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Abstract We make a scalar extension of the B–L gauge
model where the S3 non-abelian discrete group drives mainly
the Yukawa sector. Motived by the large and small hierar-
chies among the quark and active neutrino masses, respec-
tively, the quark and lepton families are not treated on the
same footing under the assignment of the discrete group. As a
consequence, the nearest neighbor interaction (NNI) textures
appear in the quark sector, leading to the CKM mixing matrix,
whereas in the lepton sector, a soft breaking of the μ ↔ τ

symmetry in the effective neutrino mass, which comes from
type I see-saw mechanism, provides a non-maximal atmo-
spheric angle and a non-zero reactor angle.

1 Introduction

How to explain and understand tiny neutrino masses and the
fermion mixings, respectively, in and beyond the Standard
Model (SM) is still an open question. Up to now, it is not
clear if there is an organizing principle in the Yukawa sector
that explains the almost diagonal CKM mixing matrix and
its PMNS counterpart, which has large mixing values.

The pronounced hierarchy among the quark masses,mt �
mc � mu and mb � ms � md , could be behind the small
mixing angles that parametrize the CKM, which depend
strongly on the mass ratios [1–3]. From a phenomenological
point of view, the hierarchy among the fermion masses may
be understood by means of textures (zeros) in the fermion
mass matrices [1–4]. On the theoretical side, mass textures
can be generated dynamically by non-abelian discrete sym-
metries [5–9]. The Fritzsch [10–12] and the NNI [13–16]
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textures are hierarchical, however, only the latter can accom-
modate with good accuracy the CKM matrix.

In the lepton sector, the hierarchy seems to work differ-
ently in the mixings since the charged lepton masses are hier-
archical, mτ � mμ � me, but the active neutrino masses
exhibit a weak hierarchy [17,18] that may be responsible for
the large mixing values. If the neutrinos obey a normal mass
ordering, large mixings can also be obtained by the Fritzsch
and NNI textures [17–19]. It is worth mentioning that non-
hierarchical fermion mass matrices could also accommodate
the lepton mixing angles [20,21]. Nevertheless, the hierar-
chy might have nothing to do with the mixing [22–25], since
large mixings might be explained by discrete symmetries
which were motivated mainly by the experimental values,
θ23 ≈ 45◦ and θ13 ≈ 0◦. The μ ↔ τ symmetry [26–31] was
proposed to be behind the atmospheric and reactor mixing
angle values. This symmetry predicts exactly that θ23 = 45◦
and θ13 = 0◦, which were consistent with the experimental
data many years ago. The tri-bimaximal (TB) mixing pattern
[8,32,33] was suggested for obtaining the above angles plus
sin θ12 = 1/

√
3, for the solar angle which coincides approx-

imately with the experimental value. An intriguing fact is
that the above mixing pattern does not depend on the lepton
masses up to corrections to the lower order in the mixing
matrices.

To face the neutrino masses and mixings problems, one has
to go beyond the SM, and it has to be extended or replaced by
a new framework where ideally both issues can be explained.
Along this line of thought, one of the best motivated candi-
dates to replace the SM is the baryon number minus lepton
number (B–L) gauge model, SM ⊗ U (1)B−L , which may
come from the Grand Unified Theory (GUT) SO(10) [34,35]
or from the unified model S(3)C⊗SU(3)L⊗U (1)X ⊗U (1)N
[36,37]. The breaking mass scale of the B–L model to the SM
is related with the mass of the three right-handed neutrinos
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(RHNs) that are included to cancel anomalies, explaining, at
tree level, the tiny neutrino masses by means of the type I
see-saw mechanism [38–44] (for another mechanism in B–L
see [45]). Apart from neutrino masses and mixings, leptoge-
nesis, dark matter and inflation also have found a realization
in the B–L model [46–52]. Due to all those features, in our
point of view, the renormalizable B–L model has the main
ingredients to address the problem of the quark and lepton
masses and their contrasting mixing matrices.

Moving on to the mixing, the S3 non-abelian group has
been proposed as the underlying flavor symmetry in differ-
ent frameworks [53–82]. One motivation to use this discrete
symmetry in the lepton sector is to generate the μ ↔ τ sym-
metry [26–31] or the TB mixing matrix [83,84]. In the quark
sector, the S3 symmetry can give rise to the Fritzsch and gen-
eralized Fritzsch mass textures [61,85]. More recently, it was
shown that the NNI mass textures are hidden in the S3 flavor
symmetry [68], this last novel fact will be highlighted as part
of our motivation in the present work.

Therefore, we make a scalar extension of the B–L gauge
model where the S3 non-abelian discrete group drives mainly
the Yukawa sector. Motived by the large and small hierarchies
among the quark and active neutrino masses, respectively, the
quark and lepton families are not treated on the same foot-
ing under the assignment of the discrete group. As a conse-
quence, NNI textures appear in the quark sector, leading to
the CKM mixing matrix, whereas in the lepton sector, a soft
breaking of the μ ↔ τ symmetry in the effective neutrino
mass that comes from type I see-saw mechanism provides
a non-maximal atmospheric angle and a non-zero reactor
angle.

The plan of this paper is as follows: the B–L gauge model
and the S3 flavor symmetry are described briefly in Sect. 2,
and the fermion masses and mixings will be discussed in
Sect. 3. In Sect. 4 some conclusions are drawn.

