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Abstract We study supersymmetric AdS3 ×�2 and AdS2

×�3 solutions, with �2 = S2, H2 and �3 = S3, H3, in five-
dimensional N = 4 gauged supergravity coupled to five vec-
tor multiplets. The gauge groups considered here areU (1)×
SU (2)×SU (2),U (1)×SO(3, 1) andU (1)×SL(3,R). For
U (1) × SU (2) × SU (2) gauge group admitting two super-
symmetric N = 4 AdS5 vacua, we identify a new class of
AdS3 ×�2 and AdS2 × H3 solutions preserving four super-
charges. Holographic RG flows describing twisted compacti-
fications of N = 2 four-dimensional SCFTs dual to the AdS5

vacua to the SCFTs in two and one dimensions dual to these
geometries are numerically given. The solutions can also be
interpreted as supersymmetric black strings and black holes
in asymptotically AdS5 spaces with near horizon geometries
given by AdS3 × �2 and AdS2 × H3, respectively. These
solutions broaden previously known black brane solutions
including half-supersymmetric AdS5 black strings recently
found in N = 4 gauged supergravity. Similar solutions are
also studied in non-compact gauge groups U (1) × SO(3, 1)

and U (1) × SL(3,R).

1 Introduction

Black branes of different spatial dimensions play an impor-
tant role in the develoment of string/M-theory. They lead
to many insightful results such as the construction of gauge
theories in various dimensions and the celebrated AdS/CFT
correspondence [1]. According to the latter, black branes in
asymptotically AdS spaces are of particular interest since
they are dual to RG flows across dimensions from super-
conformal field theories (SCFTs) dual to the asymptotically
AdS spaces to lower-dimensional fixed points dual to the
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near horizon geometries [2]. Recently, a new approach for
computing microscopic entropy of AdS4 balck holes has
been introduced based on twisted partition functions of three-
dimensional SCFTs [3–11]. This has also been applied to
AdS black holes in other dimensions [12–18].

In this paper, we are interested in supersymmetric black
holes and black strings in asymptocally AdS5 spaces from
five-dimensional N = 4 gauged supergravity coupled to vec-
tor multiplets constructed in [19,20] using the embedding
tensor formalism [21–23]. These solutions have near hori-
zon geometries of the forms AdS2 × �3 and AdS3 × �2,
respectively. We will consider �3 in the form of a three-
sphere (S3) and a three-dimensional hyperbolic space (H3).
Similarly, �2 will be given by a two-sphere (S2) and a two-
dimensional hyperbolic space (H2), or a Riemann surface
of genus g > 1. Similar solutions have previously been
found in minimal and maximal gauged supergravities, see for
example [24–32]. This type of solutions has also appeared
in pure N = 4 gauged supergravity in [33], and recently,
half-supersymmetric black strings with hyperbolic horizons
have been found in matter-coupled N = 4 gauged supergrav-
ity with compact U (1) × SU (2) × SU (2) and non-compact
U (1) × SO(3, 1) gauge groups [34].

We will look for more general solutions of AdS5 black
strings with both hyperbolic and spherical horizons and pre-
serving 1

4 of the N = 4 supersymmetry in five dimensions.
The solutions interpolate between N = 4 supersymmetric
AdS5 vacua of the gauged supergravity and near horizon
geometries of the form AdS3 ×�2. In addition, we will look
for supersymmetric black holes interpolating between AdS5

vacua and near horizon geometries AdS2 ×�3. According to
the AdS/CFT correspondence, these solutions describe RG
flows across dimensions from the dual N = 2 SCFTs to
two- and one-dimensional SCFTs in the IR. The IR SCFTs
are obtained via twisted compactifications of N = 2 SCFTs
in four dimensions. Many solutions of this type have been
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found in various space-time dimensions, see [35–47] for an
incomplete list.

We mainly consider N = 4 gauged supergravity coupled
to five vector multiplets with gauge groups entirely embed-
ded in the global symmetry SO(5, 5). We will also restrict
ourselves to gauge groups that lead to supersymmetric AdS5

vacua. These gauge groups have been shown in [48] to take
the form of U (1) × H0 × H with the U (1) gauged by the
graviphoton that is a singlet under USp(4) ∼ SO(5) R-
symmetry. The H ⊂ SO(n + 3 − dim H0) is a compact
group gauged by vector fields in the vector multiplets, and
H0 is a non-compact group gauged by three of the gravipho-
tons and dim H0 − 3 vectors from the vector multiplets. The
remaining two graviphotons in the fundamental represen-
tation of SO(5) are dualized to massive two-form fields.
In addition, H0 must contain an SU (2) subgroup. For the
case of five vector multiplets, possible gauge groups that
admit supersymmetric AdS5 vacua and can be embedded in
SO(5, 5) are U (1)× SU (2)× SU (2), U (1)× SO(3, 1) and
U (1) × SL(3,R). We will look for AdS5 black string and
black hole solutions in all of these gauge groups.

The paper is organized as follow. In Sect. 2, we review
N = 4 gauged supergravity in five dimensions coupled
to vector multiplets using the embedding tensor formalism.
In Sect. 3, we find supersymmetric AdS3 × �2 solutions
preserving four supercharges and give numerical RG flow
solutions interpolating between these geometries and super-
symmetric AdS5 vacua. An AdS2 × H3 solution together
with an RG flow interpolating between AdS5 vacua and this
geometry will also be given. In Sects. 4 and 5, we repeat
the same analysis for non-compact U (1) × SO(3, 1) and
U (1) × SL(3,R) gauge groups. Since the U (1) × SL(3,R)

gauge group has not been studied in [34], we will discuss
its construction and supersymmetric AdS5 vacuum in detail.
The full scalar mass spectrum at this critical point will also be
given. This should be useful in the holographic context since
it contains information on dimensions of operators dual to
supergravity scalars. We end the paper with some conclu-
sions and comments in Sect. 6.

2 Five dimensional N = 4 gauged supergravity coupled
to vector multiplets

In this section, we briefly review the structure of five dimen-
sional N = 4 gauged supergravity coupled to vector mul-
tiplets with the emphasis on formulae relevant for find-
ing supersymmetric solutions. The detailed construction of
N = 4 gauged supergravity can be found in [19,20].

The N = 4 gravity multiplet consists of the gravi-

ton eμ̂
μ, four gravitini ψμi , six vectors A0 and Am

μ , four

spin- 1
2 fields χi and one real scalar �, the dilaton. Space-

time and tangent space indices are denoted respectively by
μ, ν, . . . = 0, 1, 2, 3, 4 and μ̂, ν̂, . . . = 0, 1, 2, 3, 4. The
SO(5) ∼ USp(4) R-symmetry indices are described by
m, n = 1, . . . , 5 for the SO(5) vector representation and
i, j = 1, 2, 3, 4 for the SO(5) spinor or USp(4) fundamen-
tal representation. The gravity multiplet can couple to an
arbitrary number n of vector multiplets. Each vector mul-
tiplet contains a vector field Aμ, four gaugini λi and five
scalars φm . The n vector multiplets will be labeled by indices
a, b = 1, . . . , n, and the components fields within these vec-
tor multiplets will be denoted by (Aa

μ, λai , φ
ma). From both

gravity and vector multiplets, there are in total 6 + n vec-
tor fields which will be denoted by AM

μ = (A0
μ, Am

μ, Aa
μ).

