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Abstract In the present work, we try to find a solution with-
out singularity of Einstein’s field equations for the spher-
ically symmetric perfect fluid objects, accurately strange
quark spheres, taking into consideration Schwarzschild met-
ric as the outside space-time. An ensemble of inside solu-
tions found on the basis of the simplest linear state equa-
tion in the specific form pr = αρ − β. The energy den-
sity ρ(r), the radial pressure pr (r) and the tangential pres-
sure pt (r) are devoid of any singularity and exhibit a well-
behaved nature within the generalized anisotropic solution
for compact spherical object. The generalized TOV equa-
tion is very much preserved inside the system and all energy
conditions are excellent. The stability of the matter distribu-
tion of our system is checked by the concept of Herrera’s
cracking and the condition of causality is all around fulfilled
for our models. The adiabatic index of our specific configura-
tion is greater than 4/3 in all interior points of the system and
the mass-to-radius ratio in our situation is determined also
lies within the Buchdahl limit i.e. M/R ≤ 4/3 (≈ 0.444).
We explore the physical characteristics based on the analyt-
ical model developed for relativistic compact stellar spheres
inside the framework of the general theory of relativity. The
evaluated mass and radius are in close concurrence with the
observational information. We show that various physical
characteristics of the known strange spherical object, viz.
PSR J1614-2230, Vela X-1, 4U 1608-52, PSR J1903+327,
4U 1820-30, Cen X-3, Her X-1, and SAX J1808.4-3658, can
be described by the current model.

a e-mail: abdelghani.errehymy@gmail.com
b e-mail: m_daoud@hotmail.com
c e-mail: hassayout@yahoo.fr

1 Introduction

In the midst of the sphere’s main sequence, hydrogen fuel
combustion happens in the central zone in order to main-
tain the equilibrium of the star corresponding to the internal
gravitational force. Burned hydrogen is the most productive
wellspring of energy for any sphere assembled in principle
and continues easily with no ferocious occasions, providing
the star with the primary gauge of external pressure as well
as the development of the helium center. However, beyond
the combustion of Hydrogen, all other atomic combustion
phases such as Helium combustion, Carbon combustion may
happen on some cataclysmic occasions, for instance, plane-
tary cloud, an explosion of supernovae joined by huge mass
expulsion. In these occasions, the sphere center is too much
packed prompting the configuration of relativistic compacts
stellar spheres such as neutron star, white dwarfs, and black
holes. Besides, the destiny of the packed center will be dic-
tated by the underlying mass of its sphere of ancestor. The
matter is to a great degree thick for the previously mentioned
relativistic compacts stellar spheres in this way showing some
extraordinary conduct and brings about unusual variation in
space-time structure throughout it. The extraordinary states
of energy density and pressure interior the sphere of the neu-
tron can cause the neutron stage change into bosons, hyper-
ons, and other strange quark matter. The more rigid states
equation is necessary to clarify the conduct of the strange
matter of the quark and other exotic states of matter [1–4].
The modeling of ultra-dense configurations in astrophysics
of relativistic has aroused huge concern for astrophysicists
in recent decades. The ongoing advances in observational
procedures have uncovered numerous characteristics of the
relativistic compacts stellar spheres yet at the same time;
numerous lacunae are there to be settled. The hypothetical
investigation of the nature and exact constitution of com-
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pact relativistic stellar spheres within the framework of the
general relativity hypothesis is of fundamental importance
for astrophysics. It encourages researchers to understand the
interactions of particles with high density and to study their
different stages of development as well as their internal char-
acteristics. The compactification parameter of dead objects
exits them from the condition of isotropic and matter demon-
strates the anisotropic behavior which explains the difference
in many of the characteristics of the compact objects.

In order to comprehend the inside configuration and trans-
formative phases of relativistic compact stellar spheres, the
anisotropic fluid appropriation plays a principal goal. As the
relativistic compact stellar spheres have heavy centers and
their densities surpass the density of nuclear, along these
lines, pressure should be anisotropic interior the relativis-
tic compact stellar spheres [5,6]. In the anisotropic distribu-
tion of matter, it is seen that pressure is parceled into radial
and tangential constituents. In this case, numerous special-
ists have studied the features of dense relativistic compact
stellar spheres with anisotropic fluid geometry. Hossein et al.
[7] examined the highlights of anisotropic relativistic spheres
with constant of cosmology and discovered stable astrophys-
ical spheres configuration. Kalam et al. [8] analyzed the rela-
tivistic modeling of anisotropic neutron spheres and verified
the availability of stability, anisotropy estimation and energy
conditions with quintessence dark energy. Paul and Deb [9]
detailed new exact solutions of relativistic compact stellar
spheres for anisotropic matter distribution, which keep up
the equilibrium of hydrostatic.