2 Flavored B–L Model

The B–L gauge model is based on the SU(3)c ⊗ SU(2)L ⊗
U (1)Y ⊗ U (1)B−L gauge group where, apart from the SM
fields, three Ni RHNs and a φ singlet scalar field are added
to the matter content. Under B–L, the quantum numbers for
quarks, leptons and Higgs (φ) are 1/3, −1 and 0 (−2), respec-
tively. The allowed Lagrangian is

LB−L = LSM − yD L̄ H̃ N − 1

2
yN N̄ cφN − V (H, φ) (1)

with

V (H, φ) = μ2
BLφ†φ+λBL

2

(
φ†φ

)2−λHφ
(
H†H

) (
φ†φ

)
,

(2)

where H̃i = iσ2H∗
i . Spontaneous symmetry breaking of

U (1)B−L happens usually at high energies, so the break-
ing scale is larger than the electroweak scale, φ0 � v. In
this first stage, the RHNs become massive particles; along
with this, an extra gauge boson, ZB−L , appears as a result of
breaking the gauge group. The rest of the particles turn out
to be massive when the Higgs scalars acquire their vacuum
expectation value (vevs) and tiny active neutrino masses are
explained by the type I see-saw mechanism. We have

〈H〉 = 1√
2

(
0
v

)
, 〈φ〉 = φ0√

2
. (3)

On the other hand, let us describe briefly the non-Abelian
group S3, which is the permutation group of three objects;
it has three irreducible representations: two 1-dimensional,
1S and 1A, and one 2-dimensional representation, 2 (for a
detailed study see [5]). Thus, the three dimensional real repre-
sentation can be decomposed as 3S = 2⊕1S or 3A = 2⊕1A.
The multiplication rules among the irreducible representa-
tions are

1S ⊗ 1S = 1S, 1S ⊗ 1A = 1A,

1A ⊗ 1S = 1A, 1A ⊗ 1A = 1S,

1S ⊗ 2 = 2, 1A ⊗ 2 = 2, 2 ⊗ 1S = 2, 2 ⊗ 1A = 2;(
a1

a2

)

2
⊗

(
b1

b2

)

2

= (a1b1+a2b2)1S ⊕ (a1b2−a2b1)1A ⊕
(
a1b2 + a2b1

a1b1 − a2b2

)

2
.

(4)

Having introduced the theoretical framework and the fla-
vor symmetry that will play an important role in the present
work, it is worthwhile to point out that the present idea has
been developed in the framework of left–right symmetric
model (LRSM) [86]. However, there are substantial differ-
ences between the LRSM and B–L models in their minimal
versions: (a) due to the gauge symmetry the LRSM contains
more scalars fields in comparison to the B–L model; (b) as a
consequence the latter one has a simpler Yukawa mass term
than the LRSM, which allows us to work with fewer cou-
plings in the fermionic mass matrices; (c) the effective neu-
trino mass matrix has two contributions due to the type I and
II see-saw mechanism in the LRSM (the latter one usually is
neglected by hand), whereas the type I see-saw mechanism
works in the B–L model. The above statements stand for
some advantages to study fermion masses and mixings in the
B–L model; moreover, the LRSM appears to be complicated
if the scalar sector is augmented. From these comments, one
may conclude that the current work is a simple comparison
with the LRSM, however, we emphasize that the quark sec-
tor makes the difference between the present work and that
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developed in [86]. As we will see later, in the current study
the CKM matrix is understood by hierarchical mass matri-
ces, which is not the case in [86]; this last statement can be
verified in [87] which is an extended version of the previous
work [86].

Now, let us remark important points about the scalar sec-
tor and the family assignment under the flavor symmetry in
our model. Due to the flavor symmetry, three Higgs doublets
have been added in this model to obtain the CKM mixing
matrix. At the same time, as we will see, the charged leptons
and Dirac neutrinos mass matrices are built so as to be diag-
onal, so the mixing will come from the RHN mass matrix.
Then three singlets scalars fields, φi , are needed to accom-
plish this. Along with this, in order to try to explain naively
the contrasting values between the CKM and PMNS mixing
matrices, let us point out a crucial difference in the way the
quark and lepton families have been assigned under the irre-
ducible representations of S3. Hierarchy among the fermion
masses suggests that both in the quark and Higgs sector, the
first and second family are put together in a flavor doublet
2 and the third family in a singlet 1S . On the contrary, for
the leptons, the first family has been assigned to a singlet 1S
and the second and third families to a doublet 2. As a conse-
quence of this assignment, the hierarchical NNI textures are
hidden in the quark mass matrices. In the lepton sector, on
the other hand, the lepton mixings can be understood from
an approximated μ ↔ τ symmetry in the effective neutrino
mass matrix [86].

We ought to comment that the above flavor symme-
try assignment may be incompatible with SO(10) multi-
plets, however, this assignment could be realized in the
S(3)C ⊗ SU(3)L ⊗U (1)X ⊗U (1)N model (see for instance
[36,37]).

In Table 1, the full assignment for the matter content is
shown. The Z2 symmetry has been added in order to pro-
hibit some Yukawa couplings in the lepton sector, but this is
not enough to obtain diagonal mass matrices. Thus, an extra
symmetry will be imposed below.