All fermionic fields are described by symplectic Majorana
spinors subject to the following condition

ξi = 	i jC(ξ̄ j )T (1)

with C and 	i j being respectively the charge conjugation
matrix and USp(4) symplectic form.

The 5n scalar fields from the vector multiplets parametrize
the SO(5, n)/SO(5) × SO(n) coset. To describe this coset
manifold, we introduce a coset representative V A

M trans-
forming under the global SO(5, n) and the local SO(5) ×
SO(n) by left and right multiplications, respectively. We use
indices M, N , . . . = 1, 2, . . . , 5 + n for global SO(5, n)

indices. The local SO(5) × SO(n) indices A, B, . . . will be
split into A = (m, a). We can accordingly write the coset
representative as

V A
M = (V m

M ,V a
M ). (2)

The matrix V A
M is an element of SO(5, n) and satisfies the

relation

ηMN = VM
AVN

BηAB = −V m
M V m

N + V a
M V a

N (3)

with ηMN = diag(−1,−1,−1,−1,−1, 1, . . . , 1) being the
SO(5, n) invariant tensor. Equivalently, the SO(5, n)/SO(5)

× SO(n) coset can also be described in term of a symmetric
matrix

MMN = V m
M V m

N + V a
M V a

N (4)

which is manifestly invariant under the SO(5)×SO(n) local
symmetry.

Gaugings promote a given subgroup G0 of the full global
symmetry SO(1, 1)× SO(5, n) of N = 4 supergravity cou-
pled to n vector multiplets to be a local symmetry. These
gaugings are efficiently described by using the embedding
tensor formalism. N = 4 supersymmetry allows three com-
ponents of the embedding tensor ξM , ξMN = ξ [MN ] and
fMN P = f[MN P] [19]. The first component ξM describes the
embedding of the gauge group in the SO(1, 1) ∼ R

+ factor
identified with the coset space parametrized by the dilaton
�. From the result of [48], the existence of N = 4 supersym-
metric AdS5 vacua requires ξM = 0. In this paper, we are

123



Eur. Phys. J. C (2019) 79 :247 Page 3 of 20 247

only interested in solutions that are asymptotically AdS5, so
we will restrict ourselves to the gaugings with ξM = 0.

For ξM = 0, the gauge group is entirely embedded in
SO(5, n) with the gauge generators given by

(XM )N
P = − fM

QR(tQR)N
P = fMN

P and

(X0)N
P = −ξ QR(tQR)N

P = ξN
P . (5)

The matrices (tMN )P
Q = δ

Q
[MηN ]P are SO(5, n) generators

in the fundamental representation. The full covariant deriva-
tive reads

Dμ = ∇μ + AM
μ XM + A0

μX0 (6)

where ∇μ is the usual space-time covariant derivative. We use
the convention that the definition of ξMN and fMN P includes
the gauge coupling constants. Note also that SO(5, n) indices
M, N , . . . are lowered and raised by ηMN and its inverse
ηMN , respectively.

Generators XM = (X0, XM ) of a consistent gauge group
must form a closed subalgebra of SO(5, n). This requires
ξMN and fMN P to satisfy the quadratic constraints, see [19],

fR[MN fPQ]R = 0 and ξM
Q fQN P = 0 . (7)

Gauge groups that admit N = 4 supersymmetric AdS5 vacua
generally take the form of U (1)×H0 ×H , see [48] for more
detail. The U (1) is gauged by A0

μ while H ⊂ SO(n + 3 −
dim H0) is a compact group gauged by vector fields in the
vector multiplets. H0 is a non-compact group gauged by three
of the graviphotons and dim H0 − 3 vectors from the vector
multiplets. H0 must also contain an SU (2) subgroup. For
simple groups, H0 can be SU (2) ∼ SO(3), SO(3, 1) and
SL(3,R).

In the embedding tensor formalism, there are two-form
fields BμνM that are introduced off-shell. These two-form
fields do not have kinetic terms and couple to vector fields via
a topological term. They satisfy a first-order field equation
given by, see [19] for more detail,

ξMN
[

1

6
√

2
εμνρλσH(3)ρλσ

N − MNPHP
μν

]
= 0 (8)

in which M00 = �−4, M0M = 0 and MMN = �2MMN .
The field strength H(3)

M is defined by

ξMNH(3)

μνρN = ξMN
[

3D[μBνρ]N + 6dNPQAP[μ

×
(

∂ν A
Q
ρ] + 1

3
XRSQAR

ν AS
ρ]

)]
(9)

with d0MN = dMN0 = dM0N = ηMN and

XMN
P = − fMN

P , XM0
0 = 0, X0M

N = −ξM
N . (10)

In all of the solutions considered here, the Chern–Simons
term in Eq. (9) vanish due to a particular form of the ansatz
for the gauge fields. In addition, the term MNPHP

μν in Eq.

(8) also vanish provided that the gauge fields A1 and A2

are set to zero. With all these, the two-form fields can be
consistently truncated out. We will accordingly set all the
two-form fields to zero from now on.

The bosonic Lagrangian of a general gauged N = 4 super-
gravity coupled to n vector multiplets can accordingly be
written as

e−1L = 1

2
R − 1

4
�2MMNHM

μνHNμν − 1

4
�−4H0

μνH0μν

−3

2
�−2Dμ�Dμ� + 1

16
DμMMN DμMMN

−V + e−1Ltop (11)

where e is the vielbein determinant. Ltop is the topological
term whose explicit form will not be given here since, given
our ansatz for the gauge fields, it will not play any role in the
present discussion.

With vanishing two-form fields, the covariant gauge field
strength tensors read

HM
μν = 2∂[μAM

ν] + XNPMAN
μ AP

ν . (12)

The scalar potential is given by

V = −1

4

[
fMN P fQRS�

−2
(

1

12
MMQMNRMPS − 1

4
MMQηN RηPS

+1

6
ηMQηN RηPS

)
+ 1

4
ξMN ξPQ�4(MMPMNQ − ηMPηNQ)

+
√

2

3
fMN PξQR�MMNPQRS

]
(13)

where MMN is the inverse of MMN , and MMNPQRS is
obtained from

MMNPQR = εmnpqrV m
M V n

N V p
P V q

Q V r
R (14)

by raising the indices with ηMN .
Supersymmetry transformations of fermionic fields

(ψμi , χi , λ
a
i ) are given by

δψμi = Dμεi + i√
6
	i j A

jk
1 γμεk

− i

6

(
	i j�VM

jkHM
νρ−

√
2

4
δki �−2H0

νρ

)
(γμ

νρ−4δν
μγ ρ)εk ,

(15)

δχi = −
√

3

2
i�−1Dμ�γ μεi + √

2Akj2 εk

− 1

2
√

3

(
�	i jVM

jkHM
μν + 1√

2
�−2δki H0

μν

)
γ μνεk ,

(16)

δλai = i	 jk(VM
aDμVi j M )γ μεk + √

2	i j A
ak j
2 εk

−1

4
�VM

aHM
μνγ μνεi (17)
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in which the fermion shift matrices are defined by

Ai j
1 = − 1√

6

(√
2�2	klVM

ikVN
jlξMN

+4

3
�−1V ik

MV jl
NV P

kl f
MN

P

)
,

Ai j
2 = 1√

6

(√
2�2	klVM

ikVN
jlξMN

−2

3
�−1V ik

MV jl
NV P

kl f
MN

P

)
,

Aai j
2 = −1

2

(
�2VM

aVN
i jξMN

−√
2�−1	klVM

aVN
ikVP

jl f MN P
)

. (18)

In these equations, V i j
M is defined in term of VM

m as

VM
i j = 1

2
VM

m�
i j
m (19)

where �
i j
m = 	ik�mk

j and �mi
j are SO(5) gamma matrices.

