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Abstract The present study is elaborated to investigate the
validity of thermodynamical laws in a modified teleparal-
lel gravity based on higher-order derivative terms of torsion
scalar. For this purpose, we consider spatially flat FRW model
filled with perfect fluid matter contents. Firstly, we explore
the possibility of existence of equilibrium as well as non-
equilibrium picture of thermodynamics in this extended ver-
sion of teleparallel gravity. Here, we present the first law and
the generalized second law of thermodynamics (GSLT) using
Hubble horizon. It is found that non-equilibrium description
of thermodynamics exists in this theory with the presence
of an extra term called as entropy production term. We also
establish GSLT using the logarithmic corrected entropy. Fur-
ther, by taking the equilibrium picture, we discuss validity of
GSLT at Hubble horizon for two different F models. Using
Gibbs law and the assumption that temperature of matter
within Hubble horizon is similar to itself, We use different
choices of scale factor to discuss the GSLT validity graph-
ically in all scenarios. It is found that the GSLT is satisfied
for a specified range of free parameters in all cases.

1 Introduction

Astronomical probes of modern cosmology suggest a speedy
expanding state of cosmos caused by a leading ingredient
of obscure nature present in the matter contents of cosmos,
labeled as dark energy (DE) [1–5]. Numerous attempts have
been made by the researchers to investigate this mysterious
component successfully. A list of proposed candidates for
DE is available in literature which is based on one of the two
different strategies namely modified matter source models
[6–12] and modified gravitational theories [13–15]. On the
basis of their applications to various cosmological issues,
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a detailed analysis of these candidates favors the modified
gravitational theories as the most successful tool for dis-
cussing different stages of cosmic evolution. Some promising
modified gravitational theories include Gauss–Bonnet the-
ory and its extended versions [16–19], f (R) theory [20–22]
and its different generalizations involving minimal or non-
minimal interactions between different fields (higher-order
curvature correction terms, matter and scalar fields as well
as torsion scalar) like f (R, T ) [23–29] and f (R, T, Q) the-
ories [30–33], scalar-tensor theories and its generalized ver-
sions [34–38] and the well-known teleparallel gravity with
its different extensions [39–44].

Teleparallel gravity is regarded as one of the interesting
alternative to Einstein’s gravity (GR) in which torsional for-
mulation provides the gravitational source instead of curva-
ture scalar structure of GR [45–50]. This theory is labeled
as TEGR (teleparallel equivalent of general relativity) and
is determined by the Lagrangian density involving curva-
ture less Weitzenböck connection instead of torsion less
Levi-Civita connection along with the vierbein as a funda-
mental tool. A variety of extended versions of this theory
have been presented in literature like f (T ) gravity where a
generic function of torsion scalar replaces the simple torsion
scalar term in the Lagrangian density [39–44]. In this respect,
another different version of this theory has been proposed
by Kofinas and Saridakis [51–54] where they introduced a
new term TG called teleparallel equivalent to Gauss–Bonnet
term and then further, they extended this theory to a more
general case named as f (T, TG) theory. Another significant
modification is considered by Harko et al. [55,56] by includ-
ing a non-minimal interaction of torsion scalar with matter
field in the action. In this respect, another recent significant
modification is f (T, B) gravity [57], where the term B is
related to the divergence of torsion tensor and is termed as
boundary term. This theory has been tested by applying on
different cosmological issues and found to be very interest-
ing [58,59]. Another extended version of teleparallel grav-
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ity has been proposed in literature [60] which is based on
higher order derivative terms like ∇T and �T . The basic
motivation for the inclusion of such terms emerges from
already proposed other generalized versions of f (R) grav-
ity where different higher order terms of Ricci scalars like
RμνRμν, Rμναβ Rμναβ, (∇R)2 etc., or its interaction with
scalar as well as matter fields are introduced in order to incor-
porate the quantum corrections [61,62]. Another idea behind
it to formulate a fundamental gravity like string theory where
such terms arise in lagrangian density or Kaluza–Klein the-
ories for reducing dimensions or to work at scales close to
plank scales in effective quantum gravity.

The description of thermodynamical picture of accelerat-
ing cosmos is regraded as one of the most interesting issues in
today’s cosmology. “The concepts of gravitation and thermo-
dynamics are interlinked with each other” is a fundamental
connection supported by some well-known results of ther-
modynamical study of black holes (BH). The BH thermody-
namics suggests the BHs as thermodynamical systems where
the terms like temperature and entropy are associated with
the geometrical quantities such as surface gravity and hori-
zon area, respectively [63–65]. In this respect, the first effort
was made by Jacobson who used Thd Ŝh = δ Q̂ (Clausius
relation) along with S = A

4G to derive the GR field equations

by taking Rindler model into account (Q̂, Ŝ, T are nota-
tions for energy flux, entropy and temperature, respectively)
[66]. Gibbons and Hawking [67] also made an attempt to
explore these fundamental characteristics of thermodynam-
ics using de Sitter model. Frolov and Kofman [68] used flat
quasi de-Sitter inflationary model of cosmos for investigat-
ing such a connection of gravity and thermodynamics. They
concluded that the dynamical equations of Einstein gravity
for Friedmann model can be formulated using dE = TdS
with a slowly rolling scalar field. It is seen that the Einstein
field equations for FRW universe can be obtained from the
first law of thermodynamics at the apparent horizon by mak-
ing the use of relationships for Hawking temperature and
entropy given by TA = 1

2π R̃A
and SA = A

4G , respectively,

where A denotes the horizon area. Later on, this connec-
tion was verified by Padmanabhan [69] for a general spher-
ically symmetric spacetime. He found that the dynamical
equations for the considered model can be expressed in the
form dE + PdV = TdS. The question about the validity
of such connection has been already investigated in vari-
ous contexts like braneworld [70,71], Gauss–Bonnet gravity
[72], the Lovelock gravity [73,74], f (R) gravity [75–77] and
scalar-tensor theory [78].

Karami and Abdolmaleki [79] discussed the validity of
GSLT in f (T ) gravity using Hubble horizon and two viable
models of f (T ) involving future singularities. They con-
cluded that for present and early eras, the GSLT remains
valid while for later eras, it will be satisfied for a specific

value of torsion scalar. For f (R, T ) and f (R, T, RμνTμν)

theories, the study of thermodynamics has been carried out
by Sharif and Zubair [80] where they checked its validity
at apparent horizon in non-equilibrium perspective and they
also formulated some possible constraints on the coupling
parameter. For a general Gauss–Bonnet theory namely f (G)

gravity, Abdolmaleki and Najafi [81] used matter and radi-
ation filled FRW geometry along with two different f (G)

models to examine the validity of GSLT at dynamical appar-
ent horizon. Further this study has also been extended to the
case of f (R,G) theory [82]. The study of thermodynamical
laws has been also presented by Bahamonde et al. [58,58] in
a new modified teleparallel theory which relates both f (R)

and f (T ) gravities by the equation R = −T + B, where B is
the boundary term. They found that this theory suggests the
existence of non-equilibrium thermodynamics picture due to
the presence of additional entropy production term. Further,
by including the coupling of scalar field with torsion and
boundary term, the validity of GSLT has been investigated
at apparent horizon with and without including logarithmic
corrected entropy relation [83].

In a recent paper [84], GSLT validity has been explored by
Azizi and Borhani in a teleparallel gravity involving a non-
minimal coupling of torsion and matter and obtained inter-
esting results. The validity of GSLT has also been explored
in f (T, TG) theory and the possible constraints on the cou-
pling parameter in terms of recent cosmic parameters and
power law solution has been found [85]. Sharif and Waheed
[86] checked the validity of GSLT at Hubble, apparent, par-
ticle and event horizons in a scalar-tensor gravity involving
chameleonic field as well as magnetic field effects. They con-
cluded that the GSLT valid in all cases for small red shift
values. In another study [87], the same authors investigated
its validity in Brans–Dicke theory by introducing power law
and logarithmic corrected entropy relations.