Thus, the most general form for the Yukawa interaction
Lagrangian that respects the S3 ⊗ Z2 flavor symmetry and
the gauge group is given as

−LY = yd1
[
Q̄1L (H1d2R + H2d1R)

+Q̄2L (H1d1R − H2d2R)
]

+ yd2
[
Q̄1L H3d1R + Q̄2L H3d2R

]

+ yd3
[
Q̄1L H1 + Q̄2L H2

]
d3R

+ yd4 Q̄3L [H1d1R + H2d2R] + yd5 Q̄3L H3d3R

+ yui

(
H → H̃ , dR → uR

)

+ ye1 L̄1H3e1R + ye2
[
(L̄2H2

+L̄3H1)e2R + (L̄2H1 − L̄3H2)e3R
]

+ ye3
[
L̄2H3e2R + L̄3H3e3R

]

+ yDi

(
H → H̃ , eR → N

)
+ yN1 N̄ c

1φ3N1

+ yN2
[
N̄ c

1 (φ1N2 + φ2N3)

+ (
N̄ c

2φ1 + N̄ c
3φ2

)
N1

]

+ yN3
[
N̄ c

2φ3N2 + N̄ c
3φ3N3

] + h.c. (5)

At this stage, an extra symmetryZe
2 is used to obtain diagonal

charged and neutrinos Dirac mass matrices. This symmetry
does not modify the Majorana mass matrix form. Explicitly,
in the above Lagrangian, we require that

L3 ↔ −L3, e3R ↔ −e3R, N3 ↔ −N3, φ2 ↔ −φ2,

(6)

so the off-diagonal entries 23 and 32 in the lepton sector are
absent. Then this allows one to identify properly the charged
lepton masses; at the same time, we can speak strictly about
the μ ↔ τ symmetry in the effective neutrino mass.

On the other hand, it is convenient to point out that the
scalar potential of the SM with three families of Higgs,
V (Hi ), and the representation 3S = 2 ⊕ 1S has been stud-
ied in [53,88–94]. So, in the B − L model, the flavored
gauge scalar potential (together with Eq. (6)) is given by
V (Hi , φi ) = V (Hi ) + V (φi ) + V (Hi , φi ) where the first
term has already been analyzed in the mentioned works; the
second and third terms are given as

V (φi ) + V (Hi , φi ) = μ2
1BL

(
φ

†
1φ1+φ

†
2φ2

)
+μ2

2BL

(
φ

†
3φ3

)

+ λ
φ
1

(
φ

†
1φ1 + φ

†
2φ2

)2 + λ
φ
2

(
φ

†
1φ2 − φ

†
2φ1

)2

+ λ
φ

5

(
φ

†
3φ3

) (
φ

†
1φ1 + φ

†
2φ2

)

+ λ
φ
3

[(
φ

†
1φ2 + φ

†
2φ1

)2 +
(
φ

†
1φ1 − φ

†
2φ2

)2
]

+ λ
φ
6

[(
φ

†
3φ1

) (
φ

†
1φ3

)
+

(
φ

†
3φ2

) (
φ

†
2φ3

)]

+ λ
φ
7

[(
φ

†
3φ1

)2+
(
φ

†
3φ2

)2+h.c.

]
+λ

φ
8

(
φ

†
3φ3

)2

Table 1 Flavored B − L model.
Here, I = 1, 2 and J = 2, 3

Matter QI L , HI , dI R, uI R , φI Q3L , H3, d3R, u3R , φ3 L1, e1R, N1 L J , eJ R, NJ

S3 2 1S 1S 2

Z2 1 1 1 −1
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+ λ
Hφ
1

(
H†

1 H1 + H†
2 H2

) (
φ

†
1φ1 + φ

†
2φ2

)

+ λ
Hφ
4

(
H†

3 H2

) (
φ

†
1φ1−φ

†
2φ2

)

+ λ
Hφ

5

(
H†

1 H2 + H†
2 H1

) (
φ

†
3φ1

)

+ λ
Hφ
6

(
H†

2 H3

) (
φ

†
1φ1 − φ

†
2φ2

)

+ λ
Hφ
7

(
H†

1 H2 + H†
2 H1

) (
φ

†
1φ3

)

+ λ
Hφ
8

(
H†

3 H3

) (
φ

†
1φ1 + φ

†
2φ2

)

+ λ
Hφ
9

(
H†

1 H1 + H†
2 H2

) (
φ

†
3φ3

)

+ λ
Hφ
10

(
H†

1 H3

) (
φ

†
3φ1

)

+ λ
Hφ
11

(
H†

3 H1

) (
φ

†
1φ3

)
+ λ

Hφ
12

(
H†

3 H1

) (
φ

†
3φ1

)

+ λ
Hφ
13

(
H†

1 H3

) (
φ

†
1φ3

)
+ λ

Hφ
14

(
H†

3 H3

) (
φ

†
3φ3

)
, (7)

where the factor of 1/2, in the second term of Eq. (2), has been
absorbed in the λ

φ
i ≡ λBL parameter. Then, assuming that all

parameters in the scalar potential are real, the minimization
condition for the complete scalar potential are given by

2μ2
1 = −2γ

(
v2

1 + v2
2

)
− 6λ4v2v3 − λv2

3

+ λ
Hφ
1

(
φ2

01 + φ2
02

)

+
[
λ
Hφ
I I

v2

v1
+ λ

Hφ
I I I

v3

2v1

]
φ01φ03 + λ

Hφ
9 φ2

03. (8)

2μ2
1 = −2γ

(
v2

1 + v2
2

)
− 3λ4

v3

v1

(
v2

1 − v2
2

)
− λv2

3

+ λ
Hφ
1

(
φ2

01 + φ2
02

)
+ λ

Hφ
I

v3

2v2

(
φ2

01 − φ2
02

)

+ λ
Hφ
I I

v1

v2
φ01φ03 + λ

Hφ
9 φ2

03. (9)

2μ2
2 = −λ4

v2

v3

(
3v2

1 − v2
2

)
− λ

(
v2

1 + v2
2

)
− 2λ8v

2
3

+ λ
Hφ
I

v2

2v3

(
φ2

01−φ2
02

)
+λ

Hφ
8

(
φ2

01+φ2
02

)

+ λ
Hφ
I I I

v1

2v3
φ01φ03 + λ

Hφ
14 φ2

03. (10)

