
Eur. Phys. J. C (2019) 79:266
https://doi.org/10.1140/epjc/s10052-019-6776-6

Regular Article - Theoretical Physics

On the number of terms in the Lovelock products

Xavier Lachaumea

Institut Denis Poisson, Université de Tours-Université d’Orléans-UMR 7013 du CNRS, Parc de Grandmont, 37200 Tours, France

Received: 6 February 2019 / Accepted: 11 March 2019 / Published online: 22 March 2019
© The Author(s) 2019

Abstract In this short note we wonder about the explicit
expression of the expanding of the p-th Lovelock product.
We use the 1990s’ works of S. A. Fulling et al. on the sym-
metries of the Riemann tensor, and we show that the number
of independent scalars appearing in this expanding is equal
to the number of Young diagrams with all row lengths even
in the decomposition of the p-th plethysm of the Young dia-
gram representing the symmetries of the Riemann tensor.

1 Introduction

Lovelock theories are a set of modified gravity theories that
can be seen as generalisations of General Relativity (GR) in
higher dimension. They could have interesting cosmologi-
cal implications (see [1–5]) or connections with string/M-
theories in which higher-order curvature terms appear natu-
rally (see [6]).

They can be represented in the form of an action by a sum
of scalar contractions of multiple copies of the Riemann cur-
vature tensor. The contraction of p copies is called the p-th
Lovelock product. In even dimension, the non-vanishing term
of highest-degree coincides to the Gauss–Bonnet–Chern
scalar of the space-time manifold, hence exhibits a promising
relation with geometry.

Usually the Lovelock products are written as a product,
and are handled in this form. This product is expanded only
for small degrees, like p = 1, 2 or 3. The astonishing com-
plexity of the expanding for p = 3 in comparison to p = 1 or
2 discourages to continue the expanding for further degrees.
However the question is worth asking: what is the explicit
formulation for the expanding of the general p-th Lovelock
product? The only terms appearing in such a development are
the Riemann tensor, the Ricci tensor and the scalar curvature
of the space-time. But how many are they? And how are they
combined? This is the topic of the present note. We do not
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solve entirely the problem, but give an answer to one of the
questions: the number of independent scalars appearing in
the expanding of the p-th Lovelock product.

The answer we bring was in fact contained in a 25 years
old paper from Fulling et al. [7]. This field of research finds
its origin in computational aspects of the heat kernel in
the context of quantum field theory and gravitation. Algo-
rithms to simplify tensor calculus were developed, such as
for the Computer Algebra System (CAS) REDUCE (see [8])
or Mathematica (see [9]).

Apparently we are the first one to make an explicit con-
nection with Lovelock theories.

2 Notations

We represent the space-time by a Lorentzian manifold
(V, gμν) of dimension n + 1, n ∈ N standing for the spa-
tial dimension. We choose c = κ = 1 for unit and (−1,+n)

for the signature of gμν . We note

D the Levi-Civita connection of (V, gμν),
Rμνρσ the Riemann tensor of D,
Rμρ the Ricci tensor of D,
R the curvature scalar of D,
dv = √−g dn+1x the volume element of V .

In its twice covariant and twice contravariant form, using its
symmetries, the Riemann tensor can be written

Rαβ
γ δ = R αβ

γ δ = Rαβ
γ δ

as well.

We introduce pn =
⌊
n + 1

2

⌋
and

δν1ν2...νk
μ1μ2...μk

:= det

⎛
⎜⎝

δ
ν1
μ1 . . . δ

νk
μ1

...
...

δ
ν1
μk . . . δ

νk
μk

⎞
⎟⎠
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the generalised Kronecker symbol. We define

Rp = 1

2p
δ
γ1δ1γ2δ2···γpδp
α1β1α2β2···αpβp

Rα1β1
γ1δ1

Rα2β2
γ2δ2

. . . R
αpβp
γpδp

the p-th Lovelock product.

R0 = 1,
R1 = R

is the scalar curvature,
R2 = R2 − 4Rγ

α Rα
γ + Rγ δ

αβRαβ
γ δ

corresponds to the Gauss–Bonnet term for n + 1 = 4,
R3 = R3 + 2Rγ δ

αβRεη
γ δRαβ

εη + 3RRγ δ
αβRαβ

γ δ

+ 8Rγ η
αβ Rεβ

γ δRαδ
εη − 12RRβ

α Rα
β + 16Rβ

α Rγ
β Rα

γ

− 24Rβ
α Rαε

γ δRγ δ
βε + 24Rβ

α Rδ
γ Rαγ

βδ

,

and so on, until
Rp = 0

for p > pn , because of the antisymmetries of Rγ δ
αβ .