In the present paper, we will focus on the validity of GSLT
at Hubble horizon in both equilibrium and non-equilibrium
perspectives using a higher-order torsion derivatives based
modified gravity. In the coming section, we will present some
basic notions of this theory and the assumptions used for
this work. Section 3 formulates the possible forms of first
as well as GSL of thermodynamics and discuss the exis-
tence of its resulting non-equilibrium picture. For this pur-
pose, we will consider two viable forms of F function and
some interesting cases of scale factor. We also investigate its
validity using logarithmic corrected entropy there. In Sect. 4,
we investigate the existence of equilibrium thermodynamics
picture and check the validity of GSLT using same cases
of function F as well as the scale factor. Last section will
summarize the whole discussion by highlighting the major
results.
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2 Basic formulation of F(T, (∇T )2,�T ) gravitational
theory

In this section, we will briefly present some basic formulation
of the modified teleparallel theory under consideration. Here
we will also specify the respective field equations along with
the assumptions taken for this work. The relation of metric
and vierbein eμ

A, the dynamical field of teleparallel gravity,
is given by

gμν = ηABe
A
μe

B
ν . (1)

The torsion tensor describing the gravitational field in terms
of Weitzenböck connection (�λ

νμ ≡ eλ
A∂μeAν ) is expressed as

T ρ
μν = eρ

A(∂μe
A
ν − ∂νe

A
μ). (2)

The Lagrangian densities of teleparallel theory and its mod-
ified versions are based on the torsion scalar obtained by the
contractions of the torsion tensor (2) as follows

T ≡ 1

4
T ρμνTρμν + 1

2
T ρμνTνμρ − Tρμ

ρT νμ
ν . (3)

The generalization of torsion based theories obtained by
including higher-order derivative terms like (∇T )2 and �T
can be expressed by the following action [60]:

A = 1

2κ2

∫
dx4eF(T, (∇T )2,�T ) + Sm(eAρ , ψm), (4)

where Sm(eAρ , ψm) denotes the ordinary matter part of action.
Here κ2 = 8πG and F is a generic function of torsion scalar
and its higher-order derivatives. Also, e = det (eAμ) = √−g.
Further, these higher-order derivatives can be calculated by
the formulas as

(∇T )2 = ηABeμ
Ae

ν
B∇μT∇νT = gμν∇μT∇νT, (5)

�T = ηABeμ
Ae

ν
B∇μ∇νT = gμν∇μ∇νT . (6)

For the sake of simplicity in calculations, we introduce the
notations for higher-order derivatives as: X1 = (∇T )2 and
X2 = �T . It is worthwhile to mention here that the action
of simple f (T ) gravity can be recovered by removing the
higher-order derivative terms, i.e., X1 = X2 = 0. In terms of
these new notations, the respective field equations obtained
by the variation of the action (4) with respect to vierbein can
be written as

1

e
∂μ(eFT eA

τ Sτ
ρμ) − FT eA

τ Sν
μρT ν

μτ

+1

4
eA

ρF + 1

4

2∑
i=1

{
FXi

∂Xi

∂eAρ

−1

e

[
∂μ

(
eFXi

∂Xi

∂∂μeAρ

)
− ∂μ∂ν

(
eFXi

∂Xi

∂∂μ∂νeAρ

)]}

− 1

4e
∂λ∂μ∂ν

(
eFX2

∂X2

∂λ∂μ∂νeAρ

)
= 1

2
eA

τT (m)
τ
ρ
. (7)

Here we have used the term “superpotential” expressed in
terms of contortion tensor Kμν

ρ ≡ − 1
2 (Tμν

ρ − T νμ
ρ −

Tρ
μν) and is defined by the following relations:

Sρ
μν ≡ 1

2
(Kμν

ρ + δμ
ρT

θν
θ − δν

ρT
θμ
θ ).

Further, the notations FT and FX i ; (i = 1, 2) stand for
the derivatives of the generic function F with respect to the
subscript variable, i.e., ∂F

∂T , ∂F
∂Xi

, respectively. Also, the con-
tribution of ordinary matter given on left side of (7) can be
defined as follows

eA
τT (m)ρ

τ ≡ −1

e

δSm
δeAρ

.

Consider the spatially flat FRW universe geometry with
cosmic radius a(t) given by the line element

ds2 = dt2 − a2(t)(dx2 + dy2 + dz2). (8)

The corresponding set of vierbein components are

eAμ = diag(1, a(t), a(t), a(t)).

Here the energy-momentum tensor of ordinary matter source
is assumed to be perfect fluid given by

Tμν = (ρm + pm)uμuν − pmgμν,

where ρm and pm represent the density and pressure of ordi-
nary matter, respectively. Under these assumptions, the field
equations finally take the following form:

FT H
2 + (24H2FX1 + FX2)(3H Ḣ + Ḧ)H

+FX2 Ḣ
2 + (3H2 − Ḣ)H ḞX2

+24H3 Ḣ ḞX1 + H2 F̈X2 + F

12
= ρm

6
, (9)

FT Ḣ + H ḞT + 24H [2H Ḧ + 3(Ḣ + H2)Ḣ ]ḞX1

+12H Ḣ ḞX2 + 24H2 Ḣ F̈X1

+(Ḣ + 3H2)F̈X2 + 24H2FX1

...
H + H

...
FX2

+24FX1 Ḣ
2(12H2 + Ḣ)

+24HFX1(4Ḣ + 3H2)Ḧ = − pm
2

, (10)

where H = ȧ/a represents the Hubble parameter and the
dot denotes the cosmic time rate of change. Equations (9)
and (10) can be rearranged to following forms:

3H2 = κ2
e f f ρe f f , Ḣ = −κ2

e f f (ρe f f + pef f ), (11)

where the effective energy density and pressure are the com-
binations ρe f f = ρm+ρT and pef f = pm+ pT , respectively.
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Also, the effective coupling is defined as κ2
e f f = κ2

2FT
. These

contributions of density and pressure due to torsion are given
by

ρT = 1

κ2

[
− 6(24H2FX1 + FX2)(3H Ḣ + Ḧ)H)

−6FX2 Ḣ
2 − 6(3H2 − Ḣ)H ḞX2

−144H3 Ḣ ḞX1 − 6H2 F̈X2 − F

2

]
, (12)

pT = 2

κ2 [H ḞT + 24H [2H Ḧ + 3(Ḣ + H2)Ḣ ]ḞX1

+12H Ḣ ḞX2 + 24H2 Ḣ F̈X1

+(Ḣ + 3H2)F̈X2 + 24H2FX1

...
H + H

...
FX2

+24FX1 Ḣ
2(12H2 + Ḣ)

+24HFX1(4Ḣ + 3H2)Ḧ − 3H2FT ]. (13)

For this spatially flat geometry, the torsion scalar and its
derivatives (∇T )2 and �T turn out to be

T = −6H2, X1 = 144H2 Ḣ2,

X2 = −12
[
Ḣ(Ḣ + 3H2) + H Ḧ

]
. (14)

Also, the ordinary matter satisfies the usual continuity equa-
tion and is given by

ρ̇m + 3H(ρm + pm) = 0. (15)

It is worthwhile to mention here that similarly, the effective
density and pressure satisfies the continuity equation

ρ̇e f f + 3H(ρe f f + pef f ) = 0,

which consequently gives rise to the non-conservation of its
torsion scalar counterparts due to the presence of an extra
term on left side as follows

ρ̇T + 3H(ρT + pT ) = T

κ2 ḞT . (16)

By assuming the barotropic equation of state pm = ωmρm;
0 ≤ ωm ≤ 1, the integration of the continuity equation leads
to the following relation

ρm = ρm0a
−3(1+ωm ),

where ρm0 represents an arbitrary constant of integration.

3 Non-equilibrium and equilibrium perspectives of
thermodynamics in F(T, X1, X2) gravity

In this section, we present a brief discussion on the first and
generalized second law of thermodynamics by considering

the perspective of non-equilibrium. It has already been dis-
cussed in literature [80,88,89] that such picture exits in the
extended gravitational theories based on curvature or torsion
matter couplings like f (R, T ), f (R, T, Q), f (T, Lm) and
f (R, Lm) theories.

3.1 First law of thermodynamics

Here we describe the possible form of first thermodynamical
law in this modified gravity and investigate the issue of non-
equilibrium picture there. For a flat FRW geometry, the radius
of dynamical apparent horizon in terms of hαβ given by the
condition hαβ∂α R̃A∂β r̃A = 0, takes the form

R̃A = 1

H
. (17)

Its time rate of change yields the following equation:

d R̃A

dt
= R̃3Hκ2

e f f (ρe f f + pef f ).

