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Abstract We exhibit a theoretical calculation of the param-
eter B appearing in the generalized uncertainty principle
(GUP) with only a quadratic term in the momentum. A spe-
cific numerical value is obtained by comparing the GUP-
deformed Unruh temperature with the one predicted within
the framework of Caianiello’s theory of maximal acceler-
ation. The physical meaning of this result is discussed in
connection with constraints on § previously fixed via both
theoretical and experimental approaches.

1 Introduction

The task of describing Quantum Mechanics (QM) and Gen-
eral Relativity (GR) in a unified way is the toughest challenge
of modern theoretical physics. Indeed, if on the one hand GR
seems to predict unphysical results when one tries to apply it
to the quantum scale, on the other hand QM is faced with seri-
ous problems when extended to cosmic dimensions. In spite
of these inconsistencies, however, it is essential to understand
to what extent quantum effects and gravitation influence each
other, in order to make further progress towards the formu-
lation of a successful theory of quantum gravity. Along this
line, it has been argued that, at the quantum gravity scale, the
Heisenberg uncertainty principle (HUP)!

1
Ax Ap > —, 1

xA4p =3 (1
should be modified [1-4] in order to take into account the
existence of a minimal length.

! Throughout the work, we set i = ¢ = 1, but we explicitly show the
Newton constant G and the Boltzmann constant kg. The Planck length
is defined as £, = /G, the Planck energy as éplp = 1/2, and the
Planck mass as m, = &p, so that 2 £, m, = 1.
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Research on the generalization of the uncertainty principle
(GUP) covers a number of domains, ranging from string the-
ory and loop quantum gravity, to deformed special relativity,
black hole physics and the Casimir effect [5-20], which has
recently been employed as a test bench also in other contexts
[21-25]. Many of these studies have converged on the idea
that a proper modification of Eq. (1) would be

1 1 Ap\°
AxApZ§<1+4,3€?,AP2>=§|:1+5<—> } )

mp

where 8 is a dimensionless parameter and £, m, are the
Planck length and mass, respectively. For mirror-symmetric
states (with (p) = 0), Eq. (2) is equivalent to the commutator

AN 2
[f,ﬁ]=i[l+ﬂ<m£>] 3)
p

since Ax Ap > (1/2) [([%, p1)|.

We remark that the deformation parameter 8 in Eq. (2)
is not fixed by the theory. In principle, it can be constrained
by means of phenomenological approaches (considering, for
instance, the spectrum of hydrogen atom [26], gravitational
waves [27,28], cold atoms [29], atomic weak equivalence
principle tests [30], etc.?), or computed on a theoretical basis.
In some models of string theory [5-8], for example, 8 is
assumed to be of order unity. This has been confirmed by
explicit calculations in the context of Donoghue’s effective
field theory of gravity [32], noncommutative Schwarzschild
geometry [31], and corpuscular gravity [33]. Similar stud-
ies in Rindler spacetime have been carried out in Ref. [34],
where it has been found that GUP corrections are responsible
for a slight shift in the Unruh temperature via both a heuristic
and a more rigorous quantum field theoretical treatment. In
passing, we mention that deviations from the standard Unruh

2 For a recent review of the various approaches used to estimate f3, see,
for example, Ref. [31].

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-019-6805-5&domain=pdf
http://orcid.org/0000-0002-5129-848X
mailto:gluciano@sa.infn.it
mailto:lpetruzziello@na.infn.it

283 Page2of 7

Eur. Phys. J. C (2019) 79:283

prediction have been recently pointed out also in other sce-
narios [35-40]. Furthermore, in Ref. [41] it has been argued
that the GUP plays a relevant role also in cosmology, since
the deformation parameter can induce an effective energy
density which complies with the holographic principle and
allows to introduce IR and UV cut-offs.

