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Abstract The equations of motion, as well as the poten-
tial energy V of a self-gravitating N -body system in the
first post-Minkowskian approximation have recently been
derived. Here, for the particular case of two equal masses,
the ultra-relativistic limit of these equations is analysed. It is
shown that the requirement that the component of the grav-
itational force along the vector connecting the two particles
is attractive, implies that the ultra-relativistic gravitational
force acting on these two particles has properties usually
associated with the strong force, namely, confinement and
asymptotic freedom. This surprising result may have impli-
cations in particle physics: if the typical length of the system
is of the order of the size of the pion, and if the mass of each
particle is of the order of the mass of a light quark, then the
magnitude of the above force is of the order of the magnitude
of the strong force, whereas the bound state of this two equal
masses body system yields a particle of mass of the order of
the mass of the pion.

1 Introduction

The motivation for this work is the book [1] and a series of
papers [2–6] by Vayenas and others (including the author),
where the iconoclastic idea is presented that ultra-relativistic
gravity is consistent with the strong force. This idea is sup-
ported via the analysis of a Bohr-type model and the employ-
ment of the following simplistic formula for the relativistic
gravitational force acting between two masses m1 and m2 at
a distance r , moving with relativistic speeds v1 and v2:

FV = Gm1m2γ
3
1 γ 3

2

r2 , γ j = [1 − (v j/c)
2]−1/2, (1.1)

where, G denotes the gravitational constant.
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In particular, in [1] a neutron is modeled as a compos-
ite particle involving three equal sub-particles (quarks) of
mass m, placed at the vertices of an equilateral triangle;
these particles are moving on a circular orbit with constant
speed v. Employing identical arguments with those used by
Bohr except that the Coulomb force is now replaced with
the force given by the first of Eq. (1.1), and using the known
values for the mass and the radius of the neutron, one finds
the numerical value of m. Surprisingly, this value is within
the range of the current experimental estimate of the mass
of the electron-neutrino, mν . By considering other compos-
ite particles formed from electrons and electron-neutrinos, a
similar analysis yields good approximations for the experi-
mental values of these composite particles. This is remark-
able because after fixing the value of mν via the neutron
model, the subsequent models do not have any free param-
eters. Based on these elementary computations, the authors
of [1] have suggested that ultra-relativistic gravity is consis-
tent with the strong force and that light quarks have the mass
of the electron-neutrino. It should be noted that the analysis
presented in [1–6] implies that the associated γ values are
very large, i.e. v/c is of order 1.

Of course, the above model has various weaknesses,
including the use of the anachronistic Bohr-type model
instead of Dirac’s equation. However, it is well-known that
the Bohr model provides the semi-classical approximation
of the Schrodinger equation and similar considerations are
also valid for the Dirac equation. Thus, perhaps employing a
Bohr-type model is not fatal. Assuming that this is indeed the
case, then the most obvious weakness of the above model is
its reliance on Eq. (1.1). These equations are derived in [1] by
starting with Newton’s gravitational law and simply replac-
ing in this law the mass m with the so-called gravitational
mass given by mγ 3, where γ is the associated Lorenz fac-
tor. However, in the special theory of relativity, one simply
replaces in the formula of acceleration t by the proper time
τ defined by τ = t/γ ; there is no need for the introduction
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of any additional notions, such as the notion of the gravita-
tional mass. Historically, this notion arose due to the remark
of Einstein that in the particular case that the components of
the velocity in the y and z directions vanish, the term m dvx

dτ
,

where vx denotes the x-component of the velocity, can be
re-written in the form mγ 3 dvx

dt . Regarding the derivation of
(1.1), it should also be noted that the correct law of gravity
cannot be obtained by ad hoc substitutions in the original
Newton’s gravitational law, but its derivation requires the
analysis of the equations of the general theory of relativity.

Taking into consideration the simplistic derivation of
(1.1), it is the author’s opinion that the proper framework of
viewing [1–6] is the following: if the force between quarks is
modelled by the ad hoc Eq. (1.1), then the above Bohr-type
model makes theoretical predictions consistent with exper-
imental values. In this connection, it is useful to recall that
in 1917 the well-known physicist Silberstein claimed that
Einstein’s theory of general relativity was not needed for the
computation of the perihelion shift: he modified Newton’s
gravitational law by an ad hoc factor γ n , and by choosing
n = 5, he could match the experimental data [7]. It turns out
that this result can be easily explained: a simple computation
shows that in the limit of large M/m, where M and m are the
masses of the sun and Mercury respectively, the equations
of general relativity indeed yield the formula for the force
suggested by Silberstein, namely F = GmMγ 5/r2, where
r is the distance between the sun and Mercury.

Motivated by the above discussion and the remarkable
fact that the Vayenas model, which does not have any free
parameters, yields theoretical values for several composite
masses that are in close agreement with experimental data,
the author has speculated that: in the limit of small masses and
large speeds, the general theory of relativity must yield results
which somehow are in agreement with results obtained via
the Vayenas model. It will be shown below that this is indeed
the case.

In order to investigate the equations of the general theory
of relativity in the simplest possible setting, we will con-
sider a system of two equal masses. Unfortunately, even in
this case the question of finding the correct analogue of New-
ton’s gravitational law within the context of general relativity
remains open. Naturally, the form of this law has been inves-
tigated by many physicists, starting with Einstein himself:
since Einstein replaced in 1915 Newton’s fundamental law
with a new one, he was keen to know the precise form of his
more general law.