In relativistic compact stellar spheres, the more dense
neutron spheres can additionally be fell to frame a black
hole while for less dense neutron spheres, it is possible to
transform into a quark sphere. It is predicted that the inside
matter appropriation of quark spheres is expected to be pro-
cessed using the state equation of the MIT quark bag model
[10,11]. In recent years, the investigation of quark spheres
has roused numerous physicists to examine its characteris-
tics and in addition, their inside configuration. In this way,
Bhar [12] analyzed features of PSR J1614-2230, 4U1820-30
and SAX J 1808.4-3658 spheres using the state equation of
MIT quark bag model and gotten stability structure of these
spheres. Rahaman et al. [13] suggested another mass inser-
tion expression for the candidates of strange sphere with the
state equation of MIT-Bag model and researched the physi-
cal conduct of spheres from 6 km to the limit surface. Differ-
ent all around carried on solutions of Einstein’s field equa-
tions have been investigated by forcing the barotropic state
equation on the inside of the spherical object. Sharma and
Ratanpal [14] have been proposed a relativistic astrophys-
ical model conceding a quadratic state equation. Malaver
[15,16] examined a quadratic state equation for the distribu-
tion of matter and proposed special shapes for line element
potentials in order to build compact spherical object mod-

els. a few latest models of anisotropy for compact spherical
objects with a distribution of strange matter incorporate the
consequences of Sharma and Maharaj [17] and Lobo [18]
with a barotropic state equation. Komathiraj and Maharaj
[19] studied the anisotropic compact spherical object mod-
els of quark spheres obeying the state equation of the MIT
bag model. However, can be noted that recent works con-
cerning the distribution of the anisotropic matter, where a
few specialists have considered the anisotropy is related to
compact stellar objects [20–41].

Our objective in this paper is to present a new interior
anisotropic solution to the Einstein field equations relativistic
compact stellar sphere by using a linear state equation of the
form pr = αρ − β. We investigate the physical properties
from the analytical model developed for compact spheres
inside the framework of the general theory of relativity. The
estimated mass and radius are in close agreement with the
observational data. We show that various physical properties
of the known strange spherical object, such as PSR J1614-
2230, Vela X-1, 4U 1608-52, PSR J1903+327, 4U 1820-30,
Cen X-3, Her X-1, and SAX J1808.4-3658, can be portrayed
by our model.

The outline of this article is as follows: In Sect. 2, we
present the interior metric and the corresponding Einstein
field equations of anisotropic fluid distributions. The Gener-
alized anisotropic solutions for compact spherical object are
discussed in Sect. 3. The other characteristics are given in the
Sects. 4 and 5, and a comparative study are given in Sect. 6.
Concluding remarks close this paper.

2 Interior solution and Einstein field equations of
anisotropic fluid distributions

We will consider a model which portrays a static spherically
symmetric anisotropic fluid configuration governed by the
linear equation of state of type p = αρ − β. The interior
of static spherically symmetric objects is described by the
canonical line element

ds2 = −eν(r)dt2 +
(

1 + r2

R2

)
dr2 + r2d�2, (1)

where d�2 = dϑ2 + sin2ϑdϕ2 is the metric on the unit
2-sphere, ν(r) is arbitrary functions of the radial parameter
r yet to be established. Also, having a momentum-energy
tensor depicted for the astrophysical fluid filling the inside
of the object has the standard form

Tμν = (ρ + pt ) uμuν + pt gμν + (pr − pt ) vμvν, (2)

where ρ(r) is the energy density, pr is the radial pressure
measured in the direction of vμ, pt is the transverse pressure
measured in the orthogonal direction of vμ, uμ is the vector
4-velocity, vμ is the space-like vector in the radial direction.
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Einstein’s field equations for the line element (1), appro-
priately, are gotten as (we set G = c = 1)