2μ2
1BL = −2γBL

(
φ2

01 + φ2
02

)
− λBLφ2

03

+ λ
Hφ
1

(
v2

1 + v2
2

)
+ λ

Hφ
I v2v3 + λ

Hφ
I I

φ03

φ01
v1v2

+ λ
Hφ
8 v2

3 + λ
Hφ
I I I

φ03

φ01
v1v3. (11)

2μ2
1BL = −2γBL

(
φ2

01 + φ2
02

)
− λBLφ2

03 + λ
Hφ
1

(
v2

1 + v2
2

)

− λ
Hφ
I v2v3 + λ

Hφ
8 v2

3 . (12)

2μ2
2BL = −λBL

(
φ2

01 + φ2
02

)
− 2λ

φ
8 φ2

03 + λ
Hφ
I I

φ01

φ03
v1v2

+ λ
Hφ
9

(
v2

1 + v2
2

)
+ λ

Hφ
I I I

φ01

2φ03
v1v3 + λ

Hφ
14 v2

3,

(13)

where

λ = λ5 + λ6 + 2λ7, γ = λ1 + λ3; (14)

λBL = λ
φ

5 + λ
φ
6 + 2λ

φ
7 , γBL = λ

φ
1 + λ

φ
3 ; (15)

λ
Hφ
I = λ

Hφ
4 + λ

Hφ
6 , λ

Hφ
I I = λ

Hφ

5 + λ
Hφ
7 ,

λ
Hφ
I I I = λ

Hφ
10 + λ

Hφ
11 + λ

Hφ
12 + λ

Hφ
14 . (16)

It is not the purpose of this paper to analyze the scalar
potential in detail, but some things can be noted. The poten-
tial of the three Higgs S3 model (S3–3H ) has been analyzed
in some detail in Refs. [93,94]. In our case, the breaking of
theU (1)B−L symmetry at a scale larger than the electroweak
scale φ0i >> vi will give rise to a massive ZB−L gauge
boson. After electroweak symmetry breaking the remaining
degrees of freedom from the U (1)B−L part will mix with the
ones coming from the electroweak doublets Hi , which trans-
form under S3, and which give rise to a number of neutral,
charged and pseudoscalar Higgs bosons, one of which will
correspond to the SM one. This will provide two scales in the
model, and some of the scalars will be naturally heavier than
the others, but it is clear from the potential that there will also
be mixing among them. This rich scalar structure will give
rise to FCNCs, a detailed analysis of which, together with
the experimental Higgs bounds, will place constraints on the
available parameter space of the model. In the limit where the
couplings of the B− L part go to zero the S3–3H model will
be recovered. In general, the phenomenology of the models
will be different, not only because of the extra heavy scalar
sector and a ZB−L boson, but also because there may also be
mixing of the B–L sector and the S3–3H one.

To get an idea what possible scenarios could be for the
scalar particles in our model let us consider the limit that
there is no mixing between the B–L part and the S3–3H
one. This situation will correspond to two separate sectors at
very different scales φ0i >> vi . As already mentioned, in
the limit where the couplings of the B–L part go to zero the
S3–3H model will be recovered. In the S3–3H model, after
electroweak symmetry breaking, the scalar sector consists of
three neutral scalars, h0, H1,2 one of which is identified with
the Higgs boson of the SM (say H2), four charged scalars,
H±

1,2, and two pseudoscalars, A1,2. There are two scenarios
possible. In one case the λ4 coupling is absent, which implies
a continuous symmetry of the potential SO(2). Upon break-
ing of the electroweak symmetry this gives rise to a massless
Goldstone boson h0 [90,93], i.e. one of the three neutral
scalars remains massless. The other two scalars H1,2 can
be parameterized in a similar way to the two Higgs doublet
model (2HDM) and a decoupling or alignment limit defined.
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This decoupling limit refers to the fact that only one of the
two scalars will be coupled to the gauge bosons, and it is
identified with the SM one; the other scalar is orthogonal
to it and has no couplings with the gauge bosons. But, in
contrast to the 2HDM, this decoupling limit does not imply
that the decoupled scalar is necessarily heavier than the other
one. On the other hand, if the λ4 term is present, the continu-
ous SO(2) symmetry is not there; instead upon electroweak
symmetry breaking there is a residual Z2 symmetry left from
the breaking of S3. Now the three neutral scalars acquire
mass, but one of them is not coupled to the gauge bosons,
due to the Z2 symmetry, and in the other two the decou-
pling limit described above applies [93]. Although the three
neutral scalars can have masses in the same energy range, a
study from a model with S3 symmetry and four Higgs dou-
blets, where the fourth one is inert and the couplings of the
other three are like in S3–3H , shows that upon certain con-
siderations it is possible to satisfy the Higgs bounds and have
regions in parameter space that are compatible with the latest
experimental results [95].

Examination of the B–L part with no mixing terms shows
that it resembles the situation of the S3–3H model with the
λ4 term set to zero, that is, there exists an SO(2) symmetry
in this sector too. In this case, after the φ′s acquire vevs,
besides the massive gauge boson ZB−L , there will be three
neutral scalars, one of them massless, and two pseudoscalars.
The massive states will be heavier than in the S3–3H part,
since we have assumed φi >> vi , giving two disconnected
scalar sectors and one candidate to the SM Higgs boson in the
decoupling limit described above, plus the massless scalar.
In this case, since the λ

φ
4 coupling is forbidden by the Ze

2
symmetry, the only way to avoid the Goldstone boson is to
break this symmetry softly.