After the failure to obtain an exact formulation for the
analogue of Newton’s gravitational law, many physicists have
concentrated in the so-called post-Newtonian approximation,
namely the case when v/c is small, where v is a typical
speed. In particular, Blanchet [8] derived a formula valid up
to order (v/c)7 (this formula is 4.5 pages long). This result
is very useful for the study of several important phenom-

ena, including gravitational waves, but unfortunately it is not
useful for our purposes, since in our case v/c is of order 1.
On the other hand, in our case one can employ the so-called
post-Minkowskian approximationdefined by the requirement
that rs/r is small, where rs defined by rs = 2Gm/c2 is the
Schwartzschild radius of a typical particle of mass m, and
r is a typical length. The most well-known physical appli-
cation of the post-Minkowskian approximation is the case
of unbounded orbits encountered in the scattering of parti-
cles moving with high velocities and a small deviation angle;
in this case, the smallness of rs/r is achieved via the large
values of r . Here, we will consider a different application,
namely the case of bounded orbits associated with very small
masses; in this case, the smallness of rs/r is due to the small
value of rs . For example, in the case of a meson with a typical
length r of the order of 10−16 m, for a typical mass m, say,
of the order of the mass of the electron, it follows that rs/r
is of the order of 10−41, which is indeed very small!

The problem of deriving the equations of motion of N self-
gravitating massive particles (without spins) in the leading
post-Minkowskian approximation was recently addressed in
[9]. In the particular case of N = 2 the validity of the equa-
tions derived in [9] was verified in the Appendix C of [9] as
follows: the dependence on v j/c, j = 1, 2, was expanded up
to terms of order (v j/c)7, and the resulting expressions were
shown to be identical with the expressions obtained in the
post-Newtonian approximation in [8] when keeping terms
that are only linear in m1 and m2.

The results of [9] provide the starting point of the work
presented here. Indeed, in Sect. 2, the simplification of the
equations of motion derived in [9] in the particular case that
m1 = m2 is presented. In Sect. 3 the large γ limit of these
equations is computed. This computation shows that in the
ultra-relativistic limit the force between two equal masses
in the framework of the post-Minkowskian approximation
has features associated with the strong force, namely, con-
finement and asymptotic freedom. In Sect. 4 comparisons
between the force obtained here and the first of Eq. (1.1)
with m1 = m2 are presented, and also possible implications
to particle physics are discussed. Important open questions
and a summary of the main results are presented in Sect. 5.

2 The leading order of the post-Minkowskian
approximation for two equal masses

The authors of [9] start with Einstein’s field equations in har-
monic coordinates corresponding to N self-interacting par-
ticles, and they compute the first order post-Minkowskian
approximation of these equations. This involves keeping
terms linear in G. In more details, the retarded field is treated
via the usual Lienard–Wickert procedure, see (2.5) in [9];
in order to obtain equations of motion expressed in terms
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of ordinary variables at equal times, the retardations are
expanded consistently with the leading post-Minkowskian
approximation, see (2.8) in [9]. The solution is then inserted
into the geodesic equation for the motion of the particles. The
next important step is the regularisation of these equations;
in this respect, the self-field of each particle is removed. In
this way, the general equations of motion (2.12) in [9] in the
first post-Minkowskian approximation (neglectingG2 terms)
are obtained, which are then rewritten using Newtonian like
variables, see (2.13) in [9]. The validity of these equations
is confirmed as follows: when v/c → 0, the latter equations
yield the terms of order G of the well-known results derived
up to the fourth order in the post-Newtonian approximation.

Equation (2.3) below is the particular case of (2.13) of
[9] for the case of two particles with equal masses. Indeed,
letting N = 2 and m1 = m2 in these equations it follows that
υ2 = −υ1.

We introduce the following notations:

m1 = m2 = m, υ1 = −υ2 = υ

2
, υ = |υ|,

r = r1 − r2, r = |r1 − r2|,
r̂ = r

r
, ṙ = dr

dt
. (2.1)

Then, the definitions of γ1, γ2, γ12 of [9] imply

γ1 = γ2,
1

γ 2 = 1 − υ2

4c2 ,
1

γ 2
12

= 2 − 1

γ 2 . (2.2)

The basic equations of motion yield the following single
equation:

d

dτ
(γυ) = −2Gm

r2y
3
2

[
f1(γ )r̂ − γ 2

2
f2(γ )λ

υ

c2

]
, (2.3)

where τ denotes the proper time, f1(γ ) and f2(γ ) are defined
by

f1(γ ) = 8γ 4 − 8γ 2 + 1, f2(γ ) = 16γ 6 − 8γ 4

+ 6γ 2 − 1, (2.4)

and λ, y are defined by the equations

λ = r̂ · υ

2c
, y = 1 + γ 2λ2. (2.5)

The identity

d r
dt

= d

dt
(r1 − r2) = υ1 − υ2 = υ,

together with the equation r = r r̂ , imply

υ = ṙ r̂ + r
d r̂
dt

. (2.6)

The equation r̂ · r̂ = 1 yields r̂ · d r̂/dt = 0, thus (2.6) and
the definition of λ imply

λ = ṙ

2c
. (2.7)

Using the identity

d

dτ
= γ

d

dt
,

Equation (2.3) implies that the motion of two equal masses
in the post-Minkowskian approximation is characterised by
the equation

d

dt
(γυ) = −2Gmγ −1

r2y
3
2

[
(8γ 4 − 8γ 2 + 1)r̂ − γ 2

4
(16γ 6

−8γ 4 + 6γ 2 − 1)
ṙ

c

υ

c

]
. (2.8)

Recalling the definition of the force, f ,

f = m
d

dt
(γυ),

we obtain

f = −Gm2

r2y
3
2

[
(8γ 3 − 8γ + γ −1)r̂ − 1

4
(16γ 7 − 8γ 5

+6γ 3 − γ )
ṙ

c

υ

c

]
. (2.9)

In the limit of small v, we find

ṙ

c
→ 0,

v

c
→ 0, γ → 1,

and Eq. (2.9) yields

f ∼ − Gm2

r2 r̂,

which is the form of the usual gravitational force between
two equal masses.