Then the action of a Lovelock theory is

SLov[g] =
∫
V

pn∑
p=0

λpRp dv, (1)

with λp real constants. In the following we shall focus on
each Rp.

3 Young diagrams

Even though a computer can deal with this computation, the
quick explosion of the number of terms puts the question of
an explicit formula for the expanding of the Rp’s.

First of all, what are the terms involved in such a decom-
position? If we write Sn the symmetric group on a set of n
elements, we get the formula:

Rp = 1

2p
δ
γ1δ1...γpδp
α1β1...αpβp

Rα1β1
γ1δ1

. . . R
αpβp
γpδp

= 1

2p

∑
σ∈S2p

ε(σ )R
μσ(1)μσ(2)
μ1μ2 . . . R

μσ(2p−1)μσ(2p)
μ2p−1μ2p .

This sum is on (2p)! terms, which are obviously not linearly
independent. The extraction of a basis among these terms is
a problem which has been solved in [7], using tools of the
group representation theory which we shall shortly present
here.

For all k ≥ 1, every k-tensor Ta1...ak can be mapped to
a representation of Sk . Just as this representation can be
decomposed into irreducible representations of Sk encoded
by Young diagrams of size k, the tensor Ta1...ak can be decom-
posed as well on a basis Tk of k-tensors corresponding to
Young diagrams of size k. More precisely, the tensors of
Tk have peculiar symmetries which are encoded in standard

Young tableaux of size k. We note with ←→ this correspon-
dence.

Let us explain how to proceed to such a decomposition:
for each tableau of size k, take Ta1...ak , symmetrise on the
indices lying in each row, and then antisymmetrise on the
indices lying in each column. For instance,

1 3
2

· Tabc := 1

3
([Tabc + Tcba] − [Tbac + Tcab]) ,

1
2
3

· Tabc := 1

6
(Tabc + Tbca + Tcab − Tbac − Tacb − Tcba) ,

where the combinatorial factors 1
3 = 2

6 and 1
6 are the nor-

malised numbers of standard Young tableaux of the same
Young diagram. The normalisation constant is the sum on
the diagrams of the squared number of standard tableaux of
this diagram, which turns out to be k!. For example, for k = 3,

Diagrams Tableaux

1 2 3

1 2
3

1 3
2

1
2
3

and we find 12 + 22 + 12 = 3!. Thus each 3-tensor can be
decomposed into:

Tabc =
(

+ +
)

· Tabc

=
(

1 2 3 + 1 2
3 + 1 3

2 + 1
2
3

)
· Tabc.

The product of two tensors Ua1...ak ∈ Tk and U ′
b1...bl

∈ Tl ,
whose symmetries correspond to the diagrams U and U′, cor-
responds itself to the outer product ofU andU′, namelyU·U′.
This product can in turn be decomposed into irreducible rep-
resentations of Sk+l , following the Littlewood–Richardson
rule. For example, ifUabc andU ′

abc are 3-tensors represented
by

Uabc ←→ 1 3
2 and U ′

abc ←→ 1 2
3 ,

then U = U′ = , and

UabcU
′
de f =

(
·

)
·UabcU

′
de f

=
(

+ + + 2 + + +
)

·UabcU
′
de f .

An interesting theorem proved in [7] states that among these
irreducible representations of Sk+l , those of which all rows
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have an even length are invariant under the orthogonal group
O(k + l). Moreover, they form a basis of these invariant rep-
resentations. In terms of tensors on a manifold, the invariant
representations under the action of O(k + l) correspond to
the scalars built from the contractions of Ua1...ak and U ′

b1...bl
.

Hence, the space of the scalars built from the contractions
of Ua1...ak and U ′

b1...bl
has the same dimension as the space

of the irreducible representations of Sk+l which are invariant
under O(k + l) and which appear in the decomposition of
U · U′. So, a basis of independent scalars will have the same
cardinal as the number of diagrams with even row length in
the decomposition of U · U′.

Intuitively, contracting a pair of indices of the tensors can
be understood as crossing a pair of cells off the Young dia-
gram. If the two cells lie in different rows, the result vanishes
because of the antisymmetrisation between the rows. If the
two cells lie in the same row, the contraction is nontrivial.
Hence, all rows must have even lengths so that the resulting
empty diagram correspond to a nontrivial scalar.