Similarly, the inverse element Vi j
M can be written as

Vi j
M = 1

2
Vm

M (�
i j
m )∗ = 1

2
Vm

M�kl
m	ki	l j . (20)

In the subsequent analysis, we use the following explicit
choice of SO(5) gamma matrices �mi

j given by

�1 = −σ2 ⊗ σ2, �2 = iI2 ⊗ σ1, �3 = I2 ⊗ σ3,

�4 = σ1 ⊗ σ2, �5 = σ3 ⊗ σ2 (21)

where σi , i = 1, 2, 3 are the usual Pauli matrices.
The covariant derivative on εi reads

Dμεi = ∂μεi + 1

4
ωab

μ γabεi + Qμi
jε j (22)

where the composite connection is defined by

Qμi
j = Vik

M∂μVM
kj − A0

μξMNVMikVN
kj

−AM
μ Vik

NVk j P fMN P . (23)

In this work, we mainly focus on the case of n = 5 vector
multiplets. To parametrize the scalar coset SO(5, 5)/SO(5)

× SO(5), it is useful to introduce a basis for GL(10,R)

matrices

(eMN )PQ = δMPδNQ (24)

in terms of which SO(5, 5)non-compact generators are given
by

Yma = em,a+5 + ea+5,m, m = 1, 2, . . . , 5,

a = 1, 2, . . . , 5. (25)

3 U(1)× SU(2)× SU(2) gauge group

For a compact U (1) × SU (2) × SU (2) gauge group, com-
ponents of the embedding tensor are given by

ξMN = g1(δ
M
2 δN1 − δM1 δN2 ), (26)

fm̃+2,ñ+2, p̃+2 = −g2εm̃ñ p̃, m̃, ñ, p̃ = 1, 2, 3, (27)

fabc = g3εabc, a, b, c = 1, 2, 3 (28)

where g1, g2 and g3 are the coupling constants for each factor
in U (1) × SU (2) × SU (2).

The scalar potential obtained from truncating the scalars
from vector multiplets to U (1) × SU (2)diag ⊂ U (1) ×
SU (2)×SU (2) singlets has been studied in [34]. There is one
U (1)×SU (2)diag singlet from the SO(5, 5)/SO(5)×SO(5)

coset corresponding to the following SO(5, 5) non-compact
generator

Ys = Y31 + Y42 + Y53. (29)

With the coset representative given by

V = eφYs , (30)

the scalar potential can be computed to be

V = 1

32�2

[
32

√
2g1g2�

3 cosh3 φ − 9(g2
2 + g2

3) cosh(2φ)

−8(g2
2 − g2

3 − 4
√

2g1g3�
3 sinh3 φ − g2g3 sinh3 φ)

+(g2
2 + g2

3) cosh(6φ)
]
. (31)

The potential admits two N = 4 supersymmetric AdS5

critical points given by

i : φ = 0, � = 1, V0 = −3g2
1 (32)

ii : φ = 1

2
ln

[
g3 − g2

g3 + g2

]
, � =

⎛
⎝ g2g3

g1

√
2(g2

3 − g2
2)

⎞
⎠

1
3

,

V0 = −3

(
g1g2

2g
2
3

2(g2
3 − g2

2)

) 2
3

. (33)

In critical point i, we have set g2 = −√
2g1 to make this

critical point occur at � = 1. However, we will keep g2

explicit in most expressions for brevity. Critical point i is
invariant under the full gauge symmetry U (1) × SU (2) ×
SU (2) while critical point ii preserves onlyU (1)×SU (2)diag

symmetry due to the non-vanising scalar φ. V0 denotes the
cosmological constant, the value of the scalar potential at a
critical point.

3.1 Supersymmetric black strings

We now consider vacuum solutions of the form AdS3 × �2

with �2 being S2 or H2. A number of AdS3 × H2 solu-
tions that preserve eight supercharges together with RG flows
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interpolating between them and supersymmetric AdS5 crit-
ical points have already been given in [34]. In this section,
we look for more general solutions that preserve only four
supercharges.

We begin with the metric ansatz for the �2 = S2 case

ds2 = e2 f (r)dx2
1,1 + dr2 + e2g(r)(dθ2 + sin2 θdφ2)

(34)

where dx2
1,1 is the flat metric in two dimensions. For �2 =

H2, the metric is given by

ds2 = e2 f (r)dx2
1,1 + dr2 + e2g(r)(dθ2 + sinh2 θdφ2).

(35)

As r → ∞, the metric becomes locally AdS5 with f (r) ∼
g(r) ∼ r

L AdS5
while the near horizon geometry is character-

ized by the conditions f (r) ∼ r
L AdS3

and constant g(r), or

equivalently g′(r) = 0.
To preserve some amount of supersymmetry, we perform

a twist by cancelling the spin connection along the �2 by
some suitable choice of gauge fields. We will first consider
abelian twists from the U (1) × U (1) × U (1) subgroup of
the U (1) × SU (2) × SU (2) gauge symmetry. The gauge
fields corresponding to this subgroup will be denoted by
(A0, A5, A8). The ansatz for these gauge fields will be cho-
sen as

AM=0,5,8 = aM cos θdφ . (36)

for the S2 case and

AM=0,5,8 = aM cosh θdφ . (37)

for the H2 case.

3.1.1 Solutions with U (1) ×U (1) ×U (1) symmetry

There are three singlets from the SO(5, 5)/SO(5) × SO(5)

coset corresponding to the SO(5, 5) non-compact genera-
tors Y53, Y54 and Y55. However, these can be consistently
truncated to only a single scalar with the coset representative
given by

V = eϕY53 . (38)

We now begin with the analysis for �2 = S2. With the rele-

vant component of the spin connection ωφ̂θ̂ = e−g cot θeφ̂ ,
we find the covariant derivative of εi along the φ̂ direction

D
φ̂
εi = · · · + 1

2
e−g cot θ

[
γ
φ̂θ̂

εi − ia0g1(σ2 ⊗ σ3)i
jε j

+ia5g2(σ1 ⊗ σ1)i
jε j

]
(39)

where · · · refers to the term involving g′ that is not relevant
to the present discussion. Note also that a8 does not appear
in the above equation since A8 is not part of the R-symmetry

under which the gravitini and supersymmetry parameters are
charged.