In order to compute the large γ limit of f it is useful to
first obtain an equation for γ .

Proposition 2.1 Consider two self-interacting particles of
equal mass m located at time t at r1 and r2. In the leading
order of the post-Minkowskian approximation the velocities
of these two particles satisfy the simple equation

υ2 = −υ1, υ j = d r j
dt

, j = 1, 2. (2.10)

Let

υ = 2υ1, υ = |υ|, r = r1 − r2, r = |r|, ṙ = dr

dt
,

(2.11)

and

γ = 1√
1 − v2/4c2

, y = 1 +
(

ṙ

2c

)2

γ 2. (2.12)
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Then γ satisfies the ODE

dγ

dr
= 4rs

r2y3/2

(
γ 7 − 3

2
γ 5 + 3

8
γ 3 + 1

16
γ

)
, rs = 2Gm

c2 .

(2.13)

Furthermore, y satisfies the ODE

dy

dr
+ 2

r
y − 2

r
γ 2 = 8rs

r2y
3
2

[
y

(
γ 6 − γ 4

2
+ 3

8
γ 2 − 1

16

)

−
(

γ 6 − γ 2

8

)]
. (2.14)

Proof In order to derive the equation satisfied by γ , we will
use the identity

d

dt
(γυ · γυ) = 2γυ · d

dt
(γυ). (2.15)

Using in the lhs of the above equation the identity

γυ · γυ = γ 2υ2 = 4c2(γ 2 − 1),

and replacing the term d(γυ)/dt via Eqs. (2.8), (2.15)
becomes

dγ 2

dt
= 16Gmṙγ 2

r2y
3
2 c2

(
γ 6 − 3

2
γ 4 + 3

8
γ 2 + 1

16

)
. (2.16)

Replacing in (2.16) ṙ by dr/dt and then cancelling dt we
find

dγ 2

dr
= 16Gm

r2y
3
2 c2

(
γ 8 − 3

2
γ 6 + 3

8
γ 4 + 1

16
γ 2

)
, (2.17)

which can be rewritten in the form (2.13).
In order to derive the equation satisfied by y, we consider

the following identities:

d

dt
(γ λ) = 1

2c

d

dt
(r̂ · γυ) = 1

2c

(
d r̂
dt

· γυ + r̂ · d(γυ)

dt

)
.

(2.18)

Equation (2.6) yields

υ2 =
(
ṙ r̂ + r

d r̂
dt

)
· υ = ṙ2 + r

d r̂
dt

· υ. (2.19)

The expressions

d r̂
dt

· υ,
d

dt
γυ,

appearing in (2.18) can be obtained via Eqs. (2.19) and (2.8),
respectively. Hence, Eq. (2.18) implies the following equa-
tion for y:

dy

dt
= γ λ

c

{
γ

r
(υ2 − ṙ2) − 2Gmγ −1

r2y
3
2

[
(8γ 4 − 8γ 2 + 1)

− γ 2(16γ 6 − 8γ 4 + 6γ 2 − 1)
ṙ2

4c2

]}
. (2.20)

Replacing λ by ṙ/2c and using the identities

γ 2υ2 − γ 2ṙ2 = 4c2(γ 2 − y),
γ 2ṙ2

4c2 = y − 1,

Equation (2.20) becomes

dy

dt
= ṙ

{
2

r
(γ 2 − y) + 16Gm

r2c2y
3
2

y

(
γ 6 − γ 4

2
+ 3γ 2

8
− 1

16

)

− 16Gm

r2c2y
3
2

(
γ 6 − γ 2

8

)}
. (2.21)

Hence, Eq. (2.14) follows. ��
Equations (2.13) and (2.14) determine the two unknown

functions γ and y in term of r . Actually, it will be shown
below that it is possible to express explicitly y in term of γ

and r . Before deriving this expression we will first derive the
expressions for the energy and for the angular momentum.

The energy E
The energy E is defined by

E = 2mc2γ + V . (2.22)

Hence, conservation of energy implies

dV

dr
= −2mc2 dγ

dr
.

Using Eq. (2.13) we find

dV

dr
= −16Gm2

r2y
3
2

(
γ 7 − 3

2
γ 5 + 3

8
γ 3 + γ

16

)
. (2.23)

In order to integrate the above equation we first observe
that since dγ /dt = O(Gm), γ can be treated as “constant”.
Furthermore, we will employ the following important iden-
tity:

d

dr

1

r y1/2 = − γ 2

r2y3/2 + O(Gm). (2.24)

Indeed, using (2.14) we find

d

dr

1

r y1/2 = − 1

r2y1/2 − 1

2r y3/2

[
2

r
(γ 2 − y) + O(Gm)

]
,

and then Eq. (2.24) follows.
Treating γ as “constant” and using (2.24), Eq. (2.23)

yields

V = 16Gm2

r y1/2

(
γ 5 − 3

2
γ 3 + 3

8
γ + 1

16γ

)
. (2.25)

If γ = 1, Eq. (2.25) becomes

V = −Gm2

r
,

which is the form of th Newtonian gravitational potential for
two equal masses.
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The angular momentum J
The angular momentum J is defined in [9] by

J = m1γ1r1 × υ1 + m2γ2r2 × υ2 + J̃ .

Using the equations

m1 = m2 = m, γ1 = γ2 = γ, υ1 = −υ2 = υ

2
,

we find

J = m
γ

2
r × υ + J̃ . (2.26a)

Thus,

d J̃
dt

= −m

2

d

dt
r × γυ = −m

2
r × d

dt
γυ.

Replacing dγυ/dt by the rhs of (2.8) we obtain

d J̃
dt

= −(r × υ)
Gm2

c2r2y3/2

γ

4
(16γ 6 − 8γ 4 + 16γ 2 − 1).