However, the equality of the dimensions does not imply a
simple bijective correspondence between the even row length
diagrams and the independent scalars: most of the time, such
a correspondence does not exist. Keeping our example, we
have two even row length representations:

and ,

and two independent scalars built from the contractions of
Ua1...ak and U ′

b1...bl
:

Ua
abU

′cb
c and UabcU

′cab,

but no canonical bijection between them.
In case Ua1...ak = U ′

b1...bl
, the list of irreducible represen-

tations is restricted by the symmetries under the exchange of
the two tensors: this is not an outer product anymore, but a
new operation called a plethysm, ⊗. This is the case we are
interested in.

4 Plethysms of the Riemann tensor

Indeed, our aim is to determine a basis of scalars on which
the Rp’s can be decomposed. Now, each Rp is a sum of all
the possible contractions of p Riemann tensors. If we notice
that the Riemann tensor has symmetries verifying:

Rμ3μ4
μ1μ2

←→ 1 3
2 4 ,

we can conclude that we have to study the decomposition of

⊗ ⊗ · · · ⊗ =: ⊗p

onto irreducible representations. In this decomposition, the
number of even row length diagrams will be the number of
independent scalars which can be made by contractions of
p copies of Rρσ

μν . For instance, keeping only the even row
length diagrams, we get

R1 ←→ ⊗1 =
↓
R

R2 ←→ ⊗2 = + +
↓ ↓ ↓

R2 RαβRαβ Rγ δ
αβRαβ

γ δ

R3 ←→ ⊗3 =
+

+

+ +

+ +

+
︸ ︷︷ ︸

↓ ↓ ↓

R3 RRβ
αRα

β Rγ δ
αβRεη

γ δRαβ
εη RRγ δ

αβRαβ
γ δ

Rβ
αRγ

β Rα
γ Rγ η

αβ Rεβ
γ δRαδ

εη Rβ
αRαε

γ δRγ δ
βε

Rβ
αRδ

γ Rαγ
βδ

As we explained, there is no one-to-one correspondence
between the diagrams and the scalars. However, it is possible
to sort them in three subsets which are bijectively connected,
as we did in the previous array. If the diagram contains:

• two rows, it represents a scalar involving only the scalar
curvature R;

• three rows, it represents a scalar involving R and the Ricci
tensor Rμν ;

• four rows or more, it represents a scalar involving R, Rμν

and the Riemann tensor Rρσ
μν .

Some tables were computed in [7], which allow us to count
the number of scalars for the first Rp’s:

Order Number of rows Total

2 3 ≥ 4

R1 1 0 0 1
R2 1 1 1 3
R3 1 2 5 8
R4 1 3 22 26
R5 1 4 85 90
R6 1 6 402 409
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Unfortunately, these numbers were calculated by a computer;
there is no explicit formula to determine them. As well for
the explicit form of the scalars.

A fortiori in the computation ofRp. After having summed
upon all the permutations of S2p:
∑

σ∈S2p

ε(σ )R
μσ(1)μσ(2)
μ1μ2 . . . R

μσ(2p−1)μσ(2p)
μ2p−1μ2p ,

there is currently no explicit formula about the factors in
front of each of these scalars. All we know is that their sum
is (2p)!, and that the symmetries ensure that all factors can
be divided by 2p.

For the rest, there is no formula. Yet there exist algorithms
able to deal with the computation. One can find such algo-
rithms and applications for Maple in [10–13]. There are
also algorithms for the language REDUCE, [14], or Java,
[15]. Algorithms for tensor simplification inMathematica
(package Tools of Tensor Calculus) can be found in [16,17].
The program Cadabra can be used as well.

5 Conclusion

We give an answer to the question of the number of indepen-
dent scalars in the expanding of the p-th Lovelock product:
it is equal to the number of Young diagrams with all row
lengths even in the decomposition of the p-th plethysm of
the Young diagram (2, 2) that encodes the symmetries of the
Riemann tensor:

⊗p.

The following questions are still open: can one find an
explicit formula for this number? Afterwards, how many each
of those scalars are present in the expanding

δ
γ1δ1...γpδp
α1β1...αpβp

Rα1β1
γ1δ1

. . . R
αpβp
γpδp

?

We only know that their sum is (2p)!, and the symmetries
ensure that the number of their appearances is a multiple of
2p. In small dimensions, this is not a big deal. In higher-
dimensional theories however, e.g. a string theory with n +
1 = 26, the number of independent scalars as well as their
factors explode.
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