ρ(r) = 1

8πR2

(
3 + r2

R2

) (
1 + r2

R2

)−2

, (3)

pr (r) = 1

8π

{(
1

r

dν(r)

dr
+ 1

r2

)(
1 + r2

R2

)−1

− 1

r2

}
, (4)

pt (r) = 1

8π

{(
1

2

d2ν(r)

dr2 + 1

2r

dν(r)

dr

+1

4

(
dν(r))

dr

)2
) (

1 + r2

R2

)−1

− 1

R

(
1 + r

2

dν(r))

dr

) (
1 + r2

R2

)−2
}

. (5)

At this stage, we have a system of equations constituted by
three equations, specifically, the field Eqs. (3)–(5), and four
unknowns i.e., ρ(r), pr (r), pt (r) and ν(r). By reasonably
picking any of these unknown parameters, the system might
be determined. Our goal here is to build up a model for com-
pact object and, in this manner; it is helpful now to present
the fluid with the most straightforward type of the compact
object state equation in the specific form

pr = αρ − β, (6)

with α is real such that 0 < α ≤ 1, and β = αρs is the surface
density [17]. Replacing Eq. (6) in Eq. (4) and incorporating,
we choose the undetermined metric expression ν(r) in the
form

ν(r) = α ln
(
r2 + R2

)

−2πβ

R2 r2
(
r2 + 2R2 − 1

3πβ

)
+ ν1, (7)

and ν1 is the integration constant.
From the above system Eqs. (3)–(5) and utilizing the

Eq. (7), we verify that the physical parameters for this model
are written as :

ρ(r) = 1

8πR2

(
3 + r2

R2

)(
1 + r2

R2

)−2

, (8)

pr (r) = 1

8πR2

{
α

(
3 + r2

R2

) (
1 + r2

R2

)−2

− 8πβR2

}
,

(9)

pt (r) =
(

1 + ( r
R

)2
)−2

24πR2

{(
1 +

( r

R

)2
)

×
[

64π2R4β2
( r

R

)6 +
(

128π2R4β2 − 16πR2β

−8πR2β

(
1 +

( r

R

)2
)−1

)( r

R

)4

+
(

64π2R4β2 − 16πR2β − 8πR2β

(
1 +

( r

R

)2
)−1

−3α

(
1 +

( r

R

)2
)−2

+9

(
1 +

( r

R

)2
)−1

+ 4α

) ( r

R

)2

+3α

(
1 +

( r

R

)2
)−2

+ 3α

(
1 +

( r

R

)2
)−1

− 8πR2β

]

+
[

6α

((
3 +

( r

R

)2
))

+
(

3α

(
1 +

( r

R

)2
)−1

+ 12πβR2
((

1 +
( r

R

)2
))) ( r

R

)2
]}

. (10)

3 Generalized anisotropic solution for compact
spherical object

We notice that the physical properties of the model rely upon
the constants R, α and β. We have to put proper limits on
these parameters aiming that the model can depict a reason-
able compact spherical object. To this end, in view of dif-
ferent physical prerequisites, let us currently break down the
conduct of the physical parameters.

We assume that a is the radius of the compact spherical
object. At that point, from Eq. (8), the surface and focal den-
sities are respectively acquired as

ρ(a) = ρs = 1

8πR2

(
3 +

( a

R

)2
) (

1 +
( a

R

)2
)−2

, (11)

ρ(0) = ρc = 3

8πR2 . (12)

We likewise have

ρ′ (r) = − r

4πR4

(
5 +

( r

R

)2
)(

1 +
( r

R

)2
)−3

< 0 (13)

ρ′ (r = 0) = 0 (14)

ρ′′ (r = 0) = − 5

4πR4 < 0 (15)

the prime signifies the differentiation on r . Clearly, the den-
sity is greatest at the core of the compact spherical object and
it diminishes radially outward.