This equation implies that d(r×γυ)/dt is of order O(Gm),
thus, we can integrate this equation treating γ and (r × υ)

as “constants”. Then, using (2.24), we find

J̃ = (r × υ)
Gm2

c2r y1/2

1

4γ
(16γ 6 − 8γ 4 + 16γ 2 − 1).

(2.26b)

Using Eq. (2.6) we find

∣∣r̂ × υ
∣∣ =

∣∣∣∣r̂ ×
(
ṙ r̂ + r

d r̂
dt

)∣∣∣∣ = r

∣∣∣∣r̂ × d r̂
dt

∣∣∣∣ = r

∣∣∣∣d r̂dt
∣∣∣∣ ,
(2.27)

where we have used the fact that r̂ is orthogonal to d r̂/dt .
The definitions of 1/γ 2 and of y, as well as the identity

υ2 = ṙ2 + r2
∣∣∣∣d r̂dt

∣∣∣∣
2

,

imply

r

∣∣∣∣d r̂dt
∣∣∣∣ =

√
υ2 − ṙ2 =

√
4c2

(
1 − 1

γ 2

)
− 4c2

γ 2 (y − 1)

= 2c
√

1 − y

γ 2 .

Hence, the above equation together with Eq. (2.27) yield

mγ

2
|r × υ| = mγ cr

√
1 − y

γ 2 . (2.28)

Using the fact that

dy

dt
≈ 2ṙ

r

(
γ 2 − y

)
,

it is straightforward to verify that

d

dt

(
γ r

√
1 − y

γ 2

)
≈ 0.

Proposition 2.2 Under the assumptions and notations of
Proposition 2.1, y is given by

y = γ 2 − k
(
γ 4 − γ 2 − 1

8

) 4
3

r2γ 2
(
γ 2 − 1

2

) 2
3

, k constant. (2.29)

Furthermore, the force f between the two particles is given
by

f = −Gm2

r2y
3
2

[
8γ 3 − 8γ + γ −1 − 1

4
(16γ 7 − 8γ 5

+6γ 3 − γ )

(
ṙ

c

)2 ]
r̂

+ Gm2

4r2y
3
2

(16γ 7 − 8γ 5 + 6γ 3 − γ )
ṙ

c

r

c

d r̂
dt

, r̃ = r
r
.

(2.30)

Proof Let x = γ 2.
It is remarkable that the polynomial in x appearing in

(2.17) can be written in terms of the two polynomials appear-
ing in (2.21):

x4 − 3

2
x3 +3

8
x2 + x

16
= x

(
x3 − x2

2

+3

8
x − 1

16

)
−

(
x3 − x

8

)
.

Thus, (2.17) can be rewritten in the form

dx

dr
= 16Gmx

r2y
3
2 c2

(
x3 − x2

2
+ 3

8
x − 1

16

)

− 16Gm

r2y
3
2 c2

(
x3 − x

8

)
. (2.31)

Subtracting Eqs. (2.14), (2.31) we find

d

dr
(x − y) = −2

r
(x − y)

+16Gm(x − y)

r2y
3
2 c2

(
x3 − x2

2
+ 3

8
x − 1

16

)
.

Multiplying this equation by r2 we obtain

d

dr

[
r2(x − y)

]
= 16Gm

r2y
3
2 c2

[
r2(x − y)

]

×
(
x3 − x2

2
+ 3

8
x − 1

16

)
.

Dividing the above Eq. (2.17) we find

d[r2(x − y)]
r2(x − y)

= x3 − x2

2 + 3
8 x − 1

16

x4 − 3x3

2 + 3
8 x

2 + x
16

dx . (2.32)

Using the fact that the denominator of the rhs of (2.32) fac-
torises,

x4 − 3x3

2
+ 3

8
x2 + x

16
= x

(
x − 1

2

) (
x2 − x − 1

8

)
,
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and integrating (2.32) we find

r2(x − y) = k
(
x2 − x − 1

8

) 4
3

x
(
x − 1

2

) 2
3

, k constant, (2.33)

which implies (2.29).
The force is given by Eq. (2.9). Replacing in this equation

υ by (2.6) we find the alternative representation for f given
by (2.30). ��

3 The large γ computation

If γ is large, the bracket multiplying r̂ in Eq. (2.30) is approx-
imated by

8γ 3

[
1 − 2γ 4

(
ṙ

2c

)2
]

.

Thus, the requirements of large γ and of an attractive force
imply that ṙ/2cmust be small. Actually, if γ is of order O( 1

ε
),

ε → 0, and (ṙ/2c)2 is of order O(εν), then ν−4 ≥ 0. Hence,
we introduce the following notations:

r = r̃δ, γ = γ̃

ε
,

(
ṙ

2c

)2

= R̃εν, ν ≥ 4, ε → 0, (3.1)

where r̃ , γ̃ , R̃ are ε-dependent dimensionless variables of
order O(1), as ε → 0.

We will first show that the ε-independent part of r̃ is con-
stant. In this direction we note that the rhs of (2.29) can be
simplified. Indeed,

(
γ 4 − γ 2 − 1

8

) 4
3

(
γ 2 − 1

2

) 2
3

=
(
γ 4

) 4
3

(
γ 2

) 2
3

(
1 − γ −2 − 1

8
γ −4

) 4
3
(

1 − 1

2
γ −2

)− 2
3

= γ 4
(

1 − γ −2 − 1

4
γ −4 + O

(
γ −6

))
, γ → ∞.

Thus,

y = γ 2 − γ 2 k

r2

[
1 − 1

γ 2 − 1

4γ 4 + O

(
1

γ 6

)]
, γ → ∞,

(3.2)

where the above bracket does not contain a term of order
O(γ −5).

Using in (3.2) the definition of y given by the second of
equations (2.12), and dividing by γ 2 we find

1

γ 2 +
(

ṙ

2c

)2

= 1 − k

r2 + k

r2

[
1

γ 2 + 1

4γ 4 + O

(
1

γ 6

)]
.