For half-supersymmetric solutions considered in [34], it
has been shown that the twists from A0 and A5 can not be
performed simultaneously, and there exist only AdS3 × H2

solutions. However, if we allow for an extra projector such
that only 1

4 of the original supersymmetry is unbroken, it
is possible to keep both the twists from A0 and A5 non-
vanishing. To achieve this, we note that

iσ2 ⊗ σ3 = i(σ1 ⊗ σ1)(σ3 ⊗ σ2). (40)

We then impose the following projector to make the two
terms with a0 and a5 in (39) proportional

(σ3 ⊗ σ2)i
jε j = −εi . (41)

To cancel the spin connection, we then impose another pro-
jector

iγ
θ̂φ̂

εi = −(σ1 ⊗ σ1)i
jε j . (42)

and the twist condition

a0g1 + a5g2 = 1. (43)

It should be noted that the condition (43) reduces to that of
[34] for either a0 = 0 or a5 = 0. However, the solutions in
this case preserve only four supercharges, or N = 2 super-
symmetry in three dimensions, due to the additional projector
(41).

To setup the BPS equations, we also need the γr projection
due to the radial dependence of scalars. Following [34], this
projector is given by

γrεi = Ii
jε j (44)

with Ii j defined by

Ii
j = (σ2 ⊗ σ3)i

j . (45)

The covariant field strength tensors for the gauge fields in
(36) can be straightforwardly computed, and the result is

HM = −aM sin θdθ ∧ dφ. (46)

For �2 = H2, the cancellation of the spin connection ωφ̂θ̂ =
e−g coth θeφ̂ is again achieved by the gauge field ansatz (37)
using the conditions (41), (42) and (43). On the other hand,
the covariant field strengths are now given by

HM = aM sinh θdθ ∧ dφ. (47)

which have opposite signs to those of the S2 case. This results
in a sign change of the parameter (a0, a5, a8) in the corre-
sponding BPS equations.

With all these, we obtain the following BPS equations

ϕ′ = 1

2
�−1e−ϕ−2g

[
g2e

2g(e2ϕ − 1)

−κ�2(a5 − a8 − e2ϕ(a5 + a8))
]
, (48)
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(a) (b) (c)

Fig. 1 An RG flow from N = 4 AdS5 critical point with U (1) × SU (2) × SU (2) symmetry to N = 2 AdS3 × S2 geometry in the IR with
U (1) ×U (1) × SU (2) symmetry and g1 = 1, a5 = 1 and a8 = 0

�′ = −1

3
(
√

2g1�
3 + g2 cosh ϕ) + 1

3
�−1e−2g[−√

2κa0

+κ�3(a5 cosh ϕ + a8 sinh ϕ)], (49)

g′ = 1

6
�−2

[√
2g1�

4 − 2
√

2κa0e
−2g − 2g2 cosh ϕ�

−4κ�3e−2g(a5 cosh ϕ + a8 sinh ϕ)
]
, (50)

f ′ = 1

6
�−2

[√
2g1�

4 + √
2κa0e

−2g − 2g2 cosh ϕ�

+2κ�3e−2g(a5 cosh ϕ + a8 sinh ϕ)
]
. (51)

In these equations, κ = 1 and κ = −1 refer to �2 = S2 and
�2 = H2, respectively. It can also be readily verified that
these equations also imply the second order field equations.

We now look for AdS3 solutions from the above BPS
equations. These solutions are characterized by the condi-
tions g′ = ϕ′ = �′ = 0 and f ′ = 1

L AdS3
. We find the

following AdS3 solutions.

• For ϕ = 0, AdS3 solutions only exist for a8 = 0 and are
given by

� = 2
1
6 κ

(a5g1)
1
3

, g = 1

6
ln

(
2a4

5

g2
1

)
,

L AdS3 = 2
7
6 a

2
3
5

g
1
3
1 (1 − κa5g2)

. (52)

This should be identified with similar solutions of pure
N = 4 gauged supergravity found in [33]. Since a8

and ϕ vanish in this case, the AdS3 solution has a
larger symmetry U (1) × U (1) × SU (2). Note also that
unlike half-supersymmetric solutions that exist only for
�2 = H2, both �2 = S2 and �2 = H2 are possible by
appropriately chosen values of a0, a5 and g1, recall that
g2 = −√

2g1.

• For ϕ �= 0, we find a class of solutions

ϕ = 1

2
ln

[
(a5 − a8)(a0g1 − a8g2)

(a5 + a8)(a0g1 + a8g2)

]
,

� =
⎛
⎝

√
2κa0√

(a2
5 − a2

8)(a2
0g

2
1 − a2

8g
2
2)

⎞
⎠

1
3

,

g = 1

6
ln

[
2a2

0(a2
5 − a2

8)

a2
0g

2
1 − a2

8g
2
2

]
,

L AdS3 = 2
7
6 a

1
3
0 (a2

5 − a2
8)

1
3 (a2

0g
2
1 − a2

8g
2
2)

1
3

a0g1(1 − κa5g2) − κg2
2a

2
8

. (53)

Note that when a8 = 0, we recover the AdS3 solutions
in (52). As in the previous solution, it can also be verified
that these AdS3 solutions exist for both �2 = S2 and
�2 = H2.

Examples of numerical solutions interpolating between N =
4 AdS5 vacuum with U (1) × SU (2) × SU (2) symmetry to
these AdS3 × �2 are shown in Figs. 1 and 2. At large r , the
solutions are asymptotically N = 4 supersymmetric AdS5

critical point i given in (32). It should also be noted that the
flow solutions preserve only two supercharges due to the γr
projector imposed along the flow.

3.1.2 Solutions with U (1) ×U (1)diag symmetry

We now move to a set of scalars with smaller unbroken sym-
metry U (1) × U (1)diag with U (1)diag being a diagonal sub-
group of U (1)×U (1) ⊂ SU (2)× SU (2). As pointed out in
[34], there are five singlets from the vector multiplet scalars
but these can be truncated to three scalars corresponding to
the following non-compact generators of SO(5, 5)

Ŷ1 = Y31 + Y42, Ŷ2 = Y53, Ŷ3 = Y32 − Y41. (54)
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(a) (b)

(c) (d)

Fig. 2 An RG flow from N = 4 AdS5 critical point with U (1) × SU (2) × SU (2) symmetry to N = 2 AdS3 × S2 geometry in the IR with
U (1) ×U (1) ×U (1) symmetry and g1 = 1, a5 = 2 and a8 = −1

The coset representative is then given by

V = eφ1Ŷ1eφ2Ŷ2eφ3Ŷ3 . (55)

To implement the U (1)diag gauge symmetry, we impose an
additional condition on the parameters a5 and a8 as follow

g2a5 = g3a8. (56)

We can repeat the previous analysis for the U (1) × U (1) ×
U (1) twists, and the result is the same as in the previous case
with the twist condition (43) and projectors (41), (42) and
(44).