Similarly, the radial pressure can be written as

p′
r (r) = − αr

4πR4

(
5 +

( r

R

)2
)(

1 +
( r

R

)2
)−3

< 0, (16)

p′
r (r = 0) = 0, (17)

p′′
r (r = 0) = − 5α

4πR4 < 0, (18)

which indicates that the radial pressure additionally dimin-
ishes from the core of the compact spherical object towards
the limit. In this manner, the radial pressure and the energy
density are all around carried on in the inside of the astrophys-
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Fig. 1 Profile of the matter density ρ with the radial coordinate r of
our model for spherical object Cen X-3

ical configuration. Behaviors of the energy density ρ(r), the
radial pressure pr (r) and the tangential pressure pt (r) have
been presented in Figs. 1, 2 and 3, respectively. It is to be
noted here that, like the slope in Maurya et al. [32,39] which
arguably described the SMC X-1, Herx X-1, 4U 1538-52 and
RXJ 1856-37, and include anisotropy which vanishes at the
boundary, the equation of state becomes much gentler, i.e.
dpr/dρ equals the constant parameter α.

Using Eqs. (9) and (10) we get


(r) =
(

1 + ( r
R

)2
)−2

24πR2

×
{(

1 +
( r

R

)2
) [

64π2R4β2
( r

R

)6

+
(

128π2R4β2 − 16πR2β

−8πR2β

(
1 +

( r

R

)2
)−1

)( r

R

)4

+
(

64π2R4β2 − 16πR2β − 8πR2β

(
1 +

( r

R

)2
)−1

−3α

(
1 +

( r

R

)2
)−2

+9

(
1 +

( r

R

)2
)−1

+ 4α

) ( r

R

)2

+3α

(
1 +

( r

R

)2
)−2

+ 3α

(
1 +

( r

R

)2
)−1

− 8πR2β

]

+
[

6α

((
3 +

( r

R

)2
))

+
(

3α

(
1 +

( r

R

)2
)−1

+12πβR2 ×
((

1 +
( r

R

)2
))) ( r

R

)2
]}

− 1

8πR2

{
α

(
3 + r2

R2

) (
1 + r2

R2

)−2

− 8πβR2

}
. (19)
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Fig. 2 Profile of the radial pressure pr with the radial coordinate r of
our model for spherical object Cen X-3
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Fig. 3 Profile of the tangential pressure pt with the radial coordinate
r of our model for spherical object Cen X-3


(r) = pt (r) − pr (r) is signified as the anisotropic param-
eter. It is a measure of the anisotropic pressure of the fluid
including the compact spherical objet. 
(r) = 0 matching to
the special situation of a isotropic pressure spherical object.
Notice that 2
(r)/r symbolizes a force appropriate to the
anisotropic nature of the astrophysical form, which is repul-
sive, i.e., being outward directed if 
(r) > 0, and attrac-
tive if 
(r) < 0. We notice that our model is necessarily
anisotropic for 
(r) �= 0 in general, even in the simplest
case of the distribution of matter. Some treatments of the
physical properties of anisotropic objects in general relativ-
ity include investigations of Maharaj and Chaisi [42], Dev
and Gleiser [43,44], Mak and Harko [45,46], and Chaisi
and Maharaj [47,48]. Figure 4 illustrates the nature of the
anisotropic pressure at the spherical object inside for a spe-
cific case.
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Fig. 4 Profile of the anisotropy parameter, 2
/r , with the radial coor-
dinate r of our model for spherical object Cen X-3

The condition that the anisotropic parameter 
(r) ought
to vanish at the core (r = 0) yields

3α − 8πR2β = 0 (20)

which can be utilized to compute the constant β for a specific
choice of the constant α.

4 Matching conditions

In this part, we compare the interior space-time (M−)

with the exterior space-time (M+) depicted by the external
Schwarzschild solution in the approaching isotropic coor-
dinates at the limit of the spherical object r = a, the inside
metric ought to be matched to the Schwarzschild outside met-
ric. The development of the metric functions over the limit
surface yields
(

1 +
( a

R

)2
)−1

= 1 − 2M (R)

a
, (21)

ν (r = a) = ln

(
1 − 2M (R)

a

)
= α ln

(
a2 + R2

)

−2πβ
( a

R

)2
(
a2 + 2R2 − 1

3πβ

)
, (22)

where M (R) denotes the total mass of the spherical object
of radius R.