Solving this equation for (ṙ/2c)2 we obtain

(
ṙ

2c

)2

= 1 − k

r2 −
(

1 − k

r2

)
1

γ 2

+ k

r2

(
1

4γ 4

)
+ k

r2 O

(
1

γ 6

)
.

Rewriting the term k/r2 multiplying by 1/4γ 4 in the above
equation as (k/r2 − 1) + 1, we find

(
ṙ

2c

)2

= 1 − k

r2 −
(

1 − k

r2

)
1

γ 2 −
(

1 − k

r2

)
1

4γ 4

+ 1

4γ 4 + k

r2 O

(
1

γ 6

)
.

Solving for 1 − k/r2 we obtain

(
1 − k

r2

) [
1 − 1

γ 2 − 1

4γ 4 + O

(
1

γ 6

)]
=

(
ṙ

2c

)2

− 1

4γ 4 + O

(
1

γ 6

)
.

Hence,

1 − k

r2 =
(

ṙ

2c

)2 [
1 − 1

γ 2 − 1

4γ 4 + O

(
1

γ 6

)]−1

+
[

1 − 1

γ 2 − 1

4γ 4 + O

(
1

γ 6

)]−1

×
[
− 1

4γ 4 + O

(
1

γ 6

)]
,

or

1 − k

r2 =
(

ṙ

2c

)2 [
1 + 1

γ 2 + 5

4γ 4 + O

(
1

γ 6

)]

− 1

4γ 4 + O

(
1

γ 6

)
. (3.3)

Using the third of Eq. (3.1) it follows that the rhs of Eq.
(3.3) is of O(εν, ε4) = O(ε4), thus k/r2 − 1 = O(ε4).
Hence,

lim
ε→0

r2 = lim
ε→0

k = constant.

Therefore, r̃ can be represented in the form

r̃ = r̃0 + řελ, λ > 0,

where r̃0 is a constant independent of ε and the ε-dependent
variable ř is of O(1) as ε → 0. Since r usually appears in
the denominator, it is convenient to represent r̃ in the form

r̃ = r̃0(1 − ρελ)−1, λ > 0, (3.4)

where r̃0 is an ε-independent constant and ρ is an ε-
dependent variable which is of O(1) as ε → 0.

123



Eur. Phys. J. C (2019) 79 :271 Page 7 of 11 271

We will next prove that the ε-independent term of γ̃ is
constant. For this purpose we represent γ in the form

γ = γ̃0

ε
(1 + 
εμ), μ > 0, (3.5)

where γ̃0 is ε-independent, whereas the ε-dependent variable

 is of O(1) as ε → 0.

Recalling that γ = O(ε−1) and that (ṙ/2c)2 = O(εν),
the second of equations (2.12) defining y, implies

y = 1 + γ 2
(

ṙ

2c

)2

= 1 + O(εν−2). (3.6)

Hence, (2.13) becomes

dγ

dr
= 4rsγ 7

r2

[1 + O(ε2)]
[1 + O(εν−2)] . (3.7)

Using in this equation the relations

γ = γ̃0

ε
[1 + O(εμ)], r = r̃0(1 − ρελ)−1δ,

dr = r̃0(1 − ρελ)−2δελdρ, (3.8)

we find that the leading order terms of (3.7) yield the equation

dγ̃0

dρ0
= 4

r̃0

rs γ̃ 7
0

δ
ελ−6,

where ρ0 denotes the ε-independent part of ρ. Hence,

γ̃0 = (A − αρ0)
1
6 , α = 24

r̃0

rs
δ

ελ−6, (3.9)

where α and A are ε-independent constants.
Combining Eqs. (2.18) and (2.21) and recalling the defi-

nition rs = 2Gm/c2, the definition (2.22) implies

E

2mc2 = γ + 4rs
r y1/2

(
γ 5 − 3

2
γ 3 + 3

8
γ + 1

16γ

)
.

Using in this equation the representations for r = r̃δ, γ and
y, given by Eqs. (3.4), (3.5) and (3.6) respectively, we find

E

2mc2 = γ̃0

ε
(1 + 
εμ)

+4rs γ̃ 5
0

r̃0δε5

(
1 − ρελ

) (
1 + 
εμ

) [1 + O(ε2)]
[1 + O(εν−2)]1/2 .

Simplifying we obtain

E

2mc2 = γ̃0

ε
+ γ̃0


εμ

ε

+αγ̃ 5
0

6
ε1−λ

(
1 + O(ε2, εν−2, εμ, ελ)

)
, (3.10)

where we have used the second of Eq. (3.9) to express rs/r̃0δ

in terms of ε6−λ.
Equation (3.10) implies that the leading order term of

E/2mc2 is one of the following:

γ̃0

ε
, λ < 2; α

γ̃ 5
0

6
ε1−λ, λ > 2; γ̃0 + αγ̃ 5

0 /6

ε
, λ = 2.

Thus, γ̃0 cannot be a variable.
The proposition below summarises the above results and

also expresses the consequense of the basic Eqs. (2.13) and
(2.29) using the new representation for r , γ and (ṙ/2c)2.