Upon considering the mixing of the B–L part and the S3–
3H one, the SO(2) or Z2 symmetries of the potential will
not be present, they will be broken by the mixing terms. In
general, all the scalars will acquire masses. Since the mixing
terms have to be very small to comply with the experimental
bounds, it will still be possible to define a decoupling limit in
the sense described above, where one of the neutral scalars of
the S3–3H part can be identified with the SM one, although
the expressions will be more complicated due to the mix-
ing terms. The viability of this decoupling limit will impose
constraints on the possible values of these mixed couplings.

Moving to the fermionic sector, the Yukawa Lagrangian
in the standard basis is

−LY = q̄i L
(
Mq

)
i j q j R + �̄i L (M�)i j � j R

+ 1

2
ν̄i L (Mν)i j ν

c
j L + 1

2
N̄ c
i (MR)i j N j + h.c. (17)

where the type I see-saw mechanism has been realized,Mν =
−MDM

−1
R MT

D . From Eq. (5), the mass matrices have the

following form:

Mq =
⎛
⎝
aq + b′

q bq cq
bq aq − b′

q c′
q

fq f ′
q gq

⎞
⎠ ,

M� =
⎛
⎝
a� 0 0
0 b� + c� 0
0 0 b� − c�

⎞
⎠ ,

MR =
⎛
⎝
aR bR b′

R
bR cR 0
b′
R 0 cR

⎞
⎠ , (18)

where the q = u, d and � = e, D. Explicitly, the matrix
elements for the quarks and lepton sectors are given as

aq = yq2 〈H3〉, b′
q = yq1 〈H2〉, bq = yq1 〈H1〉,

cq = yq3 〈H1〉, c′
q = yq3 〈H2〉, fq = yq4 〈H1〉;

f ′
q = yq4 〈H2〉, gq = yq5 〈H3〉, a� = y�

1〈H3〉,
b� = y�

3〈H3〉, c� = y�
2〈H2〉, aR = yN1 〈φ3〉;

bR = yN2 〈φ1〉, b′
R = yN2 〈φ2〉, cR = yN3 〈φ3〉. (19)

Here, it is convenient to remark that the number of Yukawa
couplings that appear in the flavored B–L model is reduced
to half in comparison with the flavored LRSM scenario [86].

3 Masses and mixings

3.1 Quark sector: NNI textures

The quark mass matrix, Mq , has already been obtained by
means of the S3 flavor symmetry [54–60,65–68]. However,
it is important to point out, as shown in [68], that this mass
matrix possesses implicitly a kind of NNI textures,1 but with
one more free parameter than the canonical NNI ones [13–
16], which only contain four. This is relevant, since it shows
that NNI textures are hidden in the S3 flavor symmetry [68],
so it may not be necessary to use larger discrete groups, for
example the Q6 symmetry [96–102], to understand the mix-
ing by hierarchical mass matrices, although extending the
symmetry group may be necessary in other contexts.

Having emphasized the above fact, we obtain simultane-
ously the NNI textures and the broken μ ↔ τ symmetry, in

1 In [68], the authors did not analyze completely this case; neither did
one diagonalize the mass matrix. They focused on a kind of mass matrix
with two zeros like this

M = �1 +
⎛
⎝

0 
 0

∗ 
 − � 


0 
 
 − �

⎞
⎠ ,
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the quark and lepton sector, respectively, within an S3 fla-
vored B–L gauge model. Although the NNI textures and the
μ ↔ τ symmetry have been studied quite widely in the lit-
erature, neither has been explored in the present theoretical
framework.

Let us comment on how to get the NNI textures (for
more details on other textures see cite [68]). Take the quark
mass matrix, Mq , that is diagonalized by the unitary matri-
ces Uq(R,L) such that M̂q = diag.

(
mq1,mq2 ,mq3

) =
U†
qLMqUqR . Now, we apply the rotation Uθ (Uq(R,L) =

Uθuq(R,L)) to Mq to obtain

mq = UT
θ MqUθ =

⎛
⎜⎝

aq
2√
3
b′
q 0

2√
3
b′
q aq

2√
3
c′
q

0 2√
3
f ′
q gq

⎞
⎟⎠ ,

Uθ =
⎛
⎝

cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎞
⎠ , (20)

with the following conditions:

tan θ = cq
c′
q

= fq
f ′
q

= 〈H1〉
〈H2〉 and

tan 2θ = b′
q

bq
= 〈H2〉

〈H1〉 , (21)

which give us the relation 〈H2〉 = ±√
3〈H1〉, 2 then θ = π/6

as was shown in [68]. Notice that mq can be written as

2 There is another way to get the NNI textures in Mq (see Eq. (18)). We

know that M̂q = diag.
(
mq1 ,mq2 ,mq3

) = U†
qLMqUqR , if we assume

that 〈H2〉 = 0, we apply U12 (Uq(R,L) = U12uq(R,L)) to the resultant
mass matrix to finally find

mq = UT
12MqU12 =

⎛
⎝
aq bq 0
bq aq cq
0 fq gq

⎞
⎠ , U12 =

⎛
⎝

0 1 0
1 0 0
0 0 1

⎞
⎠ ,

wheremq can be written as Eq. (22). However, the assumption 〈H2〉 = 0
would imply exact μ ↔ τ symmetry in the charged leptons, which
means mμ = mτ .

mq = aq1 +

m′
q︷ ︸︸ ︷⎛

⎜⎝
0 2√

3
b′
q 0

2√
3
b′
q 0 2√

3
c′
q

0 2√
3
f ′
q gq − aq

⎞
⎟⎠ . (22)

If mq was a hermitian matrix ( f ′
q = c′∗

q ), this would imply

that u†
qLuqR = 1 and m′

q would be like the Fritzsch tex-
tures, so that to diagonalize mq is equivalent to do so in m′

q ;

this means M̂′
q = diag.

