated with N̄C

Z̄C (q̄2
1 , q̂2

2 ) = 4(q̂2
2/q1)

(q1 · p)2

q̄4
1

− 2(q̂2
2/p)

(q1 · p)
q̄2

1

. (B.12)

Hence

Z̄C (q̄2
1 , q̂2

2 ) →SIC Z̃C (q2
1 , q2

2 ) = +4(q2
2/q1)

(q1 · p)2

q4
1

− 2(q2
2/p)

(q1 · p)
q2

1

, (B.13)

which produces

ĨC = + 4
∫

d4q1[d4q2]q
2
2/q1(q1 · p)2

q8
1 Dpq̄2

2 q̄
2
12

− 2/p
∫

d4q1[d4q2] q
2
2 (q1 · p)

q6
1 Dpq̄2

2 q̄
2
12

. (B.14)

ĨC diverges logarithmically in the double collinear configu-
ration in the absence of regulator. The barred q2-type denom-
inators are sufficient to regulate this. That is a consequence of
the fact that (B.10) and (B.11) do not alter the IR power count-
ing. By tensor decomposition ĨC ∼ /p

(
p2/μ2 + O(p4/μ4)

)
,

so that it vanishes on-shell. In summary, the GV subtraction
does not leave finite pieces in scale-less integrals.
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iΣ(1)(/p) =

iΣ(2)(/p) =
p q1+p

Fig. 10 The one- and two-loop QCD corrections to the massive bottom
propagator. NF quarks run in the loop

Appendix C: Correcting the bottom propagator

To renormalize the Yukawa coupling, we need the one- and
two-loop QCD corrections of Fig. 10 computed at the value
/p = m. We dub them Σ( j) := Σ( j)(/p = m).

One finds

Σ(1) = −m

(
α0
S

4π

)
CF

(
3L ′′ + 5

)
, (C.15)

with L ′′ in (74).
As for the second order contribution, one has

iΣ̄(2) = −i
2

π4CF NF

( αS

4π

)2

×
∫

[d4q1][d4q2] N̄ (/p = m)

q̄4
1 D̄pq̄2

2 q̄
2
12

∣∣∣∣∣
p2=m2

, (C.16)

with Dp = q2
1 + 2(q1 · p). The unbarred N (/p) is given

by (7) with Fρ̂σ̂ = γρ̂(/q1 + /p + m)γσ̂ . The result reads
N (/p) = NA(/p) + NB(/p), where

NA(/p) = /q1(/q1 + /p + m)/q2 + /q2(/q1 + /p + m)/q1

= 2/q2Dp − (/p − m)/q1/q2 − /q2/q1(/p − m),

NB(/p) = 2(q2 · q12)(/q1 + /p − 2m) + 2/̂q2(/q1 + /p + m)/̂q2.

(C.17)

When barring NA one obtains a vanishing contribution to
iΣ̄(2). As for NB , one computes NB(/p = m) = 2(q2 ·
q12)(/q1 − m) + 4(q1 · q2)/q2 − 2q̂2

2 (/q1 − 2m). Using tensor
decomposition gives

NB(/p = m) →GP
N̄B(/p = m) � N̄ ′

B(/p = m), (C.18)

with

N̄ ′
B(/p = m) = m(q̄2

1 − 2q̂2
2 ((q1 · p)/m2 − 2)). (C.19)

To subtract the GV from N̄ ′
B we expand 1/D̄p = 1/q̄2

1 +
λ̄/D̄p with λ̄ = −2(q1 · p)/q̄2

1 , that gives the numerator
function

Z̄(q̄2
1 , q̂2

2 ) = m(q̄2
1 λ̄ − 2q̂2

2 ((q1 · p)/m2λ̄2 − 2λ̄)). (C.20)

Hence

Z̄(q̄2
1 , q̂2

2 ) →SIC Z̃(q2
1 , q2

2 )

= m(q2
1λ − 2q2

2 ((q1 · p)/m2λ2 − 2λ)), (C.21)

where λ = −2 (q1·p)
q2

1
. In summary, the two-loop correction is

Σ(2) = − 2

π4CF NF

( αS

4π

)2

×
∫

d4q1[d4q2] Z̃(q2
1 , q2

2 )

q4
1 Dpq̄2

2 q̄
2
12

∣∣∣∣∣
p2=m2

= 4m
( αS

4π

)2
CF NF (2 Ĩ5 − Ĩ4), (C.22)

with Ĩ4,5 written in Appendix D.

Appendix D: The virtual master integrals

In this appendix we sketch out the computation of the two-
loop integrals appearing in our calculation.