Proposition 3.1 Under the assumptions and notations of
Proposition 2.1, the variables r , γ and (ṙ/2c)2 can be rep-
resented in the following form:

r = r̃0(1 − ρελ)−1δ, λ > 0; γ = γ̃0

ε
(1 + 
εμ),

μ > 0;
(

ṙ

2c

)2

= R̃εν, ν ≥ 4, (3.11)

where r̃0 and γ̃0 are ε-independent constants, whereas the
ε-dependent variables ρ, 
 and R̃ are of O(1) as ε → 0. The
ε-independent parts of the variables ρ and 
 denoted by ρ0

and 
0 satisfy the relation


0 = βρ0 + B, (3.12)

where β and B are ε-independent constants.
If ν = 4, then λ = 4 and also the ε-independent part of

the variable R̃ denoted by R̃0, satisfies the relation below:

λ = ν = 4, R̃0 = 2ρ + C, (3.13)

where C is an ε-independent constant. If ν > 4, then there
exist the following three cases:

λ = ν, μ > ν − 4, R̃0 = 2ρ0 + C, (3.14a)

ν < λ < ν + 2, μ = ν − 4, R̃0 = − β

4γ̃ 4
0

ρ0 + C,

(3.14b)

λ = ν, μ = ν − 4, R̃0 =
(

2 − β

4γ̃ 4
0

)
ρ0 + C,

(3.14c)

where C is an ε-independent constant.
Furthermore, the small parameters rs/δ and ε are related

by

εχ = α
rs
δ

, χ = 6 + μ − λ, (3.15)

where α = 4γ̃ 6
0 /βr̃0 is an ε-independent constant of order

1; for (3.13) and (3.14a) χ > 0, for (3.14b) 0 < χ < 2 and
for (3.14c) χ = 2.

Proof Using in the ODE (3.7) satisfied by γ the representa-
tions for r and γ given by the first two Eq. (3.1), we find

d
0

dρ0
= 4

γ̃ 6
0

r̃0

Rs

δ
ε−χ , χ = 6 + μ − λ.

Hence, we find Eq. (3.12) as well as Eq. (3.15).
Equation (3.5) implies

1

γ 4 = ε4

γ̃ 4
0

[1 − 4
εμ + O(εμ̃)], μ̃ > μ, ε → 0.
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Indeed, if 
 = 
0 + O(εμ1), then the order of the next
term in the above bracket is εμ̃, where μ̃ = min(μ1+μ, 2μ).

Employing in Eq. (3.3) the above equation and recalling
that (ṙ/2c)2 = R̃εν , we find

1 − k

r̃2
0 δ2

(1 − ρeλ)2 = R̃εν[1 + O(ε2)] − 1

4

ε4

γ̃ 4
0

+ 
ε4+μ

γ̃ 4
0

+O
(
ε6, ε4+μ̃

)
, ε → 0. (3.16)

The lhs of Eq. (3.16) simplifies to

1 − k

r̃2
0 δ2

+ 2k

r̃2
0 δ2

ρελ + O(ελ).

Since the leading order of 1 − k/r̃2
0 δ2 vanishes, the leading

order of k/r̃2
0 δ2 is 1, thus Eq. (3.16) simplifies to the equation

constant + 2ρ0ε
λ ∼ R̃0ε

4 − 1

4

ε4

γ̃ 4
0

+ 
0ε
4+μ

γ̃ 4
0

, ε → 0.

(3.17)

If ν = 4, the term εν can only be matched with the term
ελ as well as with the constant, and then (3.13) follows. If
ν > 4, then εν can be matched with either ελ and/or ε4+μ: if
λ = ν, then (3.14a) follows; if μ+4 = ν and λ > ν, then the
expression for R̃0 given in (3.14b) follows; if ν = λ = μ+4,
then the expression for R̃0 given in (3.14c) follows.

The first of Eq. (3.15) implies the constraint

χ = 6 + μ − λ > 0. (3.18)

In the case (3.14a), since λ = ν and μ > ν − 4, Eq. (3.18) is
satisfied. In the case (3.14b), replacing in (3.18) μ by ν − 4,
we find λ < ν + 2. Also, 6 + μ − λ = 2 − (λ − ν), thus in
this case

ν < λ < ν + 2, 0 < χ < 2.

In the case (3.14c), Eq. (3.18) is superceded by the equation
μ = ν − 4. Also, 6 + μ − λ = 6 + ν − 4 − ν, thus χ = 2. ��

The large γ expression of the force

For large γ , Eq. (2.30) implies that f can be approximated
by the expression

f ∼ − 8Gm2

r2y3/2

{
γ 3

[
1 − 2γ 4

(
ṙ

2c

)2
]
r̂

−γ 7
(
ṙ

c

)
r

2c

d r̂
dt

}
, γ → ∞. (3.19)

In order to estimate f , we will next derive the following
equation:

r

2c

∣∣∣∣d r̂dt
∣∣∣∣ = 1 − 1

2

ε2

γ̃ 2
0

+ O(ε2+μ, εν), ε → ∞. (3.20)

For this derivation we note that the definition of v implies

v = d

dt
r r̂ = ṙ r̂ + r

d r̂
dt

. (3.21)

Hence, using the identity r̂ · d r̂
dt = 0, we find

v2

4c2 =
(

ṙ

2c

)2

+ r2

4c2

∣∣∣∣d r̂dt
∣∣∣∣
2

.

Replacing in the above equation (v/2c)2 by 1−γ −2 and then
solving for the term involving |d r̂/dt | we find

r

2c

∣∣∣∣d r̂dt
∣∣∣∣ =

√
1 − 1

γ 2 −
(

ṙ

2c

)2

. (3.22)

Recalling that

1

γ 2 = ε2

γ̃ 2
0

+ O
(
ε2+μ

)
, ε → 0;

(
ṙ

2c

)2

= R̃εν,

Equation (3.22) implies Eq. (3.20).
Using Eq. (3.20) and recalling the equations

γ 4
(

ṙ

2c

)2

= O
(
εν−4

)
, y = 1 + O

(
εν−2

)
,

ν ≥ 4, ε → 0,

Equation (3.19) yields

f ∼ 8Gm2

r2 γ 7 ṙ

c
, ε → 0. (3.23)

Thus, using ṙ
c ∼ 2ε

ν
2

√
R̃0, we find

f ∼ 16Gm2γ̃ 7
0

r̃2
0 δ2ε7− ν

2

√
R̃0, ε → 0. (3.24)

Hence, the dependence of f on ρ is only via the term
√
R̃0.