With the same procedure as in the previous case, we obtain
the following BPS equations

φ′
1 = 1

2
�−1sech(2φ3) sinh(2φ1)(g2 cosh φ2 + g3 sinh φ2),

(57)

φ′
2 = 1

2
�−1 cosh(2φ1) cosh(2φ3)(g2 sinh φ2 + g3 cosh φ2)

+1

2
�−1(g2 sinh φ2 − g3 cosh φ2)

+a5κ

g3
e−2g�(g2 cosh φ2 + g3 sinh φ2), (58)

φ′
3 = 1

2
�−1 cosh(2φ1) sinh(2φ3)

×(g2 cosh φ2 + g3 sinh φ2), (59)

�′ = − 1

6g3
�−1e−2g

[
− 2κa5�

3(g3 cosh φ2

+g2 sinh φ2) + 2
√

2κg3a0

+e2gg3�
[
cosh(2φ1) cosh(2φ3)

× (g2 cosh φ2 + g3 sinh φ2)

g2 cosh φ2 − g3 sinh φ2 + 2
√

2g1�
3
]]

, (60)

g′ = 1

6g3
�−2

[
g3�(g3 sinh φ2

−g2 cosh φ2) − 2
√

2κa0g3e
−2g

−� cosh(2φ1) cosh(2φ3)(g2 cosh φ2

+g3 sinh φ2) + √
2g1g3�

4

−4κa5e
−2g�3(g3 cosh φ2 + g2 sinh φ2)

]
, (61)

f ′ = 1

6g3
�−2

[
g3�(g3 sinh φ2

−g2 cosh φ2) + √
2κa0g3e

−2g
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−� cosh(2φ1) cosh(2φ3)(g2 cosh φ2

+g3 sinh φ2) + √
2g1g3�

4

+2κa5e
−2g�3(g3 cosh φ2 + g2 sinh φ2)

]
. (62)

From these equations, we find the following AdS3 × �2

solutions.

• For φ1 = φ3 = 0, there is a family of AdS3 solutions
given by

I : φ2 = 1

2
ln

[
(g2 − g3)(g2

2a5 − a0g1g3)

(g2 + g3)(g2
2a5 + a0g1g3)

]
,

g = 1

6
ln

[
2a2

0a
4
5(g2

3 − g2
2)2

g2
3(a2

0g
2
1g

2
3 − a2

5g
4
2)

]
,

� = −
⎡
⎣

√
2a0g2

3

a5

√
(g2

3 − g2
2)(a2

0g
2
1g

2
3 − a2

5g
4
2)

⎤
⎦

1
3

.

(63)

We refrain from giving the explicit form of LAdS3 at this
vacuum due to its complexity.

• For φ3 = 0, we find

II : φ2 = φ1 = 1

2
ln

[
g3 − g2

g3 + g2

]
,

� =
⎡
⎣

√
2κg3

g1a5

√
g2

3 − g2
2

⎤
⎦

1
3

,

g = 1

6
ln

[
2a4

5(g2
3 − g2

2)2

g2
1g

4
3

]
,

L AdS3 =
[

8
√

2a2
5(g2

3 − g2
2)

g1g2
3(1 − κa5g2)3

] 1
3

. (64)

• Finally, for φ1 = 0, we find

III : φ2 = φ3 = 1

2
ln

[
g3 − g2

g3 + g2

]
,

� =
⎡
⎣

√
2κg3

g1a5

√
g2

3 − g2
2

⎤
⎦

1
3

,

g = 1

6
ln

[
2a4

5(g2
3 − g2

2)2

g2
1g

4
3

]
,

L AdS3 =
[

8
√

2a2
5(g2

3 − g2
2)

g1g2
3(1 − κa5g2)3

] 1
3

. (65)

Unlike the previous case, at large r , we find that solutions
to these BPS equations can be asymptotic to any of the two
N = 4 supersymmetric AdS5 vacua i and ii given in (32) and
(33). Therefore, we can have RG flows from the two AdS5

vacua to any of these AdS3 × �2 solutions. Some examples
of these solutions for �2 = S2 are given in Figs. 3, 4, 5 and 6.

3.2 Supersymmetric black holes

We now move to another type of solutions, supersymmetric
AdS5 black holes. We will consider near horizon geometries
of the form AdS2 × �3 for �3 = S3 and �3 = H3. The
twist procedure is still essential to preserve supersymmetry.
For the S3 case, we take the metric to be

ds2 = −e2 f (r)dt2 + dr2 + e2g(r)

×
[
dψ2 + sin2 ψ(dθ2 + sin2 θdφ2)

]
. (66)

With the following choice of vielbein

et̂ = e f dt, er̂ = dr, eψ̂ = egdψ,

eθ̂ = eg sin ψdθ, eφ̂ = eg sin ψ sin θdφ, (67)

we obtain non-vanishing components of the spin connection

ωt̂
r̂ = f ′et̂ , ωψ̂

r̂ = g′eψ̂ , ωθ̂
r̂ = g′eθ̂ , ωφ̂

r̂ = g′eφ̂ ,

ωφ̂
θ̂

= e−g cot θ

sin ψ
eφ̂ ,

ωφ̂
ψ̂

= e−g cot ψeφ̂ , ωθ̂
ψ̂

= e−g cot ψeθ̂ . (68)

We then turn on gauge fields corresponding to the U (1) ×
SU (2)diag ⊂ U (1) × SU (2) × SU (2) symmetry and con-
sider scalar fields that are singlet under U (1) × SU (2)diag.
Using the coset representative (30), we find components of
the composite connection that involve the gauge fields

Qi
j = − i

2
g1A

0(σ2 ⊗ σ3)i
j + i

2
g2

[
A3(σ2 ⊗ I2)i

j

−A4(σ3 ⊗ σ1)i
j + A5(σ1 ⊗ σ1)i

j
]
. (69)

The components of the spin connection on S3 that need to be

cancelled are ωφ̂
θ̂
, ωφ̂

ψ̂
and ωθ̂

ψ̂
. To impose the twist, we

set A0 = 0 and take the SU (2)diag gauge fields to be

A3 = a3 cos ψdθ, A4 = a4 cos θdφ,

A5 = a5 cos ψ sin θdφ (70)

together with A3+m = g2
g3
Am for m = 3, 4, 5.

By considering the covariant derivative of εi along θ and
φ directions, we find that the twist is achieved by imposing
the following conditions

g2a3 = g2a4 = g2a5 = 1 (71)
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(a) (b)

(c) (d)

Fig. 3 An RG flow from AdS5 critical point with U (1) × SU (2) × SU (2) symmetry to AdS3 × S2 critical point I for g1 = 1, g3 = 2g1 and
a5 = 1

4

and projectors

iγ
θ̂ψ̂

εi = (σ2 ⊗ I2)i
jε j , iγ

θ̂φ̂
εi = (σ3 ⊗ σ1)i

jε j ,

iγ
φ̂ψ̂

εi = (σ1 ⊗ σ1)i
jε j . (72)

Note that the last projector is not independent of the first two.
Therefore, the AdS2 solutions preserve four supercharges
of the original supersymmetry. Condition (71) also implies
a3 = a4 = a5. We will then set a3 = a4 = a5 = a from now
on. Using the definition (12), we find the gauge covariant
field strengths

H3 = −ae−2geψ̂ ∧ eθ̂ , H4 = −ae−2geθ̂ ∧ eφ̂ ,

H5 = −ae−2geψ̂ ∧ eφ̂ (73)

and H3+m = g2
g3
Hm for m = 3, 4, 5.