(
mq1 − aq ,mq2 − aq ,mq3 − aq

) =
u†
qLm

′
quqR . However, in the present framework, mq is not

hermitian and aq �= 0, in general, so an exact diagonalization
of mq might produce a different result from the one expected
if aq = 0 (in this benchmark the NNI textures appear). Along
with this, if aq was considered as a perturbation to m′

q , one
would expect a modified NNI texture. Here, for simplicity, in
order to not include extra discrete symmetries to prohibit the
second term in the Yukawa mass term (see Eq. (5)), which
gives rise to aq , let us adopt the benchmark where aq = 0,
which means that yq2 = 0. In this way, the NNI textures
appear in the quark mass matrix so these hierarchical matri-
ces fit the CKM matrix very well.

In this framework, we find the u f R and u f L unitary
matrices that diagonalize mq . Then we must build the
bilineal forms: M̂qM̂

†
q = u†

qLmqm
†
quqL and M̂†

qM̂q =
u†
qRm

†
qmquqR ; however, in this work we will only need

to obtain the uqL left-handed matrix which occurs in the
CKM matrix. This is given by uqL = QqLOqL where
the former matrix contains the CP-violating phases, Qq =
diag

(
1, exp iηq2 , exp iηq3

)
, that comes from mqm

†
q . OqL is

a real orthogonal matrix and it is parametrized as

OqL =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
√
m̃q2(ρ

q
− − Rq)Kq

+
4yqδ

q
1 κ

q
1

−
√
m̃q1(σ

q
+ − Rq)K f

+
4yqδ

q
2 κ

q
2

√
m̃q1m̃q2(σ

q
− + Rq)Kq

+
4yqδ

q
3 κ

q
3

−
√

m̃q1κ
q
1 K

q
−

δ
q
1 (ρ

q
− − Rq)

√
m̃q2κ

q
2 K

q
−

δ
q
2 (σ

q
+ − Rq)

√
κ
q
3 K

q
−

δ
q
3 (σ

q
− + Rq)√

m̃q1κ
q
1 (ρ

q
− − Rq)

2yqδ
q
1

−
√
m̃q2κ

q
2 (σ

q
+ − Rq)

2yqδ
q
2

√
κ
q
3 (σ

q
− + Rq)

2yqδ
q
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(23)

with

ρ
q
± ≡ 1 + m̃2

q2
± m̃2

q1
− y2

q , σ
q
± ≡ 1 − m̃2

q2
± (m̃2

q1
− y2

q ),

δ
q
(1,2) ≡ (1 − m̃2

q(1,2)
)(m̃2

q2
− m̃2

q1
);

δ
q
3 ≡ (1 − m̃2

q1
)(1 − m̃2

q2
), κ

q
1 ≡ m̃q2 − m̃q1 yq ,

κ
q
2 ≡ m̃q2 yq − m̃q1, κ

q
3 ≡ yq − m̃q1m̃q2;

Rq ≡
√

ρ
q2
+ − 4(m̃2

q2
+ m̃2

q1
+ m̃2

q2
m̃2

q1
− 2m̃q1m̃q2 yq),

Kq
± ≡ yq(ρ

q
+ ± Rq) − 2m̃q1m̃q2 . (24)
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In the above expressions, all the parameters have been nor-
malized by the heaviest physical quark mass, mq3 . Along
with this, from the above parametrization, yq ≡ |gq |/mq3

is the only dimensionless free parameter that cannot be
fixed in terms of the physical masses; but it is constrained
by 1 > yq > m̃q2 > m̃q1 . Therefore, the left-handed
mixing matrix that occurs in the CKM matrix is given by
UqL = UθQqOqL where q = u, d. Finally, the CKM mix-
ing matrix is written as

VPMNS = OT
uLPqOdL , Pq = Q†

uQd

= diag.
(

1, eiηq1 , eiηq2

)
. (25)

This CKM mixing matrix has four free parameters, namely
yu , yd , and two phases ηq1 and ηq2 , which could be obtained
numerically; in this work, the physical quark masses (at mZ

scale) will be taken (just central values) as inputs: mu =
1.45 MeV, mc = 635 MeV, mt = 172.1 GeV and md =
2.9 MeV, ms = 57.7 MeV, mb = 2.82 GeV [103]. In the
following, a naive χ2 analysis will be performed to tune the
free parameters. Then we define

χ2 (
yu, yd , ηq1 , ηq2

)

=
(|V thud| − V ex

ud

)2

σ 2
ud

+
(|V thus| − V ex

us

)2

σ 2
us

+
(|V thub| − V ex

ub

)2

σ 2
ub

+ (|J th| − J ex)2

σ 2
J

, (26)

where the experimental values are given as [104]

V ex
ud = 0.97434+0.00011

−0.00012,

V ex
us = 0.22506 ± 0.00050, V ex

ub = 0.00357 ± 0.00015,

and

J th = Im
[
V thus V thcb V ∗th

cs V ∗th
ub

]
,

J ex = 3.04+0.21
−0.20 × 10−5.

Then we obtain the following values for the free parameters
that fit the mixing values up to 2σ :

yu = 0.996068, yd = 0.922299,

ηq1 = 4.48161, ηq2 = 3.64887; (27)

with these values one obtains

|V thCKM | =
⎛
⎝

0.97433 0.22505 0.00356
0.22490 0.97359 0.03926
0.00901 0.03831 0.99922

⎞
⎠ ,

J th = 3.04008 × 10−5. (28)

As can be seen, these values are in good agreement with the
experimental data, this is not a surprise since the NNI textures
work quite well in the quark sector.

3.2 Lepton sector: broken μ ↔ τ symmetry

As we already mentioned, the lepton mass matrices have
already been diagonalized in the framework of the LRSM
[86], where a systematic study was realized on the mixing
angles. Therefore, we will just mention the relevant points
and comment on the results.