It was shown in Proposition 3.1 that in the case (3.14b)
0 < χ < 2 and in the case (3.14c) χ = 2. It will be shown in
the next section that the case of 0 < χ ≤ 2 is not relevant to
particle physics, thus we next concentrate on the remaining
two cases, namely (3.13) and (3.14a). In both of these cases,
if ρ0 > 0, then

√
R̃0 is an increasing function of ρ0 and

hence f has the fundamental property of confinement. Fur-
thermore, if C = 0, f satisfies the fundamental property of
asymptotic freedom. It is important to note that if f possesses
the property of asymptotic freedom, then C must vanish and
hence, since R̃0 is always positive, f also satisfies confine-
ment. Hence, asymptotic freedom implies confinement.

The ratio of f with the Newtonian gravitational force, fN ,
is given by equation

f

fN
∼ 8γ 7 ṙ

c
∼ 16γ̃ 7

0

√
R̃0

ε7− ν
2

. (3.25)
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4 Possible implications for particle physics

Equation (3.15) imply

ε = (2α)
1
χ

(
mG

c2δ

) 1
χ

, χ = 6 + μ − λ, (4.1)

where α = 8γ̃ 6
0 /r̃0β, is an ε-independent constant.

Let mc be the mass of the composite particle formed by
the two particles of equal mass m. Conservation of energy
yields

mcc
2 = 2mc2γ + V . (4.2)

For large γ , the expression (2.25) for V together with the
relations y ∼ 1, 2Gm = c2rs and γ = γ̃0/ε yield

V

2mc2γ
∼ 4Rs

r
γ 4 ∼ 4γ̃ 4

0

r̃0

Rs

δ

1

ε4 . (4.3)

Equation (3.15) states that rs/δ is proportional to εχ , thus if
χ = 4 then V is of the same order of magnitude as mc2γ .
If χ > 4, V is much smaller than 2mc2γ , thus V can be
neglected in Eq. (4.2) and then this equation yields

mc ∼ 2mγ = 2m
γ̃0

ε
= 2mγ̃0(2α)

− 1
χ

(
c2δ

mG

) 1
χ

.

Hence,

mc ≈ m1− 1
χ

(
c2δ

G

) 1
χ

, (4.4)

where the notation A ≈ B means A = CB where the con-
stant C is of order 1.

If χ < 4, which always occurrs for cases (3.14b) and
(3.14c), then V is much larger than 2mc2γ , thus the lat-
ter term can be neglected in Eq. (4.2) and then using V ∼
16m2Gγ 5/r , Eq. (4.2) yields

mc ∼ 16m2Gγ 5

c2r
∼ 16γ̃ 5

0

r̃0

m2G

c2δε5
.

Hence, using (4.1) we find

mc ≈ m2− 5
χ

(
c2δ

G

) 5
χ

−1

. (4.5)

For a given composite particle,mc is known and δ is of the
order of the radius of the particle. Thus, Eqs. (4.4) and (4.5)
provide relations between m (the mass of the quark) and χ .
In particular, if m is known, then χ can be determined. For
the case of pion we have

2G ≈ 10−10 m3/s2kg, δ ≈ 10−16 m, c ≈ 108 m/s,

mpion ≈ 10−28 kg. (4.6)

For χ = 1, 2, 3, Eq. (4.5) yields unrealistic values for m,
thus the cases (3.14b) and (3.14c) are not relevant to particle
physics. On the other hand, Eq. (4.4) becomes

10−28 ≈ m1− 1
χ 10

10
χ .

Hence, for χ = 5, m ≈ 1037.5 kg ≈ 10−2 eV/c2, which
is of the order of the mass of the electron–neutrino. This is
consistent with the fact that for χ = 5, the form of Eq. (4.4) is
precisely of the form obtained via the Vayenas model. Indeed,
the basic equation of the latter model is

γm
υ2

r
= Gm2γ 6

r2 .

Thus, using υ ∼ c, the above equation yields γ ∼
(c2r/Gm)

1
5 . Vayenas uses conservation of energy in the form

mcc2 = 2mc2γ , thus mc = 2mγ . Replacing in this equation
γ by the above expression and recalling that r ∼ δ we find

mc ≈ m1− 1
5

(
c2δ

G

) 1
5

, (4.7)

which is Eq. (4.4) with χ = 5.
The larger the value of χ , the larger the value of m. For

example, for χ = 6 we find a value of the order 102 times
the value of χ = 5, whereas for χ = 4 we find a value of the
order 10−3 times the value of χ = 5 (perhaps a mass of the
order of the mass of the lightest neutrino).

Regarding the Vayenas model it is also noted that if ν = 4,
then the force given by (3.24) becomes

f ≈ Gm2

δ2ε6 , (4.8)

which is precisely of the form of the Vayenas model. In sum-
mary, in the particular cases of χ = 5 and ν = 4 there is
a qualitative agreement between general relativity and the
results obtained via Vayenas’s model.

5 Conclusions

The main result derived in this paper is that the ultra-
relativistic limit of the force between two equal masses in
the framework of the post-Minkowskian approximation of
general relativity yields a force with the properties of confine-
ment and asymptotic freedom. It appears, that this result is
interesting on its own right, independently of possible impli-
cations to particle physics.

From the mathematical point of view, the main open ques-
tion is whether the Minkowskian approximation remains
valid in the large γ limit. This question can be easily
addressed provided that the error term appearing in the
leading expansion of the post-Minkoswian approximation is
known: one simply needs to check that this error term remains
small for large values of γ . Unfortunately, the computation
of this term is rather complicated, and it is work in progress.
The relevant methodology of how to estimate a typical error
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term in the large γ limit is illustrated in the Appendix using
as an example the expression for the energy.