After simplifying, the above equation can be written as

FT d R̃A

G
= 4π R̃3

AH(ρe f f + pef f )dt. (18)

The area of the horizon is defined as A = 4π R̃2
A and the

temperature associated with this horizon in terms of surface
gravity κsg is defined by TA = κsg/2π , where

κsg = 1

2
√−h

∂α

(√−hhαβ∂β R̃A

)
.

For flat FRW model, it will take the form

− 1

R̃A

(
1 −

˙̃RA

2H R̃A

)
= − R̃A

2
(2H2 + Ḣ). (19)

On multiplication by the factor (1− ˙̃RA

2H R̃A
) = −2π R̃TA, the

above equation leads to the following relation:

TAd

(
AFT
4G

)
= −(4π R̃3

AHdt − 2π R̃2
A

˙̃RA)(ρe f f + pef f )

+π R̃2
A

G
TAdFT .

The Bekenstein–Hawking entropy relation [63–65] suggests
S = A/4G. Like many other modified gravity theories (for
example, [80,86,88,89]), this relation is modified by the
inclusion of Gef f instead of G. Consequently, in this the-
ory, it takes the form SA = AFT

4G . Thus the last equation can
be re-written as
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TAd S̃A = (2π R̃2
A

˙̃RA − 4π R̃3
AHdt)(ρe f f + pef f )

+π R̃2
A

G
TAdFT . (20)

The Misner–Sharp energy defined by the relation E = R̃A
2Gef f

or equivalently, E = ρe f f V provides the total matter energy
density of universe (a sphere of radius R̃A at the apparent
horizon). Here the volume of the universe is given by the
equation V = 4/3π R̃3

A. In this modified teleparallel gravity,
this relation leads to

dE = 4π R̃2
A(ρm + ρT )d R̃A − 4π R̃3

AH(ρe f f + pef f )dt

+ R̃3
A

2G
(dFT ).

Inserting this dE in Eq. (20), we obtain

TAd S̃A = dE + 2π r̃2
A(pef f − ρe f f )d R̃A

+ R̃A

G

(
3 + π R̃ATA

)
dFT . (21)

Also, the total work density is defined by the equation [85]

W = −1

2

(
T (m)αβhαβ + T̃ (de)αβhαβ

)
= 1

2
(ρe f f − pef f ).

(22)

where the notations T (m)αβ and T̃ (de) stand for the energy
densities due to ordinary and dark matter, respectively. Intro-
ducing work density in Eq. (21) leads to the final form of first
law of thermodynamics given by

TAd S̃A + TAd S̃p = dE − WdV, (23)

where the term d S̃p = R̃A
GTA

(3 + π R̃ATA)dFT is due to
the entropy production in non-equilibrium thermodynamics.
Thus, we conclude that in this extended teleparallel gravity,
the form of first law of thermodynamics is modified by the
presence of a surplus term. This in agreement with the already
available results in literature for f (R), f (R, T ), f (R, T, Q)

theories as well as generalized Gauss–Bonnet gravity where
a surplus term exist giving rise to non-equilibrium thermo-
dynamics there.

3.2 GSLT in modified f (T ) gravity

In the present section, we explore the issue of GSLT valid-
ity in the context of this generalized teleparallel gravity.
The GSLT suggests that function obtained by the sum of
entropies of horizon and ordinary matter fluid components
always increases versus cosmic time. This issue has been
already investigated in the context of various modified theo-
ries like f (R), f (R) theory involving matter geometry cou-
pling, f (T ), f (R, T ), f (R, T, Q), f (R, Lm) and scalar-

tensor theories. Here we will utilize new form of first law
of thermodynamics obtained in the previous section. Mathe-
matically, GSLT can be written as

˙̃Stotal = ˙̃Sh + ˙̃Sp + ˙̃Sin ≥ 0, (24)

where the notations S̃h, S̃p and S̃in stand for horizon entropy,
entropy production term and entropy of matter components
inside horizon, respectively. First law of thermodynamics
(23) provides the relation:

Tid S̃i = dEi + pidV − Tid S̃p,

which can also be written as

Tin
˙̃Sin = (ρi+pi )4π R̃2

A

( ˙̃RA − H R̃A

)
+4

3
π R̃3

AQi−Tin
˙̃Sp,

where Tin denotes the temperature for all components inside
the horizon, Qi represents the ith term interaction compo-
nent. Taking summation of all inside horizon components
entropies, we get
∑

Qi = 0,
∑

(ρi + pi ) = ρe f f + pef f .

Consequently, we have

Tin
˙̃Sin = (ρe f f + pef f )4π R̃2

A

( ˙̃RA − H R̃A

)
− Tin

˙̃Sp.

Further, after an easy calculation, one can write the last equa-
tion as follows:

˙̃Sin + ˙̃Sp = 4π

G

Ḣ(Ḣ + H2)FT
(2H2 + Ḣ)H3

. (25)

Also, from the Bekenstein–Hawking entropy relation, one
can find

˙̃Sh = π

GH2

(
ḞT − 2

Ḣ

H
FT

)
. (26)

Thus, from Eqs. (24), (25) and (26), the GSLT constraint
takes the following form

˙̃Stot = 4π

G

(
Ḣ(Ḣ + H2)FT
(2H2 + Ḣ)H3

+ 1

4H2

{
ḞT − 2

Ḣ

H
FT

})
≥ 0.

(27)

In the upcoming subsections, we will explore the validity
of this constraint using two different functional forms of F
and in last, by considering the logarithmic entropy correction
term.
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3.2.1 The validity of GSLT constraint for a function
independent of X2

Here we will explore the validity of GSLT using the form of
F that is independent of X2 given as follows

F(T, X1, X2) = T + α1X1

T 2 + α2e
δX1
T 4 , (28)

where α1, α2 and δ are all dimensionless constants. This
form of F has already been used in literature for checking
the validity of energy constraints as well as the stability using
fixed point theory [60,90]. The GSLT constraint for this func-
tional form is given by

˙̃Stot = 4π

G

[
Ḣ2 + Ḣ H2

H3(2H2 + Ḣ)

(
1 − 2α1X1

T 3 − 4α2δX1

T 5
e

δX1
T 4

)

+ 1

4H2

[{(
6α1X1

T 4 +
(

16α2δ2X2
1

T 10 + 20α2δ1

T 6

)
e

δX1
T 4

)
Ṫ

+
(

−2α1

T 3 − 4α2δ

T 5

(
1 + δ

T 4

)
e

δX1
T 4

)
Ẋ1

}

− 2Ḣ

H

{
1 − 2α1X1

T 3 − 4α2δX1

T 5
e

δX1
T 4

}]]
≥ 0. (29)

Now we will discuss the validity of GSLT constraint (29) by
taking different possibilities of scale factor given as follows

• Constant Hubble parameter: H = H0, where H0 is recent
value of Hubble parameter, i.e., the de Sitter model.

• Expressing the higher order time rates in terms of cos-
mographic parameters like q, r, s etc.

• Power law form: a(t) = a0(ts − t)−b, where a0 is the
present value of the scale factor and ts ≥ t, b > 0.

• Intermediate form: a(t) = eb1tβ , where b1 is any positive
constant and 0 < β < 1.

In the first place, we evaluate the GSLT for the choice of
de-Sitter model having constant Hubble parameter H = H0.
In this case, it is found that GSLT is trivially satisfied as all
the derivatives vanish for this choice.

Secondly, we discuss the validity of GSLT constraint by
introducing the cosmographic parameters. Here we define
some interesting cosmographic parameters depending on
higher-order derivatives of scale factor obtained by the Tay-
lor’s series expansion of scale factor like deceleration, jerk,
snap and lerk parameters etc.. These parameters are defined
as follows

q = − 1

H2

a(2)

a
, j = 1

H3

a(3)

a
,

s = 1

H4

a(4)

a
, l = 1

H5

a(5)

a
.