On the other hand, in Ref. [42] it has been shown that a
deformation of the Heisenberg uncertainty principle consis-
tent with the GUP (2) is obtained within the quantum geom-
etry model of Caianiello [43—46]. In particular, in such a
framework, quantum aspects are embedded into spacetime
geometry so that one-particle QM can be reinterpreted in
geometric terms. One of the most relevant predictions of this
approach is the existence of a maximal value for the accel-
eration, which can be defined either as the upper limit to the
proper acceleration experienced by massive particles along
their worldlines [47—49] or as an universal constant depend-
ing on the Planck mass [42,47—-49]. Note that deformations of
the spacetime metric have been addressed also in connection
with the spontaneous symmetry breaking of unification the-
ories and gravitational waves. A general way to define such
deformations has been described in Ref. [50], where they
have been regarded as extended conformal transformations.

The quantum geometry model finds several applications
in different sectors of theoretical physics, such as cosmology,
dynamics of accelerated strings, black hole physics, neutrino
oscillations and relativistic kinematics in non-inertial frames
[49,51-62]. Specifically, in Ref. [62] it has been emphasized
that modifications of the geometry of Rindler spacetime that
include an upper limit on the acceleration have non-trivial
implications even on the Unruh effect.

Starting from the outlined scenario, in this paper we eval-
uate the deformation parameter 8 by comparing correc-
tions to the Unruh temperature stemming from two different
approaches. The first one arises from the GUP (2), and thus
explicitly depends on 8. In the second case, we consider the
correction induced by modifications of the Rindler metric that
include the existence of a maximal acceleration. By equating
the two terms, we then obtain a numerical estimation for
of the order of unity, as expected from several string theory
models. We further discuss our result in connection with the
previously obtained bounds on the GUP parameter.

The paper is organized as follows: Sect. 2 is devoted to a
heuristic derivation of the Unruh temperature from both the
usual and generalized uncertainty principles. In Sect. 3 we
review the basics of Caianiello’s quantum geometry model,
focusing in particular on the emergence of a maximal value
for the acceleration. Using the Unruh—DeWitt detector model
[63], we show that the Unruh temperature is non-trivially
modified in this framework. We then evaluate the deforma-
tion GUP parameter 8 by comparing the GUP-corrected and
the geometric-corrected expressions of the Unruh tempera-
ture. Conclusions are discussed in Sect. 4.

@ Springer

2 Unruh effect from uncertainty relations

The Unruh effect [64] is one of the most outstanding manifes-
tations of the non-trivial nature of quantum vacuum [63,65—
68]. It states that the zero-particle state for an inertial observer
in Minkowski spacetime looks like a thermal state for a uni-
formly accelerating observer, with a temperature given by

To — a
U_27Tk]3’

where a is the magnitude of the acceleration.

The above relation can be rigorously derived within the
framework of Quantum Field Theory [64]. Following Refs.
[34,69], however, here we briefly review a heuristic cal-
culation based exclusively on the HUP (for an alternative
approach, see for example Ref. [70]). This procedure will be
the starting point to compute GUP corrections to the Unruh
temperature (4).

Consider a gas of relativistic particles at rest in a uniformly
accelerated frame. Assuming that the frame moves a distance
8x, the kinetic energy acquired by each of these particles is

“

Ey =madx, (5)

where m is the mass of the particles and a the acceleration
of the frame. Suppose this energy is barely enough to cre-
ate N particle-antiparticle pairs from the quantum vacuum,
ie. Ex >~ 2Nm. Using Eq. (5), it follows that the minimal
distance along which each particle must be accelerated reads

2N

a

ox =~ (6)
Now, since the whole system is localized inside a spatial
region of width §x, the energy fluctuation of each single par-
ticle can be estimated from the HUP as

1

SF >~ —, 7
26x @

where we have assumed § E ~ §p. This gives

a

0F ~ —.
4N

®)

If we interpret this fluctuation as a thermal agitation effect,
from the equipartition theorem we have

3 a
—kgT ~6FE ~ — 9
2P 4N ©
which can be easily inverted for T, yielding
a
= ) 10
6Nkp (10)
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Comparison with the Unruh temperature (4) allows us to set
an effective number of pairs N = /3 >~ 1.