By employing the values for the mass and the radius of
pion, it is argued in Sect. 4 that the ultra-relativistic calcula-
tions presented here may be relevant to particle physics. In
this connection it should be noted that our analysis makes
crucial use of the ultra-relativistic approximation γ → ∞.
Thus, this analysis is not relevant for the formation of bound
states between any two particles, but only for those particles
which travel with speed close to c. In particular, the mech-
anism presented here is not applicable to the formation of
bound states by heavy quarks. Furthermore, our results are
valid only for the formation of a bound state of two parti-
cles of equal masses. In this connection it is noted that by
considering different values for χ , the present analysis could
be applicable to bound states formed by a neutrino and an
anti-neutrino, as well as for an electron and a positron. Our
analysis can be extended to the case that the two particles
have different masses but the relevant formulation is harder.
The question of computing the large γ limit of the case of 3
particles remains open.

Assuming that the results obtained here are indeed relevant
to particle physics, then since the potential V is known (given
by Eq. (2.25)), it is straightforward to derive the associated
Dirac equation:

i h̄γ μ∂μ� − (2mc + V )� = 0, (5.1)

where γ μ, μ = 0, 1, 2, 3, are the Dirac matrices, ∂0 = ∂t/c,
and ∂ j = ∂x j , j = 1, 2, 3. Local phase invariance applied
to the associate Lagrangian introduces the electromagnetic
potential Aμ, where ∂μ is replaced by the covariant derivative
ðμ = ∂μ + iq Aμ/h̄c.

In order to derive (5.1) we note that the equation defining E
implies (E − V )2/c2 = 4m2c2γ 2. Also, |P |2 = m2γ 2υ2 =
4m2c2γ 2 − 4m2c2. Hence, (E − V )2/c2 = |P |2 + 4m2c2,
which implies (5.1).

An interesting direction is to compute the ultra-relativistic
limit of alternative formulations of general relativity aiming
at addressing questions of quantum gravity. For example,
such a formulation is presented in [10], where Newton’s grav-
itational constant, G, and Einstein’s cosmological constant,
�, are allowed to depend on spacetime; this is done in two
stages, first the above constants are allowed to depend on k,
and then G(k) and �(k) are converted into scalar functions
of spacetime by means of a cutoff identification k = k(x) (in
[10], for spherically symmetric systems this is achieved via
a renormalization group calculation).

Other attempts to incorporate quantum gravity corrections
in Einstein’s equations involve the inclusion of extra cur-
vature terms such as Riemann2, Ricci2, R2. However, the
curvature contains at least a factor G, thus these terms will
be of higher order in G; hence they will not contribute to
the leading post-Minkowskian approximation.The question

of whether these terms can also be neglected in the ultra-
relativistic limit, should be investigated following the same
approach suggested earlier (of estimating the relevant error
terms).

Regarding the implications to particle physics of the main
results presented here the main challenge is whether the anal-
ysis of (5.1) can reproduce some of the spectacular results
of the standard model, such as the astonishing agreement
of the effective coupling constant αs(Q2) with experimental
measurements [11], as well as the computation of the hadron
spectrum via lattice QCD [12]. The author does not have the
expertise to address such questions, but hopefully the present
paper will generate sufficient interest in the physics commu-
nity that such questions will be investigated.
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Appendix A

Consistency of asymptotics for the energy E

It will be shown below that if μ > λ
2 − 1, then the applica-

bility of large γ asymptotics for the expression for E can be
justified.

Differentiating Eq. (2.22) and using (2.25) we find

1

2mc2

dE

dr
= dγ

dr
+ 4Rs

d

dr

(
1

r y
1
2

)
F(γ ) + 4Rs

ry
1
2

dF

dr
,

(A.1)

where F is defined by

F = γ 5 − 3

2
γ 3 + 3

8
γ + 1

16γ
. (A.2)
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The expression for dy/dr given in (2.14) implies the follow-
ing identity:

d

dr

(
1

r y
1
2

)

= − 1

r2y
1
2

− 1

2r y
3
2

[
−2

r
y + 2

r
γ 2 + 8Rs

r2y
3
2

F̃(y, γ )

]
,

(A.3)

where F̃ is defined by

F̃ = γ 6(y − 1) + y

(
−γ 4

2
+ 3

8
γ 2 − 1

16

)
+ γ 2

8
. (A.4)

Replacing in the rhs of (A.1) the terms dγ /

dr and d
(

1
r y1/2

)
/dr by equations (2.13) and (A.3) respec-

tively, and noting that the γ -polynomial in the rhs of (2.13)
equals γ 2F , we find

1

2mc2

dE

dr
= −16R2

s

r3y2 F(γ )F̃(y, γ )

+16R2
s

r3y3

(
γ 7 − 3

2
γ 5 + 3

8
γ 3 + 1

16
γ

)

×
(

5γ 4 − 9

2
γ 2 + 3

8
− 1

16γ 2

)
. (A.5)

The expression E/2mc2 involves γ , thus we represent E in
the form Ẽ/ε. Hence,

dE

dr
= (1 − ρελ)2

r̃0δελ+1

d Ẽ

dρ
.

Also,

F(γ )F̃(y, γ ) = γ̃ 5
0

ε5

[
1 + O

(
1

ε2

)] [
γ̃ 6

0

ε6 R̃εν + O

(
1

ε4

)]

= O

(
1

ε9

)
.

Furthermore, the product of the γ -polynomials in the second
term of the rhs of (A.5) is of order O(γ 11). Hence, equation
(A.5) yields

1

2mc2

d Ẽ

dρ
= 80γ̃ 11

0

r̃2
0

(
Rs

δ

)2

ελ−10
(

1 + O(ε2)
)

.

Thus, recalling that Rs/δ is proportional to ε6+μ−λ the
requirement that d Ẽ/dρ vanishes, imposes the constraint
μ > λ

2 − 1.
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