It is worthwhile to mention here that all the higher-order
derivatives of Hubble parameter can be expressed as a linear
combination of these cosmographic parameters. For exam-
ple, first four order time rates of Hubble parameter in terms
of these cosmographic parameters can be written as

Ḣ = −H2(1 + q), Ḧ = H3( j + 3q + 2),
...
H = H4(s − 2 j − 5q − 3),

H (4) = H5 (l − 5s + 10(q + 2) j + 30(q + 2)q + 24) .

(30)

Consequently, the terms like torsion scalar, X1 and X2 and
their corresponding time rates can be expressed in terms of
these cosmographic parameters as given below

T = −6H2, X1 = 144H6(1 + q)2,

X2 = −12
(
H4(1 + q)2 − 3H4(1 + q) + H4( j + 3q + 2)

)
,

Ṫ = 12H3(1 + q),

Ẋ1 = −288H7(1 + q){(1 + q)2 + j + 3q + 2},
Ẋ2 = 12H5{3(1 + q)( j + 3q + 2) − 3( j + 3q + 2)

−6(1 + q)2(s − 2 j − 5q − 3)}. (31)

In this case, for the graphical analysis, we consider the present
values of these cosmographic quantities as suggested in liter-
ature [91] and are given by H0 = 0.718, q0 = −0.64, j0 =
1.02, s0 = −0.39 and l0 = 4.05. For these values, the quan-
tities of Eq. (31) become

T = −3.0931, X1 = 2.5569, X2 = −0.4771,

Ṫ = 1.5590, Ẋ1 = −12.5409, Ẋ2 = −0.8654.

By using these values, we explored the possible ranges of
model parameters namely α1, α2 and δ using region graph as
given in Fig. 1. The detailed possible ranges of these param-
eters for which GSLT condition remain valid are given in
Table 1.

Now we consider the possibility of power law form of
expansion factor given by the relation a(t) = a0(ts −

Fig. 1 The plot represents the validity regions for GSLT constraint in
terms of cosmographic parameters for model (28)
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Table 1 Validity regions of ˙̃Stot ≥ 0 for different models

F(T, X1, X2) models Validity of GSLT Cosmographic parameters
q, j, r, s, l parameters

Model 1 Non-equilibrium picture if δ ≥ 20 & α2 ≤ −20, ∀ α1

if δ ≤ 0 & α2 ≥ 0 with α1 ≤ 0

F(T, X1, X2) = T + α1X1
T 2 + α2e

δX1
T 4 Logarithmic corrected entropy if δ ≥ 15 & α2 ≤ −30, ∀ α1

if δ ≤ −20 & α2 ≥ 85, ∀ α1

Equilibrium picture if δ ≥ 40 & α2 ≤ −10, ∀ α1

if δ ≤ −15 & α2 ≤ −20, ∀ α1

Model 2 Non-equilibrium picture if β3 ≥ 70 ∀ β1 & β2

F(T, X1, X2) = T + β1X2
T + β2X2

2
T 3 + β3e

σ X2
T 3 Logarithmic corrected entropy if β ≤ −35 & β3 ≥ 50 ∀ β2

Equilibrium picture if β2 ≤ 50, ∀ β1 & β3

t)−b, b > 0, ts ≥ t . Here the point t = ts leads to the
presence of a Big Rip singularity in this super accelerated
cosmos model [92,93]. In this case, the Hubble parameter,
Torsion scalar and the terms X1, X2 along with their deriva-
tive terms turn out to be as follows

H = b

ts − t
, T = − 6b2

(ts − t)2 ,

Ḣ = b

(ts − t)2 , Ṫ = − 12b2

(ts − t)3 ,

X1 = 144b4

(ts − t)6 , Ẋ1 = 864b4

(ts − t)7 ,

X2 = −36b2(1 + b)

(ts − t)4 , Ẋ2 = −144b2(1 + b)

(ts − t)5
. (32)

Here b is the power law parameter and α1, α2, δ are the
model parameters. In this discussion, we fix δ and evaluate
the validity ranges for α1 and α2. If δ > 0 then validity of
GSLT requires α2 ≥ 0 for all values of α1 whereas if δ ≤ 0
then GSLT is satisfied for α1 ≥ 0 with all values of α2 as
shown in Table 2. The graphical illustration of validity of
GSLT constraint is shown in Fig. 2 for some particular cases.
In some cases, it is not obvious to find the exact region of
validity, one of such cases is shown in right plot of Fig. 2. In
left of Fig. 2, we have selected one particular validity range
and presented its evolution of GSLT for different values of δ.

Now we will discuss the validity of the GSLT constraint
using the intermediate form of expansion radius given by
a(t) = eb1tβ , 0 < β < 1, b > 0. Such form of expan-
sion factor is very significant as it plays an important role in
the description of inflationary scenario and hence compati-
ble with the astrophysical evidences [94]. For this form of
expansion radius, the cosmological parameters like Hubble
parameter, torsion scalar, terms X1, X2 and its first order
time rates take the following form

H = b1βt
β−1, Ḣ = b1β(β − 1)tβ−2,

T = −6b2
1β

2t2(β−1), Ṫ = −12b2
1β

2(β − 1)t2β−3,

X1 = 144b4
1β

4(β − 1)2t4β−6,

Ẋ1 = 288b4
1β

4(β − 1)2(2β − 3)t4β−7,

X2 = −12{b2
1β

2(β − 1)(2β − 3)t2β−4

+3b3
1β

3(β − 1)t3β−4},
Ẋ2 = −12{b2

1β
2(β − 1)(2β − 3)(2β − 4)t2β−5

+3b3
1β

3(β − 1)(3β − 4)t3β−5}. (33)

In intermediate form, we have two additional parameters b
and β along with the model parameters α1, α2 and δ. Herein,
we set b1 = 2, σ = 2 and β = 0.5. We fix the parameter δ to
explore the validity of GSLT depending on the parameters α1

and α2. If δ > 0, then validity of GSLT requires α1 ≥ 0 and
α2 ≤ −20 whereas if δ < 0 it requires α1 ≥ 0 and α2 ≤ −5.
Moreover, in case of δ = 0, one need to set α1 ≤ 0 along
with all values α2.

In left plot of Fig. 3, we represent one particular region of
validity whereas in the right plot, we use the validity range of
parameters α1 and α2 to show the evolution of GSLT versus
δ.

3.2.2 The validity of GSLT constraint for a function
independent of X1

Now we will consider the form of generic function
F(T, X1, X2) independent of the term X1 which is defined
by the following relation

F(T, X1, X2) = T + β1X2

T
+ β2X2

2

T 3 + β3e
σ X2
T 3 , (34)

where βi ; i = 1, 2, 3 and σ are all arbitrary constant param-
eters. In this case, the GSLT constraint will take the form
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Table 2 Validity regions of ˙̃Stot ≥ 0 for different models

F(T, X1, X2) Mod-
els

Validity of GSLT Various scale factors

de-Sitter model Power law form intermediate form
H = H0 a(t) = a0(ts − t)−b a(t) = eb1tβ

Model 1 Non-equilibrium
picture

Trivially satisfied if δ > 0; α2 ≥ 0 & ∀ α1 if δ > 0; α1 ≥ 0 & α2 ≤ −20

if δ = 0, α1 ≥ 0 & ∀ α2 if δ = 0, α1 ≤ 0 & ∀ α2

if δ < 0, α1 ≥ 0 & ∀ α2 if δ < 0; α1 ≥ 0 & α2 ≤ −5

F(T, X1, X2) =
T + α1X1

T 2 + α2e
δX1
T 4

Logarithmic
corrected entropy

λ1 = −6.06 + 0.16λ2, ∀λ2 if δ > 0; α2 ≥ 10 & ∀ α1 if δ > 0; α1 ≤ 0 & α2 ≤ −11

if δ = 0; α1 ≤ −18 & ∀ α2 if δ = 0; α1 ≤ −30 & ∀ α2

if δ < 0; α1 ≤ 0 & ∀ α2 if δ < 0; (α1, α2) ≤ −15

Equilibrium picture α2 = 3.11 if δ > 0; α2 ≥ 1 & ∀ α1 if δ > 0; (α1, α2) ≥ 0, Later times

if δ = 0; α2 ≤ −1 & ∀ α1 if δ = 0; α1 ≥ 0 & α2 ≤ 0

if δ < 0; α2 ≤ −1 & ∀ α1 if δ < 0; α1 ≥ 5 & α2 ≤ 0

Mode 2 Non-equilibrium
picture

Trivially satisfied if β3 < 0; β1 & β2 if 0 < β3 < 80; ∀ (β1, β2) < 0

if β3 ≥ 80; ∀ β1 & β2

if β3 = 0; ∀ β1 & β2 ≤ −20 if β3 = 0; ∀ (β1, β2) > 0

F(T, X1, X2) =
T + β1X2

T + β2X2
2

T 3 +
β3e

σ X2
T 3

Logarithmic
corrected entropy

Trivially satisfied if β3 = 0; β1 ≥ 0 & β2 ≤ −20 if β3 > 0; β1 ≤ −80, ∀ β2

if β3 = 0; (β1, β2) ≥ 0

if β3 < 0; ∀ β1 & β2 if β3 < 0; ∀ β1 & β2

Equilibrium picture β3 = −3.11 if β3 > 0, ∀ β1 & β2 if β3 > 0, ∀ β1 & β2 Later times

if β3 < 0, Fig. (10)