Let us now repeat similar calculations in the context of the
GUP. From the uncertainty relation (2), we first note that the
GUP version of the standard Heisenberg formula (7) is

1
Sx ~ —— + 2B L2SE. 11
X 23E+ﬂp (11)

Upon replacing Eq. (6) into Eq. (11), and using the same

thermodynamic argument as in Eq. (9) for § E, we obtain
2N
a  3kgT

+3B ks T. (12)

Once again, by requiring that 7 equals the Unruh temperature
(4) for B — 0, we can fix N = 7/3, so that

2o gl (13)
a  kgT prB L

Solving for T, we obtain the following expression for the

modified Unruh temperature

T
T = ——— (1% ,/1-9B82a%/n?), 14
9%kBa( J1-986a/7%) (14)

which agrees with the standard result (4) in the semiclassical
limit B K% a® < 1, provided that the negative sign is chosen,
whereas the positive sign has no evident physical meaning.
The above relation will be employed to estimate the defor-
mation parameter § in our subsequent analysis.

3 Maximal acceleration theory

In a series of works [43—46] it has been shown that the one-
particle Quantum Mechanics acquires a geometric interpre-
tation if one incorporates quantum aspects into the geomet-
ric structure of spacetime. Such an outcome is achieved by
treating the momentum and position operators as covariant
derivatives with a proper connection in an eight-dimensional
manifold. As a result, the usual quantization procedure can
be viewed as the curvature of the phase space.

The above geometric picture allows for the emergence of
a maximal acceleration A that massive particles can undergo
[47—49]. In principle, this new parameter should be regarded
as a mass-dependent quantity, since it varies according to

2 3
A= ";lc =2m, (15)

where m is the rest mass of the particle. On the other side,
however, some authors interpret A as a universal constant
[42,47-49,51]. In particular, this would happen at energies of

the order of Planck scale, where the definition (15) is usually
rewritten in terms of the Planck mass as [42,47-49,51]

3
h

=m,. (16)

In order to build the aforementioned eight-dimensional man-
ifold, we basically start from the four-dimensional spacetime
7 on which the metric tensor g,,, is defined and then enlarge
it with the tangent bundle, so that #3 = .# Q T ./ . After
performing this, the line element on .Z3 becomes

dt?® = gapde®deB, A,B=1,...,8, (17)

where the coordinates and the metric in the above equa-
tion can be expressed in terms of the corresponding four-
dimensional ones by [42]

i
sA:<xM7X)1 gABnglf@g/Mh M7v=17~~-94~
(18)

Here, the dot represents a derivative with respect to the proper
time s defined on ..

From the above considerations, it is straightforward to
check that

My a?
dr? = (1 - |A—2“|> ds* = (1 - E) ds?, (19)

with a being the squared length of the spacelike four-
acceleration.

With the aid of Eq. (19), in what follows we derive the
modification to the Unruh temperature due to the presence
of an upper limit for the acceleration. To this aim, we employ
the Unruh—DeWitt particle detector method as explained in
Ref. [63].

3.1 Unruh temperature from maximal acceleration

Consider a massless scalar field ¢ interacting with a particle
detector with internal energy levels by means of a monopole
interaction. The Lagrangian related to this process can be
sketched as [63]

Lint = XM () (x(5)), (20)

where x is a small coupling constant and M is the monopole
moment operator of the detector, which travels along a world
line with proper time s. Let us further assume that the scalar
field is initially in the Minkowski vacuum [0p;) = |0) and
the detector in its ground state with energy Eg. Since we
do not impose any restriction to the detector’s trajectory, it is

@ Springer
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possible that these initial conditions vary along the world line
due to the interaction, thus allowing the scalar field to reach
an excited state |1) and the detector to undergo a transition
to an energy level E > Ey.

By resorting to a first order perturbation theory, the tran-
sition amplitude for the process |Eg, 0) — |E, A) reads [63]

o = iX(EJ»|</M(S)¢(X(S))dS> |Eo, 0), 2D

or
o =ix(E|M(0)|Ep) / e ETEOS (316 (x(5))0)ds.  (22)

where the integral extends over all the real axis.