For �3 = H3, we use the metric ansatz

ds2 = −e2 f dt2 + dr2 + e2g

y2 (dx2 + dy2 + dz2) (74)

with non-vanishing components of the spin connection

ωx̂
r̂ = g′ex̂ , ω ŷ

r̂ = g′eŷ, ωẑ
r̂ = g′eẑ,

ωx̂
ŷ = −e−gex̂ , ωẑ

ŷ = −e−geẑ, ωt̂
r̂ = f ′et̂ (75)

where various components of the vielbein are given by

et̂ = e f dt, er̂ = dr, ex̂ = eg

y
dx,

eŷ = eg

y
dy, eẑ = eg

y
dz. (76)

Since there are only two components, ωx̂
ŷ and ωẑ

ŷ , of the
spin connection to be cancelled in the twisting process, we
turn on the following SU (2) gauge fields

A3 = a

y
dx, A4 = 0, A5 = ã

y
dz (77)

and Am+3 = g2
g3
Am , for m = 3, 4, 5.

Repeating the same analysis as in the S3 case, we find the
twist conditions

g2a = g2ã = 1 (78)
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(a) (b) (c)

(d) (e)

Fig. 4 An RG flow from AdS5 critical point with U (1) × SU (2) × SU (2) symmetry to AdS3 × S2 critical point II for g1 = 1, g3 = 2g1 and
a5 = 1

4

(a)

(d) (e)

(b) (c)

Fig. 5 An RG flow from AdS5 critical point with U (1) × SU (2) × SU (2) symmetry to AdS5 critical point with U (1) × SU (2)diag symmetry and
finally to AdS3 × S2 critical point II for g1 = 1, g3 = 2g1 and a5 = 1

4
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(a) (b) (c)

(d) (e)

Fig. 6 An RG flow from AdS5 critical point with U (1) × SU (2) × SU (2) symmetry to AdS3 × S2 critical point III for g1 = 1, g3 = 2g1 and
a5 = 1

4

and projectors

iγŷ x̂εi = (σ2 ⊗ I2)i
jε j , iγŷ ẑεi = (σ1 ⊗ σ1)i

jε j ,

iγx̂ ẑεi = (σ3 ⊗ σ1)i
jε j . (79)

The last projector is not needed for the twist with A4 = 0. In
addition, it follows from the first two projectors as in the S3

case. The twist condition (78) again implies that ã = a, and
the covariant field strengths in this case are given by

H3 = ae−2gex̂ ∧ eŷ, H4 = ae−2geẑ ∧ ex̂ ,

H5 = ae−2geẑ ∧ eŷ (80)

and Hm+3 = g2
g3
Hm , for m = 3, 4, 5. Note that although

A4 = 0, we have non-vanishing H4 due to the non-abelian
nature of SU (2) field strengths.

With all these ingredients, the following BPS equations
are straightforwardly obtained

φ′ = 1

8g3
�−1e−3φ−2g[g2 − g3 + e2φ(g2 + g3)]

×
[
g3e

2g(e4φ − 1) + 4κae2φ�2
]
, (81)

�′ = −1

3

[
g2 cosh3 φ + g3 sinh3 φ + √

2g1�
3
]

+ κ

g3
ae−2g�2(g3 cosh φ + g2 sinh φ), (82)

g′ = −1

3
�−1(g2 cosh3 φ + g3 sinh3 φ) + 1

3
g1�

2

− κ

g3
ae−2g�(g3 cosh φ + g2 sinh φ), (83)

f ′ = −1

3
�−1(g2 cosh3 φ + g3 sinh3 φ) + 1

3
g1�

2

+ κ

g3
ae−2g�(g3 cosh φ + g2 sinh φ). (84)

As in the AdS3 solutions, κ = 1 and κ = −1 corresponds to
�3 = S3 and �3 = H3, respectively.

It turns out that only κ = −1 leads to an AdS2 solution
given by

φ = 1

2
ln

[
g3 − g2

g3 + g2

]
, � = −

⎡
⎣ 2

√
2g2g3

g1

√
g2

3 − g2
2

⎤
⎦

1
3

,

g = 1

2
ln

⎡
⎣2a(g2

3 − g2
2)

2
3

g
2
3
1 g

1
3
2 g

4
3
3

⎤
⎦ , L AdS2 = (g2

3 − g2
2)

1
3

√
2g

1
3
1 g

2
3
2 g

2
3
3

.

(85)

This solution preserves N = 4 supersymmetry in two
dimensions and U (1) × SU (2)diag symmetry. As r → ∞,
f ∼ g ∼ r , solutions to the above BPS equations are locally
asymptotic to either of the N = 4 AdS5 vacua in (32) and
(33). RG flow solutions interpolating between these AdS5
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(a) (b)

(c) (d)

Fig. 7 An RG flow from AdS5 critical point with U (1) × SU (2) × SU (2) symmetry to AdS2 × H3 critical point for g1 = 1 and g3 = 2g1

vacua and the AdS2 ×H3 solution in (85) are shown in Figs.
7 and 8. In particular, the flow in Fig. 8 connects three critical
points similar to the solution given in the previous section.

We end this section by a comment on the possibility of
turning on the twist from A0 along with those from the
SU (2)diag gauge fields. As in the previous section, if we
impose an additional projector

(I2 ⊗ σ3)i
jε j = −εi , (86)

the projection matrix of the A0 term in the composite connec-
tion (69) will be proportional to that of A3. We will consider
the S3 case for concreteness and take the ansatz for A0 to be

A0 = a0 cos ψdθ (87)

and proceed as in the A0 = 0 case. This results in the pro-
jectors given in (72) and the twist conditions

g2a4 = g2a5 = 1 and g1a0 + g2a3 = 1 . (88)

We can see that at this stage the parameter a3 needs not be
equal to a4 and a5. However, consistency of the BPS equa-
tions from δλai conditions require a3 = a4 = a5 and hence
a0 = 0 by the conditions in (88). This is because A0 does

not appear in δλai variation. The resulting BPS equations then
reduce to those of the previous case with A0 = 0. So, we con-
clude that the A0 twist cannot be turned on along with the
SU (2)diag twists.

4 U(1)× SO(3, 1) gauge group

For non-compactU (1)×SO(3, 1) gauge group, components
of the embedding tensor are given by

ξMN = g1(δ
M
2 δN1 − δM1 δN2 ), (89)

f345 = f378 = − f468 = − f567 = −g2 . (90)

This gauge group has already been studied in [34]. The scalar
potential admits one supersymmetric N = 4 AdS5 vauum at
which all scalars from vector multiplets vanish and � = 1
after choosing g2 = −√

2g1. At the vacuum, the gauge group
is broken down to its maximal compact subgroup U (1) ×
SO(3). A holographic RG flow from this critical point to a
non-conformal field theory in the IR and a flow to AdS3×H2

vacuum preserving eight supercharges have also been studied
in [34]. In this case, AdS3 × S2 solutions do not exist.
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(a) (b)

(c) (d)

Fig. 8 An RG flow from AdS5 critical point with U (1) × SU (2) × SU (2) symmetry to AdS5 critical point with U (1) × SU (2)diag symmetry and
finally to AdS2 × H3 critical point for g1 = 1 and g3 = 2g1

In this section, we will study AdS3 × �2 and AdS2 ×
�3 solutions preserving four supercharges. The analysis is
closely parallel to that performed in the previous section, so
we will give less detail in order to avoid repetition.