˙̃Stot = 4π

G

[{
Ḣ(Ḣ + H2)

(2H2 + Ḣ)H3
− Ḣ

2H3

}

×
{

1 − β1X2

T 2 − 3β2X2
2

T 4 − 3σβ3X2

T 4 e
σ X2
T 3

}

+ 1

4H2

{(
2β1X2

T 3 + 12β2X2
2

T 5

+3σβ3X2

(
4

T 5
+ 3σ X2

T 4

)
e

σ X2
T 3

)
Ṫ

+
(

− β1

T 2 − 6β2X2

T 4 − 3σβ3

T 4

(
1 + σ

T 3

)
e

σ X2
T 3

)
Ẋ2

}]
≥ 0.

(35)

Using previously defined four different cases of expansion
factor namely constant Hubble parameter, cosmographic
parameters, power law and intermediate forms along with
the corresponding relations of torsion scalar, X1 and X2 with
their time rates given by Eqs. (31–33), we will check the
compatibility of this GSLT condition and explore the pos-
sible choices of free model parameters. Here, we have four
model parameters β1, β2, β3 and σ . If β2 = 0, then one can
retrieve the results similar to the previous model. Herein, we

set b = 1 and σ = 2. For de Sitter case, it is seen that the
GSLT constraint trivially holds. For the case of cosmographic
parameters, by using the previously defined present values of
these parameters, the possible ranges of β1, β2 and β3 are
explored as shown in Fig. 4 and listed in Table 1.

In power law model, we fix the parameter β3 and find the
values of other parameters β1 and β2. It is found that GSLT
validate for the choice of β3 ≤ 0 and the detailed results are
shown in Table 2. In Fig. 5, we present graphical illustration
of the validity range and show the evolution of GSLT versus
β3 for the choice β1 = .02, β2 = 0.3 and σ = 2.

In case of intermediate form, we have three parameters β1,
β2 and β3. We fix one parameter β3 to set the validity ranges
for the parameters β1 and β2 and results are shown in Table 2.
It is found that GSLT is valid only for β ≥ 0, in case of β ≥ 0
validity region exists only for earlier times. In this discussion,
we find some cases where it is difficult to find valid regions.
The graphical illustration of some cases is shown in Fig. 6,
left plot shows the validity regions for β3 = 0. It is found
that GSLT is not valid for the choice of β < 0 except some
particular cases with specific regions. In the right plot of
Fig. 6, we present the validity regions for β3 = −2.

123



Eur. Phys. J. C (2019) 79 :333 Page 9 of 18 333

Fig. 2 Left plot represents the regions where GSLT is satisfied for δ = 10 and right graph corresponds to evolution of GSLT versus δ for
α1 = −0.002, α2 = 0.001, b = 2 and ts = 0.9

Fig. 3 Left plot represents the regions where GSLT is satisfied for δ = 10 in intermediate case and right graph corresponds to evolution of GSLT
versus δ for α1 = 0.2 and α2 = −21

3.2.3 The validity of GSLT constraint for logarithmic
corrected entropy

Here we will consider the entropy correction formula involv-
ing logarithmic terms with effective gravitational coupling
κ2
e f f . In the present case, such entropy correction is defined

by the following equation [96,97]

S̃LCE = AFT
4G

+ λ1 ln

(
AFT
4G

)
+ λ2

(
4G

AFT

)
+ λ3, (36)

where λi ; i = 1, 2, 3 are all non-zero dimensionless arbi-
trary constants. In case of Hubble horizon, the time rate of
this entropy is given by

˙̃SLCE = π

GH2

[
1 + λ1

(
GH2

πFT

)
− λ2

(
GH2

πFT

)2
]

×
(
ḞT − 2Ḣ

H
FT

)
. (37)

Consequently, the time rate of total entropy will become

˙̃Stot = 4π

G

Ḣ(Ḣ + H2)FT
(2H2 + Ḣ)H3

+ π

GH2

[
1 + λ1

(
GH2

πFT

)
− λ2

(
GH2

πFT

)2
]

×
(
ḞT − 2Ḣ

H
FT

)
≥ 0.

For the functional form defined by the Eq. (28), this constraint
will take the form

˙̃Stot =
{

4π

G

Ḣ(Ḣ + H2)

(2H2 + Ḣ)H3

−2π Ḣ

GH3

(
1 + λ1

(
GH2

πFT

)
− λ2

(
GH2

πFT

)2
)}

×
{

1 − 2α1X1

T 3 − 4α2δX1

T 5
e

δX1
T 4

}

123



333 Page 10 of 18 Eur. Phys. J. C (2019) 79 :333

+ π

GH2

(
1 + λ1

(
GH2

πFT

)
− λ2

(
GH2

πFT

)2
)

×
{(

6α1X1

T 4 +
(

16α2δ
2X2

1

T 10 + 20α2δX1

T 6

)
e

δX1
T 4

)
Ṫ

+
(

−2α1

T 3 − 4α2δ

T 5
e

δX1
T 4 ×

(
1 + δ

T 4

))
Ẋ1

}
≥ 0.

(38)

For the function F form given by the Eq. (34), this GSLT
inequality can be written as

˙̃Stot =
⎧⎨
⎩

4π

G

Ḣ(Ḣ + H2)

(2H2 + Ḣ)H3

− 2π Ḣ

GH3

⎛
⎝1 + λ1

(
GH2

πFT

)
− λ2

(
GH2

πFT

)2
⎞
⎠

⎫⎬
⎭ (39)

×
{

1 − β1X2

T 2 − 3β2X
2
2

T 4 − 3σ X2β3

T 4 e
σ X2
T 3

}

+ π

GH2

⎛
⎝1 + λ1

(
GH2

πFT

)
− λ2

(
GH2

πFT

)2
⎞
⎠

×
{(

2β1X2

T 3 + 12β2X
2
2

T 5

Fig. 4 The plot represents the validity regions for GSLT constraint in
terms of cosmographic parameters for the model (34)

Fig. 5 The graphical illustration of GSLT versus β3 for the second
model. Herein, we set β1 = .02, β2 = 0.3 and σ = 2

+3σβ3X2

(
4

T 5
+ 3σ X2

T 4

)
e

σ X2
T 3

)
Ṫ

+
(

− β1

T 2 − 6β2X2

T 4 − 3σβ3

T 4 e
σ X2
T 3

(
1 + σ

T 3

))
Ẋ2

}
≥ 0.

(40)

Using four cases for expansion factor and the correspond-
ing terms, we will check the validity of these GSLT con-
straints given by Eqs. (38) and (40). In case of constant Hub-
ble parameter H0, the GSLT is satisfied if −16.8 − 2.78λ1 +
0.46λ2 ≥ 0. Here we find a relation for the validity of GSLT
which depends on two dimensionless parameters λ1 and λ2.
We show the evolution of GSLT in Fig. 7. For the cosmo-
graphic parameters, the GSLT validity regions are explored
in Fig. 8. Here the left and right plots correspond to the GSLT
constraints (38) and (40), respectively. The detail possible
ranges of free model parameters α1, α2, δ, β1, β2 and β3

for which GSLT conditions remain valid are listed in Table 1.
Next we search for validity regions in case of power law

model and the results are presented depending on different
values of δ. Some validity regions are presented in Fig. 9 for
both δ = 2 and δ = −2 respectively. In case of intermediate
form of scale factor, we show the validity regions of GSLT
for two cases δ = 0 and δ > 0. Left plot of Fig. 10 shows
some particular validity regions for δ = 0 whereas in right
plot we select δ > 0. The results of validity regions are shown
in Table 2.