We stress that the equality between the above relations
is guaranteed by the time evolution equation of the operator
M (s). By squaring the modulus of &/ and summing over
all the complete set of values for £ and A, we obtain the
transition probability & related to any possible excitation
of the analyzed system. In the case of a trajectory lying on
Minkowski background, it is possible to write the transition
probability per unit proper time, I" = &?/T, as follows

X2 2 g HEIM(0)| Eo) P
472
e—i(E—Eo)AS d(AS)
f (t—t —ie)> — |x—x|*

I =

(23)

At this point, we must select the parameterization for the
trajectory we mean to study. In order to derive the modified
expression of the Unruh temperature, we require the particle
detector to move along a hyperbola in the (¢, x) plane. This
indeed corresponds to the characteristic worldline of a rela-
tivistic uniformly accelerated (Rindler) motion with proper
acceleration a. Such a trajectory can be parameterized as’

t = 1/asinh (as), (24)
x = 1/acosh (as) . (25)

Using Eq. (19), we can now rewrite the above relations in
terms of the parameter 7, so as to make the dependence on
the maximal acceleration A manifest. We then obtain

t = 1/asinh (ay7), (26)
x = 1/acosh(ayT), 27

where we have defined y = 1/4/1 — a2/A2.

3 For simplicity, we assume that the acceleration is directed along the
Xx-axis.

@ Springer

With the above setting, one can check that Eq. (23) takes
the form

r=yx*) EIM©)|Eo)
E
x‘/e—W“*fwAfw«AryuArx (28)
where At =7 — 1/ > 0, and
1672 AT AT -
W= — {2 [sinh2 <ay) — [ga sinh (ay ):H
a 2 2
1672 At —2ie\1"
- _.[ ~sinh? <ay’2’8>] , (29)
a

is the positive frequency Wightman Green function [63]

W (s,5") = (01¢ (x ()¢ (x(s"))0). (30)

Note that, in the second step of Eq. (29), we have redefined
¢ by extracting the positive function 2 cosh (ay At/2). We
further emphasize that the particular dependence of W on
At (rather than 7 and t’ separately) reflects the fact that our
system is invariant under time translations in the reference
frame of the detector.*

Now, using for W(Ar) the identity

o
cosec’(mx) = w2 Z (x — k)2, 3D
k=—o00
and replacing into Eq. (28), we obtain
. - -2
2 (E = Eo) [(E1M©)|Eo)

I =2- s , 32
2 Z e2n(E—Ep)/ay _ | (32)
E

where the Fourier transform has been performed by means of
a contour integral [63]. Moreover, we have absorbed a factor
y into the definition of ¢ introduced in Eq. (29) and E =
y E is the energy defined with respect to the detector proper
time 7.

Because of the appearance of the Planck factor in Eq. (32),
the rate of absorption of the accelerated detector due to the
interaction with the field in its ground state is the same as the
one we would obtain if the detector were static, but immersed
in a thermal bath at the temperature

ay 612 —1/2
- =1y(1- % . 33
2mkg U( A2> (33)

4 In other terms, we can say that the detector is in equilibrium with the
field ¢, so that the rate of absorbed quanta is constant.
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We remark that this result is in agreement with the one of
Ref. [63], where the correction induced by the existence of
a maximal acceleration has been derived by employing the
time-dependent Doppler effect approach proposed in Ref.
[71].

3.2 GUP parameter from maximal acceleration

In Ref. [42], it was argued that the geometrical interpreta-
tion of QM through a quantization model that implies the
existence of a maximal acceleration naturally leads to a gen-
eralization of the uncertainty principle similar to the one in
Eq. (2). Thus, one may wonder which is the value of the
parameter § that allows the GUP-deformed and the metric-
deformed Unruh temperatures in Eqs. (14) and (33) to coin-
cide. Clearly, given that the regime of validity of Eq. (2) is at
Planck scale, we should consider the maximal acceleration
A as depending on the quantity m, (see Eq. (16)) in order to
compare the two expressions.