4.1 Supersymmetric black strings

We will use the same metric ansatz as in Eqs. (34) and (35)
and consider the twist from U (1) × U (1) gauge fields. The
second U (1) is a subgroup of the SO(3) ⊂ SO(3, 1). There
are in total five scalars that are singlet under thisU (1)×U (1),
but as in the compact U (1) × SU (2) × SU (2) gauge group,
these can be truncated to three singlets corresponding to the
following SO(5, 5) non-compact generators

Ỹ1 = Y31 + Y42, Ỹ2 = Y32 − Y41, Ỹ3 = Y53. (91)

With the embedding tensor (90), the compact SO(3) sym-
metry is generated by X3, X4 and X5 generators.

Using the coset representative of the form

L = eφ1Ỹ1eφ2Ỹ2eφ3Ỹ3 , (92)

we can repeat all the analysis of the previous section by using
the ansatz for the gauge fields

A0 = a0 cos θdφ and A5 = a5 cos θdφ, (93)

for �2 = S2 and

A0 = a0 cosh θdφ and A5 = a5 cosh θdφ, (94)

for �2 = H2. The result is similar to the compact case with
the projectors (41) and (42) and the twist condition (43).

Using the γr projection (44), the BPS equations in this
case read

f ′ = − 1

24�2 e
−2φ1−φ2−2(φ3+g)

[
e2g [

1 − e4φ1

−e2φ2 + e4φ1+2φ2 + e4φ3 + 4e2(φ1+φ3)

− e4(φ1+φ3) + 4e2(φ1+φ2+φ3)

−e2φ2+4φ3 + e4φ1+2φ2+4φ3
]
g2�

−4
√

2κa0e
2φ1+φ2+2φ3 − 4κa5e

2(φ1+φ3)
(
1 + e2φ2

)
�3

−4
√

2e2φ1+φ2+2(φ3+g)g1�
4
]
, (95)
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g′ = 1

24�2 e
−2φ1−φ2−2(φ3+g)

[
− e2g [

1 − e4φ1

−e2φ2 + e4φ1+2φ2 + e4φ3 + 4e2(φ1+φ3)

− e4(φ1+φ3) + 4e2(φ1+φ2+φ3)

−e2φ2+4φ3 + e4φ1+2φ2+4φ3
]
g2�

−8κ
√

2a0e
2φ1+φ2+2φ3 − 8κa5e

2(φ1+φ3)
(
1 + e2φ2

)
�3

+4
√

2e2φ1+φ2+2(φ3+g)g1�
4
]
, (96)

�′ = 1

24�
e−2φ1−φ2−2(φ3+g)

[
− e2g (

1 − e4φ1

−e2φ2 + e4φ1+2φ2 + e4φ3 + 4e2(φ1+φ3)

− e4(φ1+φ3) + 4e2(φ1+φ2+φ3)

−e2φ2+4φ3 + e4φ1+2φ2+4φ3
)
g2�

−8κ
√

2a0e
2φ1+φ2+2φ3 + 4κa5e

2(φ1+φ3)
(
1 + e2φ2

)
�3

−8
√

2e2φ1+φ2+2(φ3+g)g1�
4
]
, (97)

φ′
1 = e−2φ1−φ2+2φ3

(
1 + e4φ1

) (
e2φ2 − 1

)
g2

2
(
1 + e4φ3

)
�

, (98)

φ′
2 = 1

8�
e−2φ1−φ2−2(φ3+g)

[
e2g (

e4φ1 − e2φ2

+e4φ1+2φ2 − e4φ3 − 4e2(φ1+φ3)

+e4(φ1+φ3) − 1 + 4e2(φ1+φ2+φ3)

−e2φ2+4φ3 + e4φ1+2φ2+4φ3
)
g2

+4κa5e
2(φ1+φ3)

(
e2φ2 − 1

)
�2

]
, (99)

φ′
3 = e−2φ1−φ2−2φ3

(
e4φ1 − 1

) (
e2φ2 − 1

) (
e4φ3 − 1

)
g2

8�
.

(100)

This set of equations admits an AdS3 solution given by

φ2 = φ3 = 0, � =
(√

2κ

a5g1

) 1
3

,

g = 1

3
ln

(√
2a2

5

g1

)
, L AdS3 =

(√
2a2

5

g1

) 1
3 2

(1 − κa5g2)
.

(101)

As in the compact case, �2 can be either S2 or H2, depending
on the values of a5, a0, g1 and g2 such that the twist condition
(43) is satisfied. This is in contrast to the half-supersymmetric
solution found in [34] for which only �2 = H2 is
possible.

To find a domain wall interpolating between the AdS5

vacuum to this AdS3 × �2 solution, we further truncate the

BPS equations by setting φi = 0 for i = 1, 2, 3. The resulting
equations are given by

f ′ = 1

6�2 e
−2g

(√
2κa0 − 2e2gg2� + 2κa5�

3 − √
2e2gg1�

4
)

,

(102)

g′ = − 1

6�2 e
−2g

(
2
√

2κa0 + 2e2gg2� + 4κa5�
3 + √

2e2gg1�
4
)

,

(103)

�′ = − 1

3�
e−2g

(√
2κa0 + e2gg2� − κa5�

3 + √
2e2gg1�

4
)

.

(104)

An example of numerical solutions is shown in Fig. 9.

4.2 Supersymmetric black holes

We now consider AdS2 × �3 solutions within this non-
compact gauge group. We will look for solutions with
U (1) × SO(3) ⊂ U (1) × SO(3, 1) symmetry. There is one
U (1) × SO(3) singlet from the SO(5, 5)/SO(5) × SO(5)

coset corresponding to the non-compact generator

Y = Y31 + Y42 − Y53. (105)

The coset representative can be written as

L = eφY . (106)

Using the metric ansatz (66) and (74) together with the gauge
fields (70) and (77), we find that the twist can be implemented
by using the projectors given in (72). Furthermore, the twist
condition also implies that a3 = a4 = a5 = a with g2a = 1,
and the twist from A0 cannot be turned on. The AdS2 × �3

solutions preserve four supercharges.
Using the projector (44), we can derive the following BPS

equations

f ′ = 1

12�

[
e−3φ

(
1 − 3e2φ − 3e4φ + e6φ

)
g2

+6κae−φ−2g
(

1 + e2φ
)

�2 + 2
√

2g1�
3
]
, (107)

g′ = 1

12�

[
e−3φ

(
1 − 3e2φ − 3e4φ + e6φ

)
g2

−6κae−φ−2g
(

1 + e2φ
)

�2 + 2
√

2g1�
3
]
, (108)

�′ = 1

12
e−3φ−2g

[
e2g

(
1 − 3e2φ − 3e4φ

+e6φ
)
g2 + 6κae2φ

(
1 + e2φ

)
�2

−4
√

2e3φ+2gg1�
3
]
, (109)

φ′ = − 1

4�
e−3φ−2g

×
(
e2φ − 1

) (
e2g

(
1 + e4φ

)
g2 − 2κae2φ�2

)
.