We also examine the validity of GSLT constraint for loga-
rithmic corrected entropy in the background of function inde-
pendent of X1. It is found that GSLT is trivially satisfied for
de Sitter model. In this case, we fix β3 and develop the valid-
ity regions depending on the values of β1 and β2 for both
power law and intermediate cases. In intermediate form par-
ticular validity regions are shown in Fig. 11 and other validity
ranges can be seen in Table 2.

4 Equilibrium picture

Here we will talk about the equilibrium picture of first and
generalized second law of thermodynamics. Here we con-
sider the field equations as

6FT H
2 + (24H2FX1 + FX2)(3H Ḣ + Ḧ)H

+FX2 Ḣ
2 + (3H2 − Ḣ)H ḞX2

+24H3 Ḣ ḞX1 + H2 F̈X2 + F

12
= ρm, (41)

2(FT Ḣ + H ḞT + 24H [2H Ḧ + 3(Ḣ + H2)Ḣ ]ḞX1

+12H Ḣ ḞX2 + 24H2 Ḣ F̈X1

+(Ḣ + 3H2)F̈X2 + 24H2FX1

...
H + H

...
FX2

+24FX1 Ḣ
2(12H2 + Ḣ)

+24HFX1(4Ḣ + 3H2)Ḧ) = −pm . (42)
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Fig. 6 Left plot represents the regions where GSLT is satisfied for β3 = 0 in intermediate case and right graph corresponds to evolution of GSLT
versus β3 = −2. Herein, we set b1 = 2, σ = 2 and β = 0.5

It is worthwhile to mention here that all the discussion about
first law of thermodynamics as presented in Sect. 3 is same
except there is no entropy production term. It is due to the
fact that there is no effective coupling term κe f f defined in
the FRW field equations and consequently, the usual energy
conservation equation for both ordinary matter as well as
energy and pressure due to torsion scalar remain satisfied.
Also, one need to use the usual form of Bekenstein–Hawking
entropy relationship given by S = A

4G instead of its modified
version. Thus, in this case, the first law of thermodynamics
takes the form

TAd S̃A = −dE + dW.

The relationship between entropy due to matter and energy
sources inside the horizon Sin and the density and pressure
in the horizon as provided by Gibb’s equation can be written
as

Tind S̃in = d(ρmV ) + pmdV, (43)

which can also be expressed as

Tin
˙̃Sin = 4π r̃2

A(ρm + pm)( ˙̃rA − Hr̃A). (44)

Using the relations for ρm and pm computed from Eqs. (41)
and (42), we get the GSLT in the following form

TA
˙̃Stot = − Ḣ

2GH4 (2H2 + Ḣ)

−2πκ2

H4 (H2 + Ḣ)
[
6FT H

2 + 6(24H2FX1

+FX2)(3H Ḣ + Ḧ)H + 6FX2 Ḣ
2

+18H3 ḞX2 − 6H Ḣ ḞX2 + 144H3 Ḣ ḞX1

Fig. 7 Validity of GSLT for logarithmic corrected entropy with con-
stant Hubble parameter

+6H2 F̈X2 + F

2
− 2FT Ḣ − 2H ḞT

−48H{2H Ḧ + 3(Ḣ + H2)Ḣ}ḞX1

−24H Ḣ ḞX2 − 48H2 Ḣ F̈X1 − 2(Ḣ + 3H2)F̈X2

−48H2FX1

...
H − 2H

...
FX2 − 48FX1 Ḣ

2(12H2 + Ḣ)

−48HFX1(4Ḣ + 3H2)Ḧ
]

≥ 0. (45)

The derivative terms present in this constraint will be evalu-
ated by using chain rule as follows:

ḞX1 = FX1T Ṫ + FX1X1 Ẋ1 + FX1X2 Ẋ2, (46)

ḞX2 = FX2T Ṫ + FX2X1 Ẋ1 + FX2X2 Ẋ2, (47)

F̈X1 = FX1T T Ṫ
2 + 2FX1X1T Ẋ1Ṫ

+2FT X1X2 Ṫ Ẋ2 + FX1T T̈ + FX1X1X1 Ẋ
2
1

+2FX1X1X2 Ẋ1 Ẋ2 + FX1X1 Ẍ1
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Fig. 8 Left and right plots represent the possible validity regions for logarithmic corrected entropy in terms of cosmographic parameters for both
F models

Fig. 9 Left plot represents the validity regions for logarithmic corrected entropy in power law case with δ = 2, right graph corresponds to evolution
of GSLT for δ = −2. Herein, we set λ1 = 2 and λ2 = 3

+FX1X2X2 Ẋ
2
2 + FX1X2 Ẍ2, (48)

F̈X2 = FX2T T Ṫ
2 + 2FX2X1T Ẋ1Ṫ

+2FT X2X2 Ṫ Ẋ2 + FX2T T̈ + FX2X1X1 Ẋ
2
1

+2FX2X1X2 Ẋ1 Ẋ2 + FX2X2 Ẍ2

+FX2X2X2 Ẋ
2
2 + FX2X2 Ẍ2, (49)

...
FX2 = FX2T T T Ṫ

3 + 3FX2T T X1 Ẋ1Ṫ
2

+3FX2X2T T Ẋ2Ṫ
2 + 3Ṫ T̈ FX2T T

+3FX2T X1X1 Ẋ
2
1 Ṫ + FX2T X1(Ẍ1Ṫ + Ẋ1T̈ )

+FX2T X2(Ẍ2Ṫ + Ẋ2T̈ )

+3FX2X2X2T Ẋ
2
2 Ṫ + FX2T X1 Ẋ1T̈

+FX2T X2 Ẋ2T̈ + FX2T
...
T

+3FX2X1T X2 Ṫ Ẋ1 Ẋ2 + FX2X1T (T̈ Ẋ1 + Ṫ Ẍ1)

+FX2X1X1X1 Ẋ
3
1

+FX2X1X1X2 Ẋ
2
1 Ẋ2 + FX2X1X2X2 Ẋ1 Ẋ

2
2

+FX2X1X2(Ẍ1 Ẋ2 + Ẋ1 Ẍ2)

+3FX2X1X1 Ẋ1 Ẍ1 + FX2X1T Ṫ Ẍ1

+FX2X1X2 Ẍ1 Ẋ2 + FX2X1

...
X1

+FX2X2T (Ẍ2Ṫ + Ẋ2T̈ ) + FX2X1X1T Ṫ Ẋ1 Ẋ2

+FX2X2X1X1 Ẋ
2
1 Ẋ2

+2FX2X2X2X1 Ẋ1 Ẋ
2
2 + FX2X2X1(Ẍ1 Ẋ2 + Ẋ1 Ẍ2)

+FX2X2X2X2 Ẋ
3
2

+3FX2X2X2 Ẋ2 Ẍ2 + FX2X2T Ṫ Ẍ2

+FX2X2X1 Ẋ1 Ẍ2 + FX2X2

...
X2, (50)

ḞT = FTT Ṫ + FT X1 Ẋ1 + FT X2 Ẋ2. (51)

Here we will investigate the validity of GSLT given by con-
straint Eq. (45) in this generalized teleparallel gravity. For
this purpose, we examine the compatibility of this constraint
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for two specific forms of generic function F(T, X1, X2) in
the upcoming subsections.