From Eq. (21), we get the expression for the compactness
of the spherical object as

M (R)

a
= 1

2

( a

R

)2
(

1 +
( a

R

)2
)−1

. (23)

We consider standard matter with a spherically symmetric
anisotropic fluid where the radial pressure must be finite and
positive interior the spherical object, and vanishes at the limit
r = a of the spherical object. This later condition that the

radial pressure must vanish at the limit (pr (r = a) = 0)

gives

β = α

8πR2

(
3 +

( a

R

)2
)(

1 +
( a

R

)2
)−2

, (24)

which imposes a limitation of the parameters α which can be
solved in case we indicate the radius of the spherical object.

5 Physical properties of the spherical objects

In this section, we will discuss various physical character-
istics of strange spherical objects using the previously pro-
posed model.

5.1 Stability of the system

5.1.1 The Tolman–Oppenheimer–Volkoff equation

To examine the stability of the framework, we verified
the stability equation given by Tolman [49], Oppenheimer
and Volkoff [50]. The Tolman–Oppenheimer-Volkoff (TOV)
equation represents the equilibrium condition of a spheri-
cal object subject to the gravitational force, anisotropy force
and hydrostatic force. The generalized TOV equation can be
composed as follows [20,51]:

dpr
dr

+ 1

2
(ρ + pr )

dν

dr
+ 2

r
(pr − pt ) = 0. (25)

We rewrite this Eq. (25) in the form

−MG

r2 (ρ + pr ) exp

(
λ − ν

2

)

−dpr
dr

+ 2

r
(pt − pr ) = 0, (26)

where MG is the effective gravitational mass inside a spher-
ical object of radius r and is given by the Tolman–Whittaker
procedure as follows

MG = 1

2
r2exp

(
ν − λ

2

)
dν

dr
. (27)

Finally the modified TOV equation in a simply form given
by above Eq. (26), describes the equilibrium condition for
anisotropic fluid spheres, the three forces are reactivated,
namely, the gravitational (Fg), the hydrostatics (Fh) and the
anisotropic (Fa) forces are given by :

Fg + Fh + Fa = 0, (28)

where

Fg = −1

2
(ρ + pr )

dν

dr
, (29)

Fh = −dpr
dr

, (30)
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Fig. 5 Profile of the three different forces, Fa , Fh and Fg against the
radial coordinate r of our model for spherical object Cen X-3, with
M/a = 0.33

Fa = 2

r
(pt − pr ) . (31)

To make simpler these Eqs. (29)–(31) alluded above, we have
plotted the variations of Fg , Fh , and Fa are the exhibit in
Fig. 5. This figure shows that our proposed model is in static
equilibrium is practicable for the reason that to pressure grav-
itational, hydrostatic and anisotropy forces.

5.1.2 The status of the speed of sound within the system

To check the potential stability or instability of our system we
have used the concept of Herrera’s cracking [52]. The causal-
ity condition determines the physical acceptability admitted
for the fluid distribution which requires 0 < v2

sr ≤ 1 and
0 < v2

st ≤ 1. According to the condition of Herrera [52]
and Andréasson [53] for the stability of the distribution of
matter, the region for which

∣∣v2
st − v2

sr

∣∣ ≤ 1 i.e. no crack-
ing is a potentially stable region. In Fig. 6, we observe that∣∣v2

st − v2
sr

∣∣ ≤ 1 in the region for which r ≤ 9.819. This
implies that our system meets all these conditions and that it
is potentially stable in this region. The tangential and radial
speeds of sound are defined respectively as vst = √

dpt/dρ
and vsr = √

dpr/dρ.

5.1.3 Adiabatic index

According to Heintzmann and Hillebrandt [54], an anisotropic
compact spherical object model will be stable if Γ > 4/3
everywhere in the interior of the spherical object where the
adiabatic index Γ is defined as

Γ =
(

ρ + pr
pr

)
dpr
dρ

. (32)
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Fig. 6 Profil of the square of radial v2
sr and tangential v2

st speed of
sound and modulus of difference of the square of speed of sound∣∣v2

st − v2
sr

∣∣ with the radial coordinate r of our model for spherical object
Cen X-3, for β = 110.66 Mev/fm−3 and α = 0.333
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Fig. 7 Profile of the adiabatic index, Γ , with the radial coordinate r
of our model for spherical object Cen X-3

We rewrite the above equation in the form

Γ = 2α

(
3 + ( r

R

)2
)

− 4πβR2
(

1 + ( r
R

)2
)2

(
3 + ( r

R

)2
)

− 8πβR2
(

1 + ( r
R

)2
)2 (33)