The Me mass matrix is complex and diagonal, then one
can identify straightforwardly the physical masses; since
the Me mass matrix is diagonalized by UeL = S23Pe and
UeR = S23P

†
e , this is, M̂e = Diag.(|me|, |mμ|, |mτ |) =

U†
eLMeUeR = P†meP

†
e with me = ST23MeS23. After fac-

torizing the phases, we have me = Pem̄ePe where

me = Diag.(me,mμ,mτ ), S23 =
⎛
⎝

1 0 0
0 0 1
0 1 0

⎞
⎠ ,

Pe = diag.(eiηe/2, eiημ/2, eiητ /2). (29)

As a result, one obtains |me| = |ae|, |mμ| = |be − ce| and
|mτ | = |be + ce|.

On the other hand, the effective neutrino mass matrix
Mν = MDM

−1
R MT

D is given by

Mν =
⎛
⎝

Xa2
D −aDY(bD + cD) −aDY(bD − cD)

−aDY(bD + cD) W(bD + cD)2 Z(b2
D − c2

D)

−aDY(bD − cD) Z(b2
D − c2

D) W(bD − cD)2

⎞
⎠ ,

M−1
R ≡

⎛
⎝

X −Y −Y
−Y W Z
−Y Z W

⎞
⎠ , (30)

where the Dirac (� = D) and right-handed neutrino mass
matrices are given in Eq. (18). In the latter mass matrix, we
have assumed the vacuum alignment 〈φ1〉 = 〈φ2〉. Now, as a
hypothesis, we will assume that bD is larger than cD; in this
way the effective mass matrix can be written as

Mν ≡
⎛
⎝

m0
ee −m0

eμ(1 + ε) −m0
eμ(1 − ε)

−m0
eμ(1 + ε) m0

μμ(1 + ε)2 m0
μτ (1 − ε2)

−m0
eμ(1 − ε) m0

μτ (1 − ε2) m0
μμ(1 − ε)2

⎞
⎠ ,

(31)

where m0
ee ≡ Xa2

D , m0
eμ ≡ YaDbD , m0

μμ ≡ Wb2
D and

m0
μτ ≡ Zb2

D are complex. Here, ε ≡ cD/bD is a complex
parameter which will be considered as a perturbation to the
effective mass matrix such that |ε| ≪ 1. In order to softly
break the μ ↔ τ symmetry, we require that |ε| ≤ 0.3, so
we will neglect the ε2 quadratic terms in the above matrix
hereafter and a perturbative diagonalization will be carried
out.

In order to cancel the S23 contribution, which comes from
the charged lepton sector, we proceed as follows. We know
that M̂ν = diag.(mν1,mν2 ,mν3) = U†

νMνU∗
ν , then Uν =

123
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S23Uν where the latter mixing matrix will be obtained below.
Then M̂ν = U†

νMνU∗
ν with

Mν ≈
⎛
⎝

m0
ee −m0

eμ −m0
eμ

−m0
eμ m0

μμ m0
μτ

−m0
eμ m0

μτ m0
μμ

⎞
⎠

+
⎛
⎝

0 m0
eμ ε −m0

eμ ε

−m0
eμ ε −2m0

μμ ε 0
−m0

eμ ε 0 2m0
μμ ε

⎞
⎠

= M0
ν + Mε

ν . (32)

Notice thatM0
ν possesses the μ–τ symmetry and this is diag-

onalized by

U0
ν =

⎛
⎜⎝

cos θν eiην sin θν eiην 0
− sin θν√

2
cos θν√

2
− 1√

2
− sin θν√

2
cos θν√

2
1√
2

⎞
⎟⎠ , (33)

where the matrix elements M0
ν = U0

ν M̂
0
νU0T

ν are written as

m0
ee = (m0

ν1
cos2 θν + m0

ν2
sin2 θν)e

2iην ,

−m0
eμ = 1√

2
cos θν sin θν(m

0
ν2

− m0
ν1

)eiην ;

m0
μμ = 1

2
(m0

ν1
sin2 θν + m0

ν2
cos2 θν + m0

ν3
),

m0
μτ = 1

2
(m0

ν1
sin2 θν + m0

ν2
cos2 θν − m0

ν3
). (34)

Including the perturbation,Mε
ν , applyingU0

ν one getsMν =
U0†

ν (M0
ν + Mε

ν)U0∗
ν . Explicitly

Mν = Diag.(m0
ν1

,m0
ν2

,m0
ν3

)

+
⎛
⎝

0 0 − sin θν(m0
ν3

+ m0
ν1

) ε

0 0 cos θν(m0
ν3

+ m0
ν2

) ε

− sin θν(m0
ν3

+ m0
ν1

) ε cos θν(m0
ν3

+ m0
ν2

) ε 0

⎞
⎠ . (35)

The contribution of the second matrix to the mixing one is
given by

Uε
ν ≈

⎛
⎝

N1 0 −N3 sin θ r1 ε

0 N2 N3 cos θν r2 ε

N1 sin θν r1 ε −N2 cos θν r2 ε N3

⎞
⎠ ,

(36)

where N1, N2 and N3 are the normalization factors, which
are given as

N1 = 1√
1 + sin2 θν |r1ε|2

,

N2 = 1√
1 + cos2 θν |r2ε|2

,

N3 = 1√
1 + sin2 θν |r1ε|2 + cos2 θν |r2ε|2

, (37)

with r(1,2) ≡ (m0
ν3

+ m0
ν(1,2)

)/(m0
ν3

− m0
ν(1,2)