4.1 The validity of GSLT for F independent of X2

Here we will explore the validity of GSLT using the form of
F given by Eq. (28). The GSLT constraint (45), in this case,
takes the following form

Th
˙̃Stot = − Ḣ

2GH4 (2H2 + Ḣ)

−2πκ2

H4 (H2 + Ḣ) ×
[
(2Ḣ − 6H2)

×
{

2α1X1

T 3 + 4δα2X1

T 5
e

δX1
T 4

}

+(144H3(3H Ḣ + Ḧ) − 48H Ḧ(4Ḣ + 3H2)

−48H2 ...
H − 48Ḣ2(12H2 + Ḣ))

{
α1

T 2 + α2δ

T 4 e
δX1
T 4

}

+(144H3 Ḣ − 48H × (2H Ḧ + 3Ḣ(Ḣ + H2))){(
−4α2δ

2X1

T 9 − 4α2δ

T 5

)
Ṫ +

(
α2δ

2

T 8 e
δX1
T 4

)
Ẋ1

}

+1

2

(
T + α1X1

T 2 + α2e
δX1
T 4

)

−2H

{(
6α1X1

T 4 + 20δX1α2

T 6 e
δX1
T 4

+16α2δ
2X2

1

T 10 e
δX1
T 4

)
Ṫ

−
(

4α2δ
2X1

T 9 + 4α2δ

T 5

)
e

δX1
T 4 Ẋ1

}

−48H2 Ḣ

{(
36α2δ

2X1

T 10 + 20α2δ

T 6

+16α2δ
3X2

1

T 14 + 16α2δ
2X1

T 10

)
e

δX1
T 4 Ṫ 2

+2

(
−4α2δ

2

T 9 + δ

T 4

(
4α2δ

2X1

T 9 + 4α2δ

T 5

))
e

δX1
T 4 Ẋ1Ṫ

−
(

4α2δ
2X1

T 9 + 4α2δ

T 5

)
e

δX1
T 4 T̈

+
(

α2δ
3

T 12 e
δX1
T 4

)
Ẋ2

1 +
(

α2δ
2

T 8 e
δX1
T 4

)
Ẍ1

}]
≥ 0. (52)

Here we will investigate this GSLT condition validity for
previously defined four different forms of expansion factor.

For the de Sitter case, it is seen that the validity of GSLT
can be achieved for some particular choice of involved free
parameter αi as given in Table 1. Specifically, the GSLT con-
dition is satisfied if α2 = 3.11. For the case of cosmographic
parameters, some relevant useful derivative terms appearing
in the constraint (52) can be expressed as

Ẋ1Ṫ = −3456H10(1 + q)2{1 + q)2 + j + 3q + 2},
T̈ = −12H4{(1 + q)2 + ( j + 3q + 2)},
...
T = 12H5{3(1 + q)( j + 3q + 2) − (s − 2 j − 5q − 3)},
Ẍ1 = 288H8{(1 + q)4 + 5(1 + q)2( j + 3q + 2)

+( j + 3q + 2)2 − (1 + q)(s − 2 j − 5q − 3)}. (53)

Using the recent values of cosmographic parameters, the
higher-order time rates of the terms T, X1 and X2 attain
the following values

Ḧ = 0.4072,
...
H = −0.5927,

....
H = 16.1570,

T̈ = −3.9214,
...
T = 7.8266 Ẍ1 = 55.7851.

By making the use of these values, the possible restrictions
on free model parameters are represented in Fig. 12 and listed
in Table 1.

Next we consider the possibility of power law form of
expansion factor. The corresponding Hubble parameter, Tor-
sion scalar and X1, X2 terms along with their derivative
terms are given by (32). Some other required higher order
time rates can be calculated as

Ḧ = 2b

(ts − t)3 ,
...
H = 6b

(ts − t)4 ,

H (iv) = 24b

(ts − t)5
, H (v) = 120b

(ts − t)6 ,

Ẍ1 = 6048b4

(ts − t)8 , Ẋ1Ṫ = −10, 368b6

(ts − t)10 ,

T̈ = − 36b2

(ts − t)4 . (54)

For the graphical analysis, the validity of GSLT constraint
(52) is provided by the right part of Fig. 13.

In last, we will discuss the validity of the GSLT constraint
using the intermediate form of expansion radius. For this
form of expansion radius, the cosmological parameters like
Hubble parameter, torsion scalar, terms X1, X2 and its first
order time rates are given by (33). Some other higher order
time derivatives required for the evaluation of GSLT con-
straint are

Ḧ = b1β(β − 1)(β − 2)tβ−3,
...
H = b1β(β − 1)(β − 2)(β − 3)tβ−4,

H (iv) = b1β(β − 1)(β − 2)(β − 3)(β − 4)tβ−5,

H (v) = b1β(β − 1)(β − 2)(β − 3)(β − 4)(β − 5)tβ−6,

T̈ = −12b2
1β

2(β − 1)(2β − 3)t2β−4,

Ẍ1 = 288b4
1β

4(β − 1)2(2β − 3)(4β − 7)t4β−8,

Ẋ1Ṫ = −3456b6
1β

6(β − 1)3(2β − 3)t6β−10. (55)

In the similar fashion, we find the validity regions for inter-
mediate cases in the framework of equilibrium picture. It is
mentioned that for the case of δ > 0, GSLT is satisfied in
later times in intermediate case. We also present some valid-
ity regions in Fig. 13.
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Fig. 10 Left plot represents the validity regions for logarithmic corrected entropy in intermediate case with δ = 0, right graph corresponds to
evolution of GSLT for δ = 2. Herein, we set λ1 = 2 and λ2 = 3

Fig. 11 Left plot represents the validity regions for logarithmic corrected entropy in intermediate case with β3 = 0, right graph corresponds to
evolution of GSLT for β3 = −2

Fig. 12 Plot represents the validity regions of GSLT (52) for equilib-
rium case in terms of cosmographic parameters

4.2 The validity of GSLT for F independent of X1

Here we will consider the form of generic function of
F(T, X1, X2) given by Eq. (34). Removing the terms
depending on X1 and using the above defined form of F ,
the constraint for validity of GSLT is found as

Th
˙̃Stot = − Ḣ

2GH4

(
2H2 + Ḣ

)

−2πκ2

H4 (H2 + Ḣ)
[
(6H2 − 2Ḣ)

×
{

1 − βX2

T 2 − 3β2X2
2

T 4 − 3σ X2β3

T 4 e
σ X2
T 3

}

+(6H(3H Ḣ + Ḧ) + 6Ḣ2)

×
{

β1

T
+ 2βX2

T 3 + β3σ

T 3 e
σ X2
T 3

}
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+(18H3 − 30H Ḣ)

{(
− β1

T 2 − 6β2X2

T 4 − e
σ X2
T 3

×
(

3β3σ
2X2

T 7 + 3β3σ

T 4

))
Ṫ

+
(

2β2

T 3 + β3σ
2

T 6 e
σ X2
T 3

)
Ẋ2

}

−2Ḣ

{(
2β1

T 3 + 24β2X2

T 5

+e
σ X2
T 3

(
21β3σ

2X2

T 8 + 12β3σ

T 5

)

+e
σ X2
T3

(
3σ X2

T 4

)(
3β3σ

2X2

T 7 + 3β3σ

T 4

))
Ṫ 2

]

+2Ẋ2Ṫ

(
−6β2

T 4 − e
σ X2
T 3

3β3σ
2

T 7

−e
σ X2
T 3

(
3β3σ

3X2

T 10 + 3β3σ
2

T 7

))

+
(

− β1

T 2 − 6β2X2

T 4 − e
σ X2
T 3

(
3β3σ

2X2

T 7 + 3β3σ

T 4

))
T̈

+
(

β3σ
3

T 9 e
σ X2
T 3

)
Ẋ2

2 +
(

2β2

T 3 + β3σ
2

T 6 e
σ X2
T 3

)
Ẍ2

}

+1

2

(
T + β1X2

T
+ β2X2

2

T 3 + β3e
σ X2
T 3

)

−2H

{(
2β1X2

T 3 + 12β2X2
2

T 5

+9σ 2X2
2β3

T 8 e
σ X2
T 3 + 12σ X2β3

T 5
e

σ X2
T 3

)
Ṫ

+
(

− β1

T 2 − 6β2X2

T 4

−e
σ X2
T3

(
3β3σ

2X2

T 7 + 3β3σ

T 4

))
Ẋ2

}

−2H

{(
−6β1

T 4 − 120β2X2

T 6 − e
σ X2
T 3

×
(

168β3σ
2X2

T 9 + 60β3σ

T 6

)

−3σ X2

T 4 e
σ X2
T 3

(
21β3σ

2X2

T 8 + 12β3σ

T 5

)
+ e

σ X2
T 3

×
(

3σ X2

T 4

)2 (
3β3σ

2X2

T 7 + 3β3σ

T 4

)