The adiabatic index, , with the radial coordinate r of our
model for spherical object Cen X-3 is motivated by the fact
that it gives a monotonically increasing function in the stellar
inside. Similar forms for the adiabatic index have earlier been
considered by Maurya et al. [32] for anisotropic fluid stars.
Figure 7 clearly shows that the adiabatic index of our spe-
cific configuration is greater than 4/3 in all interior points
of the specific configuration. This characteristic obviously
indicates that the system in this work is stable.
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Table 1 Physical parameters for different anisotropic astrophysical models for α = 0.333

Observed objects Radius M Radius M/a β ρ(0) pr (0)

a (km) (M�) R (km)
(
MeV fm−3

) ( ×1015

gm cm−3

) ( ×1035

dyne cm−3

)

PSR J1614-2230 10.300 1.970 9.69 0.280 106.66 1.421 2.482

Vela X-1 10.143 1.770 9.56 0.260 108.00 1.299 2.116

4U 1608-52 10.105 1.740 9.52 0.255 110.60 1.272 2.035

PSR J1903+327 10.017 1.667 9.43 0.245 112.07 1.198 1.813

4U 1820-30 10.000 1.580 9.31 0.235 114.90 1.113 1.558

Cen X-3 9.819 1.490 9.17 0.225 118.26 1.042 1.347

Her X-1 6.700 0.880 8.10 0.168 132.96 1.381 4.145

SAX J1808.4-3658 7.070 1.435 7.95 0.299 217.08 4.808 14.425

5.2 Energy conditions

An acceptable compact spherical object must satisfy the
energy conditions, in specific, the strong (SEC), weak
(WEC), null (NEC) and dominant (DEC) energy conditions
defined below:

SEC: ρ(r) + pr (r) + 2pt (r) ≥ 0, (34)

WEC: ρ(r) + pr (r) ≥ 0, (35)

NEC: ρ(r) + pt (r) ≥ 0, (36)

DEC: ρ(r) ≥ |pr (r)| , |pt (r)| . (37)

For the specific astrophysical configuration generated
here, the availability of inequalities (42)–(45) has been high-
lighted some limitations on the model parameters. In our
model, applying these energy conditions to the center (r = 0)

we obtain the following limits:

SEC: ρ(0) + pr (0) + 2pt (0) ≥ 0,⇒ β ≤ 9 + 57α

40πR2 ,

i.e. β ≤
(

3 + 19α

5

)
ρc, (38)

WEC: ρ(0) + pr (0) ≥ 0,⇒ β ≤ 3 (α + 1)

8πR2 ,

i.e. β ≤ (α + 1) ρc, (39)

NEC: ρ(0) + pt (0) ≥ 0,⇒ β ≤ 3 (8α + 3)

8πR2 ,

i.e. β ≤ (8α + 3) ρc, (40)

DEC: ρ(0) ≥ |pr (0)| , |pt (0)| , i.e. β ≤ (α + 1) ρc,

or β ≤ (8α + 3) ρc, (41)

where ρ(0) = ρc is the central density. We have demon-
strated the profiles of all the previously mentioned energy
inequalities and remarkably our system is predictable with
all the energy conditions. The values of the model parame-
ters for various astrophysical configurations agree with these
limits, as on view in Table 1.
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Fig. 8 Behaviour of the mass relation with the radial coordinate a of
our model for spherical object Cen X-3

5.3 Mass function

In our model, the mass function within the radiusa is obtained
as

m(a) =
∫ a

0
ρ(r)dr = a

2

( a

R

)2
(

1 +
( a

R

)2
)−1

. (42)

Since at lima→0 m(a) = 0, recommend that the mass func-
tion is regular at the focal point of the star. The variation of the
mass function is illustrated in Fig. 8, which demonstrates that
the mass function is a positive and monotonically expanding
physical quantity with respect to the radial coordinates a.