The q2 integration is performed first.12 This means com-
puting

B ;α;αβ :=
∫

[d4q2]1; qα
2 ; qα

2 q
β
2

q̄2
2 q̄

2
12

. (D.23)

As for B, we use the expansion in (41) to subtract its sub-
vacuum. Then we use Feynman parametrization and integrate
over the UV finite remainder. The result is

B = −iπ2q2
1

∫ 1

0
dx

(
1

x
− 2

)
1

D0
, (D.24)

with

D0 := q2
1 − μ2

0, μ2
0 := μ2

x(1 − x)
. (D.25)

To determine Bα we use tensor decomposition

Bα = qα
1

2

∫
[d4q2]q

2
12 − q2

2 − q2
1

q2
1 q̄

2
2 q̄

2
12

. (D.26)

The first two terms cancel each other due to the q2
2 ↔ q2

12
symmetry of the integral. Thus

Bα = −qα
1

2
B. (D.27)

Finally, tensor decomposition gives

Bαβ = 1

3

∫
[d4q2] 1

q̄2
2 q̄

2
12

{
q2

2

(
gαβ − qα

1 q
β
1

q2
1

)

− (q1 · q2)
2

q2
1

(
gαβ − 4

qα
1 q

β
1

q2
1

)}
. (D.28)

12 Assuming the appropriate GV subtraction in the rest of the integral.
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The coefficients are obtained by subtracting the SV by means
of (19), and integrating over the finite part. The result reads

∫
[d4q2] q2

2

q̄2
2 q̄

2
12

= − iπ2

2
q4

1

∫ 1

0
dx(4x2 − 1)

1

D0
,

∫
[d4q2] (q1 · q2)

2

q̄2
2 q̄

2
12

= q4
1

4
B. (D.29)

When inserting these results in Eqs. (86) and (106) one
finds that the two-loop vertex corrections can be expressed
in terms of three master integrals

Ĩ j := s2− j i

π2

∫ 1

0
dx

(
1

x
− 3 + 4x2

)

×
∫

d4q1
(q1 · p1)

j−1

D0D1D2
, j = 1, 2, 3, (D.30)

where Ĩ2 is UV finite because p2
1 = 0. Integrating over q1

and x and neglecting O(μ2) terms gives

Ĩ1 = 1

6

(
L ′3 + 5L ′2 + L ′

(
56

3
+ π2

)

−12ζ3 + 5

3
π2 + 328

9

)
,

Ĩ2 = −1

4

(
L ′2 + 16

3
L ′ + π2

3
+ 104

9

)
,

Ĩ3 = − 1

16

(
L ′2 + 13

3
L ′ + π2

3
+ 151

18

)
, (D.31)

with L ′ given in (80).
Finally, the two-loop integrals in (C.22) are

Ĩ4 := i

π2

∫ 1

0
dx

(
1

x
− 4 + 8x2

)

×
∫

d4q1
(q1 · p1)

q2
1 DpD0

∣∣∣∣∣
p2=m2

,

Ĩ5 := i

π2m2

∫ 1

0
dx

(
1 − 4x2

)

×
∫

d4q1
(q1 · p1)

3

q4
1 DpD0

∣∣∣∣∣
p2=m2

. (D.32)

Their asymptotic expansions read

Ĩ4 = −1

4
L ′′2 − 7

6
L ′′ − π2

6
− 41

18
,

Ĩ5 = − 1

24
L ′′ − 13

144
, (D.33)

with L ′′ in (74).

Appendix E: The real integrals

The real component of the NNLO corrections computed in
this paper can be expressed in terms of the following eight
integrals

R̃1 := 1

sπ3

∫
d4Φ̃4 w(μ2)

1

s134
,

R̃2 := 1

π3

∫
d4Φ̃4 w(μ2)

1

s134s234
,

R̃3 := 1

sπ3

∫
d4Φ̃4 w(μ2)

s34

s134s234
,

R̃4 := 1

π3

∫
d4Φ̃4 w(μ2)

1

s2
134

,

R̃5 := 1

π3

∫
d4Φ̃4 w(μ2)

1

s134s34
,

R̃6 := 1

sπ3

∫
d4Φ̃4 w(μ2)

s234

s134s34
,

R̃7 := s

π3

∫
d4Φ̃4 w(μ2)

1

s34s134s234
,

R̃8 := 1

sπ3

∫
d4Φ̃4 w(μ2)

1

s34
, (E.34)

with w(μ2) given in (91).
To compute the R̃i s it is convenient to use the following

phase-space parametrization

∫
dΦ̃4 = s2π3

8

∫ (1−2ε)2

4ε2
dz

√
1 − 4ε2/z

×
∫ 1

z
dy

∫ 1−y+z

z
y

dx, (E.35)

where z = s34/s, y = s234/s, x = s134/s, and ε2 = μ2/s.
The asymptotic μ2 → 0 behavior can be extracted with the
change of variable τ = 4ε2/z, to be used when limε→0

cannot be taken before integration.
The first three integrals are IR finite

R̃1 = 1

32
,

R̃2 = π2

48
− 1

8
,

R̃3 = −π2

96
+ 7

64
. (E.36)

As for the remaining ones, (E.35) gives

R̃4 = − L

16
− 25

96
,

R̃5 = L2

16
+ 11

24
L − π2

48
+ 85

72
,

R̃6 = L2

32
+ 11

48
L − π2

96
+ 349

576
,
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R̃7 = − L3

48
− 5

48
L2 + L

(
π2

24
− 7

18

)
+ 5

8
ζ3

+ 5

72
π2 − 41

54
,

R̃8 = R̃4, (E.37)

with L written in (59).
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