−e
σ X2
T 3 (3σ X2)

(
33β3σ

2X2

T 12 + 24β3σ

T 9

))
Ṫ 3

+3Ẋ2Ṫ
2
(

−3σ 3β3

T 10 e
σ X2
T 3

− σ

T 3

(
6β3σ

T 7 + 3σ 3β3X2

T 10

)
e

σ X2
T 3

)

+3Ṫ T̈

(
2β1

T 3 + 24β2X2

T 5

+e
σ X2
T 3

(
21β3σ

2X2

T 8 + 12β3σ

T 5

)

+e
σ X2
T 3

(
3σ X2

T 4

)(
3β3σ

2X2

T 7 + 3β3σ

T 4

))

−3Ẋ2
2 Ṫ

(
3σ 3β3

T 10 e
σ X2
T 3

+
(

6β3σ

T 7 + 3σ 3β3X2

T 10

)
σ

T 3 e
σ X2
T 3

)

+3
(
Ẍ2Ṫ + Ẋ2T̈

) (−6β2

T 4 − e
σ X2
T 3

(
3β3σ

2

T 7

)

−e
σ X2
T 3

σ

T 3

(
3β3σ

2X2

T 7 + 3β3σ

T 4

))

+
(

− β1

T 2 − 6β2X2

T 4

−e
σ X2
T 3

(
3β3σ

2X2

T 7 + 3β3σ

T 4

))
...
T

)

+
(

2β2

T 3 + β3σ
2

T 6 e
σ X2
T 3

)
...
X2

+3

(
β3σ

3

T 9 e
σ X2
T 3

)
Ẋ2 Ẍ2 + β3σ

4

T 12 e
σ X2
T 3 Ẋ3

2

}]
≥ 0.

(56)

Using the same four choices of expansion radius, we will
check the compatibility of this constraint graphically. It is
seen that for de Sitter model, the GSLT constraint will be
satisfied if we fix β3 = −3.11. For the case of cosmographic
parameters, some useful higher order derivatives of the term
X2 are given by

Ẍ2 = −12H6{3( j + 3q + 2)2 − 4(1 + q)(s − 2 j − 5q − 3)

+3(s − 2 j − 5q − 3) − 18(1 + q)( j + 3q + 2)

−6(1 + q)3 + (l − 5s + 10(q + 2) j

+30q(q + 2) + 24)},
...
X2 = −12H7{10( j + 3q + 2)(s − 2 j − 5q − 3)

−5(1 + q)(l − 5s + 10(q + 2) j + 30q(q + 2) + 24)

+3(l − 5s + 10(q + 2) j + 30q(q + 2)

+24) − 24(1 + q)(s − 2 j − 5q − 3)

+36(1 + q)2( j + 3q + 2) + 18( j + 3q + 2)2}, (57)

which turn out to be as Ẍ2 = −17.2684 and
...
X2 =

−50.7413, for recent fix values of cosmographic quantities.
In this case, the possible validity region for the GSLT con-
straint is given by Fig. 14 and the detail is provided in Table 1.

Also, for the power law form of scale factor, the higher-
order time rates of X2 turn out to be

Ẍ2 = −720b2(1 + b)

(ts − t)6 ,
...
X2 = −4320b2(1 + b)

(ts − t)7 ,

Ẋ2 Ẍ2 = 103680b4(1 + b)2

(ts − t)11 , Ẍ2Ṫ = 8640b4(1 + b)

(ts − t)9 ,

Ẋ2T̈ = 5184b4(1 + b)

(ts − t)9 Ẋ2Ṫ = 1728b4(1 + b)2

(ts − t)8 ,
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Fig. 13 Left plot represents the validity regions for logarithmic corrected entropy in intermediate case with δ = 2, right graph corresponds to
evolution of GSLT for δ = −2

Fig. 14 Plot represents the validity regions for GSLT condition for
equilibrium case in terms of cosmographic quantities for the model
(34)

Ṫ T̈ = 432b4

(ts − t)4 , Ẋ2
2 Ṫ = −248832b6(1 + b)2

(ts − t)13 ,

Ẋ2Ṫ
2 = −20736b4(1 + b)

(ts − t)11 . (58)

Furthermore, for intermediate form of expansion factor, these
derivatives are computed as follows

Ẍ2 = −12{b2
1β

2(β − 1)(2β − 3)(2β − 4)(2β − 5)t2β−6

+3b3
1β

3(β − 1) × (3β − 4)(3β − 5)t3β−6},
...
X2 = −12{b2

1β
2(β − 1)(2β − 3)(2β − 4)

×(2β − 5)(2β − 6)t2β−7 + 3b3
1β

3

×(β − 1)(3β − 4)(3β − 5)(3β − 6)t3β−7}. (59)

Introducing these derivatives in the GSLT constraint (56),
we check its validity by making graphical analysis as pre-
sented in Fig. 15. Here, in the left plot, we show the validity
regions for β3 = 0, while the right plot indicates the regions
for β3 = −2. In case of β3 ≤ 0, we can not find one particu-

lar region of validity, in fact, there are very small regions as
shown in this plot.

5 Concluding remarks

In the present manuscript, we have discussed the laws of
thermodynamics in a generalized gravitational framework
based on higher-order derivatives of torsion scalar. By tak-
ing flat FRW model with barotropic fluid as matter distri-
bution, we have discussed the FLT and GSLT at Hubble
horizon in both equilibrium and non-equilibrium perspec-
tives. Firstly, we have presented the non-equilibrium pic-
ture of these thermodynamical laws in such gravity at the
Hubble horizon of FRW model. In order to investigate the
validity of resulting inequalities, we have used two specific
models of F(T, X1, X2) function and some interesting cases
for scale factor namely, constant Hubble parameter, cosmo-
graphic parameters, power law and intermediate forms. In the
same section, we have explored the validity of GSLT by tak-
ing logarithmic corrected entropy into account. In all cases,
we have checked the validity of GSLT constraints graphically
and found the possible conditions on the involved free model
parameters.

In this generalized teleparallel gravity, it is seen that the
gravitational equations can lead to the non-equilibrium pic-
ture of thermodynamical laws due to the presence of an extra
entropy production term based on the function F(T, X1, X2).
This is quite similar to the cases of many other modified
gravity theories like where such extra term appeared in
FLT of thermodynamics ([80,87,88,95] etc.). In this non-
equilibrium picture of thermodynamical laws, we investi-
gated the validity of GSLT constraint using two models of
F(T, X1, X2) function both involving inverse and exponen-
tial torsion scalar terms. In the first place, by fixing some of
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Fig. 15 Left plot represents the validity regions for equilibrium picture in intermediate case with β3 = 0, right graph corresponds to evolution of
GSLT for β3 = −2

the involved free model parameters, we explored the ranges
of other parameters for which GSLT constraint remains sat-
isfied using 3D region plots. Then by taking these interest-
ing ranges of free parameters into account, we have shown
the validity of GSLT graphically in few cases. We have also
investigated the possible ranges of free parameters for the
validity of GSLT constraints in the presence of logarithmic
corrections in entropy relation using region graphs for both
F(T, X1, X2) models.

Furthermore, we have investigated the possibility of equi-
librium picture existence of these thermodynamical laws. For
previously used two models of the function F(T, X1, X2),
we formulated the resulting GSLT constraints at Hubble hori-
zon and checked their validity using cosmographic parame-
ters as well as the power and intermediate forms of expansion
radius. A detailed graphical analysis of these inequalities and
the possible restrictions on free parameters in terms of region
graphs have also been presented there. All the possible con-
straints on the free parameters in both equilibrium as well as
non-equilibrium perspectives in all cases of expansion radius
can be summarized in the forms of Tables 1 and 2.

In literature, this higher-order torsion derivatives based
theory has only been investigated for stability analysis using
fixed point theory and the validity of energy condition bounds
for restricting free model parameters. In these discussions, a
very limited analysis of free parameters selection has been
provided. However, the present paper is providing a very
detailed analysis of model parameters selection in order to
make them compatible with the GSLT constraint and hence
leading to a positive contribution in the regard. It would be
worthwhile to explore the validity of GSLT constraints at
apparent as well as event horizons in this generalized telepar-
allel gravity by constraining the free involved parameters.
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