5.4 Mass-radius ratio

The compactification parameter of a spherically symmetric
body is defined as the mass-radius function of the system, i.e.
u(a) = m(a)/a. According to the condition of Buchdahl [55]
for a (3+1)-dimensional perfect fluid spherically symmetric
body, the maximum allowed mass-radius function is M/R <

4/9 where R > 2M . To see the best extent of the mass-
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Fig. 9 Behaviour of the compactness relation with the radial coordi-
nate a of our model for spherical object Cen X-3

radius ratio for our model we best extent the compactification
parameter of the system given by

u(a) = 1

2

( a

R

)2
(

1 +
( a

R

)2
)−1

, (43)

The variation of the compactness function has been shown
in Fig. 9. This figure shows that the compactness function
is a monotonic increasing function with respect to the radial
coordinates a. We remark that the requirement on the greatest
permitted mass-to-radius ratio in our situation is determined
as M/R = 0.323, which is like the isotropic fluid spherical
object, i.e., M/R ≤ 4/9 (≈ 0.444).

5.5 Surface redshift function

We have likewise specified the surface redshift function zs of
a spherically symmetric body can be defined as

zs = 1√
1 − 2u(a)

− 1, (44)

which for the above studied model is given by

zs =
(

1 +
( a

R

)2
) 1

2 − 1. (45)

Variation of the surface redshift function zs against to the
radial coordinates a, as shown in Fig. 10. The greatest value
permitted surface redshift zs in our case is 0.317. The figure
in like manner shows that the surface redshift function is
limited within the stellar configuration.

6 A comparative study

To examine the physical characteristics based on the analyt-
ical model developed so far, we choose the spherical object
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Fig. 10 Behaviour of the surface redshift expression with the radial
coordinate a of our model for spherical object Cen X-3

Cen X-3 as a delegate of the strange spherical objects pos-
sessing the following parameters: mass m(a) = 1.49 M�
and radius a = 9.819 km for β = 118.26 MeV fm−3 and
α = 0.333.

Using the chosen mass and radius values shown in
Table 1, we have shown various physical characteristics of
the proposed configuration of strange compact objects. The
observed masses shown in Table 1 are available in the fol-
lowing references [56–60]. We have highlighted the values
of the constant β, especially for astrophysical configurations
of strange spherical object candidates such as PSR J1614-
2230, Vela X-1, 4U 1608-52, PSR J1903+327, 4U 1820-30,
Her X-1, and SAX J1808.4-3658. We find that when the
values of β increase with α fixed at 0.333, the astrophys-
ical system becomes more compact and the density in the
spherical object increases progressively with the increasing
values of β. The observed value of the mass of Cen X-3 [56]
is obtained for the astrophysical system to contract, that is
to say the progressively decreasing radius values. However,
from the point of view of a mathematically steady model,
it gives the idea that an extensive variety of estimation of
the constant β is conceivable, which is coherent with the
data of Relativistic Heavy Ion Collider (RHIC) and Super
Proton Synchrotron (SPS). The obtained solutions are free
of any singularity and exhibit a well-behaved nature within
the generalized anisotropic solution for compact spherical
object. This agrees with the results reported by Maurya et al.
[32,39,61]. We have demonstrated that the anisotropy effects
lead a wide range of results in the geometry and composi-
tion of an object. For instance, this may either yield a gentler
equation of state or an object with various mass and radius.
Our examination depends basically on the choice of a spe-
cific metric function such one given by the Eq. (7) yielding
a linear equation of state.
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7 Concluding remarks

We have proposed a spherically symmetric model of
anisotropic fluid for strange quark spheres which satisfies
all conditions of physical reality and is devoid of focal sin-
gularity with the outer space-time being the Schwarzschild
metric. We introduced this formalism to determine exact esti-
mations of the radius of the different candidates of the strange
sphere by using their observational mass and constant β gave
in Table 1. We also discussed the stability analysis which ver-
ified that our model was completely satisfied with the condi-
tions of causality and the concept of Herrera cracking. In a
similar idea, in order to analyze the meaning of our model in
the search for compact objects, we have considered various
compact objects, including PSR J1614-2230, Vela X-1, 4U
1608-52, PSR J1903+327, 4U 1820-30, Her X-1, and SAX
J1808.4-3658 and showed that, for the estimated radius, the
masses of the object dictated by our model are close to the
observed observation (see Refs. [56–60]). This generally sug-
gests that the solution proposed in this work can be used as
a feasible model for describing ultra-dense compact strange
spheres.

DataAvailibility Statement This manuscript has no associated data or
the data will not be deposited. [Authors comment: This is a theoretical
paper and this manuscript has non associated data. All the required
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