Since we are only interested in small (i.e. linear in )
corrections to the Unruh temperature, we can expand Eq. (14)
as

02 a2
T:TU(I—i—%p ) (34)

4 72

which obviously recovers the standard Unruh result (4) for
B — 0.

Likewise, for realistic values of the acceleration, we have
a << A ~ 107! m/sz, so that Eq. (33) becomes (to the
leading order)

2

N la 2 2
T’\’TU<1+§E> =TU(1+2£pCl ), (35)

where we have used the definition (16) of the maximal accel-
eration. By requiring the GUP-deformed Unruh temperature
to be equal to the corresponding geometric-corrected for-
mula, we then obtain

B=—. (36)

which is of the order of unity, in agreement with the general
belief and with several models of string theory. We stress
that such a result is perfectly consistent with the outcome
of Ref. [42], where it has been shown that the generalized
uncertainty principle of string theory is recovered (up to a
free parameter) by taking into account the existence of an
upper limit on the acceleration.

In the next section, we discuss the physical meaning of
Eq. (36) in connection with other bounds on S present in
literature.

4 Conclusion

In this work, we have calculated the deformation parame-
ter B appearing in the GUP with a quadratic term in the
momentum. A specific numerical value has been obtained
by computing the Unruh temperature for a uniformly accel-
erated observer in two different ways. In the first case, the
GUP (instead of the usual HUP) has been used to derive
the Unruh formula. The resulting temperature (34) exhibits
a (first-order) correction that explicitly depends on S. The
second calculation has been performed within the frame-
work of Caianiello’s quantum geometry model. By rewrit-
ing the line element of a uniformly accelerated observer in
such a way to include an upper limit on the acceleration, the
Unruh temperature turns out to be accordingly modified (see
Eq. (33)). Then, if we demand the GUP-deformed and the
metric-deformed Unruh temperatures to be equal, we obtain
the numerical value 8 = 872/9 for the GUP parameter.

In this connection, we emphasize that, although a vari-
ety of experiments have been proposed to test GUP effects
in laboratory [72-75], to the best of our knowledge there
are only few theoretical studies which aim to fix the defor-
mation parameter  in contexts other than string theory.
In this regard, the pioneering analysis has been carried out
in Ref. [32], where the conjecture that the GUP-deformed
temperature of a Schwarzschild black hole coincides with
the modified Hawking temperature of a quantum-corrected
Schwarzschild black hole yields § = 827 /5. Developments
of this result have been obtained in Ref. [76], where the
parameter o appearing in the GUP with both a linear and
quadratic term in momentum has been expressed in terms of
the dimensionless ratio m, /M, with M being the mass of the
considered black hole. Along this line, in Ref. [31] a possi-
ble link between the GUP parameter 8 and the deformation
parameter 1" arising in the framework of noncommutative
geometry has been discussed in Schwarzschild spacetime. In
particular, it has been argued that setting 7" of the order of
Planck scale would lead to |8| = 772/2.

In line with these findings, our result corroborates string
theory’s prediction of 8 ~ &'(1) on the basis of field theoret-
ical (rather than gravitational) considerations in non-inertial
frames. However, we should also note that the current exper-
imental constraints on B are by far less stringent than the
value exhibited here. For instance, gravitational tests give
B < 107 from light deflection experiments [77], 8 < 100
from the spectrum of GW 150914 [78], and B < 10%! from
violation of equivalence principle on Earth [79]. Likewise,
tests which do not involve the gravitational interaction lead
to B < 10% from 87Rb cold-atom-recoil experiments [29],
B < 1034 from electroweak measurement [80,81], 8 < 1020
from Lamb shift experiments [80,81], and 8 < 10'8 from the
evolution of micro and nano mechanical oscillators at Planck
mass [74].

@ Springer
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A possible matching between theoretical and experimen-
tal studies on GUP would inevitably require the development
of more advanced techniques suitable to test modifications of
the canonical commutator in novel parameter regimes. More
work is clearly needed along this direction.
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