). Finally, the
effective mass matrix given in Eq. (31) is diagonalized
approximately by Uν ≈ S23U0

νUε
ν . Therefore, the theoret-

ical PMNS mixing matrix is written as VPMNS = U†
eLUν =

P†
eU0

νUε
ν . Explicitly,

VPMNS

= P′†
e

⎛
⎜⎝

cos θνN1 sin θνN2 sin 2θν
N3
2 (r2 − r1) ε

− sin θν√
2
N1(1 + r1 ε) cos θν√

2
N2(1 + r2 ε) − N3√

2
[1 − ε r3]

− sin θν√
2
N1(1 − r1 ε) cos θν√

2
N2(1 − r2 ε) N3√

2
[1 + ε r3]

⎞
⎟⎠ ,

(38)

where the Dirac phase, ην , has been factorized in the first
entry of P′†

e and r3 ≡ r2 cos2 θν + r1 sin2 θν . On the other
hand, comparing the magnitude of entries in the VPMNS

with the mixing matrix in the standard parametrization of the
PMNS, we obtain the following expressions for the lepton
mixing angles:

sin2 θ13 = |V13|2 = sin2 2θν

4
N 2

3 |ε|2 |r2 − r1|2;

sin2 θ23 = |V23|2
1 − |V13|2 = N 2

3

2

|1 − ε r3|2
1 − sin2 θ13

,

sin2 θ12 = |V12|2
1 − |V13|2 = N 2

2 sin2 θν

1 − sin2 θ13
. (39)

Notice that, in general, the reactor and atmospheric angles
depend strongly on the active neutrino masses and therefore
on the Majorana phases; also the reactor angle depends on
the magnitude of the parameter ε but the atmospheric one
has a clear dependency on the ε phase, which turns out to be
relevant for reaching the allowed value.

In particular, as shown in [86], in the regime of a soft
breaking of the μ ↔ τ symmetry, as one can see from
Eq. (39) that θ12 ≈ θν ; then this parameter was consid-
ered as an input to determine the reactor and atmospheric
angles. In these circumstances, the normal hierarchy was
ruled out by experimental data. Along with this, the most
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(a) (b) (c)

Fig. 1 From left to right: the atmospheric angle versus a the reactor angle, b |m0
ν3

| and |ε|, and c mee versus |m0
ν3

| and |ε|. Inverted hierarchy: blue
and green points stand for

∣∣mν3

∣∣ and |ε|, respectively. The dot-dashed, dashed and thick lines stand for 1 σ , 2 σ and 3 σ of C.L.

(a) (b) (c)

Fig. 2 From left to right: the atmospheric angle versus a the reactor angle, b m0 and |ε|, and c mee versus m0 and |ε|. Degenerate hierarchy: blue
and green points stand for m0 and |ε|, respectively. The dot-dashed, dashed and thick lines stand for 1 σ , 2 σ and 3 σ of C.L.

viable cases for inverted and degenerate hierarchy were those
where the CP parities in the neutrino masses are M0

ν =
diag.

(
m0

ν1
,m0

ν2
,m0

ν3

) = diag.
(− ∣∣m0

ν1

∣∣ , ∣∣m0
ν2

∣∣ ,− ∣∣m0
ν3

∣∣)
where

|m0
ν2

| =
√

�m2
13 + �m2

21 + |m0
ν3

|2,
|m0

ν1
| =

√
�m2

13 + |m0
ν3

|2, Inverted Hierarchy

|m0
ν3

| =
√

�m2
31 + m2

0,

|m0
ν2

| =
√

�m2
21 + m2

0, Degenerate Hierarchy, (40)

with m0 � 0.1 eV as the common mass. At the same time,
for the inverted (degenerate) hierarchy the associated phase
of ε = |ε| eαε has to be 0 (π ) to reach the allowed values for
the reactor and atmospheric angles.

In order to show that there is a parameter space for the
ε,

∣∣m0
ν3

∣∣ and m0, we have made scattered plots where we
require that the reactor and atmospheric angles lie within 3σ

of their experimental values, whereas the squared mass scales
lie within 2σ [105]. We allow |ε| and

∣∣m0
ν3

∣∣ (m0) to vary from
0−0.3 and 0−0.1 eV (0.06−0.2 eV), respectively. Figures
1 and 2 show the atmospheric angle versus the reactor angle
in panel (a), and versus |m0

ν3
| (m0) (in green) and |ε| (in

blue) in panel (b). At the same time, as a model prediction
the effective neutrino mass rate for neutrinoless double beta
decay [106–109] is displayed for inverted and degenerate
ordering in panel (c).

4 Conclusions

An economical scalar extension of the B–L gauge model
has been built for fermion masses and mixings. We have
stressed that the very pronounced and the smaller hierarchy
among the quark and active neutrino masses, respectively,
are the main motivations to make an unusual assignment for
the fermion families under the S3 discrete symmetry, which
becomes fundamental to understanding the contrasting val-
ues between the CKM and PMNS mixing matrices. The large
hierarchy in the quark masses is reflected in the hierarchical
NNI textures that hijack the quark mass matrices, and there-
fore, the CKM mixing. On the other hand, the lepton mixing
might be explained by a soft breaking of the μ ↔ τ sym-
metry, where a set of values for the relevant free parameters
was found to be consistent with the last experimental data on
lepton observables. The model also has a rich scalar sector,
providing opportunities for its experimental testing.

Last but not least, this naive work remarks that the non-
abelian group, S3, together with two Z2 parities, may be
considered as the underlying flavor symmetry at low energies
that allows us to understand the fermion masses and mixings,
even though the lepton sector is limited in the sense that the
Dirac CP-violating and Majorana phases are not predicted in
the model.
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