(110)
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(a) (b) (c)

Fig. 9 An RG flow solution from supersymmetric AdS5 with U (1) × SO(3) symmetry to AdS3 × S2 geometry in the IR for U (1) × SO(3, 1)

gauge group and g1 = 1, a5 = 1

(a) (b) (c)

Fig. 10 An RG flow solution from AdS5 with U (1) × SO(3) symmetry to AdS2 × H3 geometry in the IR for U (1) × SO(3, 1) gauge group and
g1 = 1

These equations admit one AdS2 × H3 solution given by

φ = 0, � = −√
2

(
g2

g1

) 1
3

g = −1

2
ln

⎡
⎣

(
g2

1g2
) 1

3

2a

⎤
⎦ , L AdS2 = 1

√
2

(
g1g2

2

) 1
3

(111)

while AdS2 × S3 solutions do not exist.
By setting φ = 0, we find a numerical solution to the

above BPS equations as shown in Fig. 10.

5 U(1)× SL(3,R) gauge group

In this section, we consider non-compact U (1) × SL(3,R)

gauge group. This has not been studied in [34], so we will
give more detail about the construction of this gauged super-
gravity and possible supersymmetric AdS5 vacua.

Components of the embedding tensor for this gauge group
are given by

ξMN = g1(δ
M
2 δN1 − δM1 δN2 ), (112)

f345 = f389 = f468 = f497 = f569 = f578 = −g2,

f367 = 2g2, f4,9,10 = f5,8,10 = √
3g2 . (113)

fMN
P can be extracted from SL(3,R) generators

( iλ2
2 ,

iλ5
2 , iλ7

2 , λ1
2 , λ3

2 , λ4
2 , λ6

2 , λ8
2 ) with λi , i = 1, 2, . . . , 8

being the usual Gell–Mann matrices. The compact SO(3) ⊂
SL(3,R) symmetry is generated by X3, X4 and X5.

5.1 Supersymmetric AdS5 vacuum

The SL(3,R) factor is embedded in SO(3, 5) ⊂ SO(5, 5)

such that its adjoint representation is identified with the
fundamental representation of SO(3, 5). The SO(3) ⊂
SL(3,R) is embedded in SL(3,R) such that 3 → 3. Decom-
posing the adjoint representation of SO(3, 5) to SL(3,R)

and SO(3), we find that the 25 scalars transform under
SO(3) ⊂ SL(3,R) as

2(1 × 5) + 3 × 5 = 3 + 3 × 5 + 7. (114)

Unlike the U (1)× SO(3, 1) gauge group, there is no singlet
under the compact SO(3) symmetry. Taking into account
the embedding of the U (1) factor in the gauge group as
described in (112), we find the transformation of the scalars
under U (1) × SO(3)

30 + 50 + 70 + 52 + 5−2 (115)

with the subscript denoting the U (1) charges.
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Table 1 Scalar masses at the N = 4 supersymmetric AdS5 critical
point with U (1)× SO(3) symmetry and the corresponding dimensions
of dual operators for the non-compact U (1) × SL(3,R) gauge group.
The scalars are organized into representations of U (1) × SO(3) with
the singlet corresponding to the dilaton �

Scalar field representations m2L2 �

10 −4 2

30 32 8

50 0 4

70 12 6

5−2 21 7

52 21 7

It can be readily verified by studying the correspond-
ing scalar potential or recalling the result of [48] that this
U (1) × SL(3,R) gauge group admits a supersymmetric
N = 4 AdS5 vacuum at which all scalars from vector multi-
plets vanish with

� = 1 and V0 = −3g2
1 . (116)

We have, as in other gauge groups, set g2 = −√
2g1 to

bring this vacuum to the value of � = 1. All scalar masses
at this vacuum are given in Table 1. Massless scalars in 50

representation are Goldstone bosons corresponding to the
symmetry breaking SL(3,R) → SO(3).

5.2 Supersymmetric black strings

We now consider U (1) × U (1) ⊂ U (1) × SO(3) ⊂
U (1) × SL(3,R) invariant scalars. We will choose the
U (1) ⊂ SO(3) generator to be X5. From the vector mul-
tiplets, there are three singlet scalars corresponding to the
following non-compact generators

Ȳ1 = Y31 − Y44, Ȳ2 = Y41 + Y34, Ȳ3 = √
3Y52 − Y55.

(117)

The coset representative can be written as

L = eφ1Ȳ1eφ2Ȳ2eφ3Ȳ3 (118)

which gives rise to the scalar potential

V = 1

16�2 e
−4(φ2+φ3)g2

[(
3 + 6e4φ2

+3e8φ2 + 3e8φ3 − 32e4(φ2+φ3) + 3e8(φ2+φ3)

+6e4φ2+8φ3
)
g2 − 4

√
2e2(φ2+φ3)

×
(√

3 − 2e2φ2 − √
3e4φ2 − √

3e4φ3

+√
3e4(φ2+φ3) − 2e2φ2+4φ3

)
g1�

3
]
. (119)

Notice that V doesn’t depend on φ1, consistent with the fact
that φ1 is part of the Goldstone bosons in 50 representation.

It can be verified that this potential admits only one super-
symmetric AdS5 critical point at φ1 = φ2 = φ3 = 0 and
� = 1 for g2 = −√

2g1.
We first consider AdS3 × �2 solutions preserving eight

supercharges. We will omit some detail since the same anal-
ysis has been carried out in [34]. By turning on gauge fields
A0 and A5 along �2 and performing the twist in Eq. (39) by
imposing only one projector

iγ
θ̂φ̂

εi = a0g1(σ2 ⊗ σ3)i
jε j − a5g2(σ1 ⊗ σ1)i

jε j , (120)

we find that consistency of this projection condition, namely
(iγ

φ̂θ̂
)2 = I4, implies a0a5 = 0, see [34] for more detail.

Therefore, for half-supersymmetric solutions, the twists from
A0 and A5 cannot be turned on simultaneously. Furthermore,
as shown in [34], see also a similar discussion in [39], the
twist with a5 = 0 does not lead to an AdS3 fixed point. We
will accordingly consider only the case of a0 = 0 and a5 �= 0
which leads to the twist condition a5g2 = 1 and the projector

iγ
θ̂φ̂

εi = −(σ1 ⊗ σ1)i
jε j . (121)

The resulting BPS equations read

f ′ = 1

12�
e−2(φ2+φ3+g)

[
e2g

(√
3 − 2e2φ2

−√
3e4φ2 − √

3e4φ3 + √
3e4(φ2+φ3)

−2e2φ2+4φ3
)
g2 + 2κa5e

2φ2
(

1 + e4φ3
)

�2

+2
√

2e2(φ2+φ3+g)g1�
3
]
, (122)

g′ = 1

12�
e−2(φ2+φ3+g)

[
e2g

(√
3 − 2e2φ2

−√
3e4φ2 − √

3e4φ3 + √
3e4(φ2+φ3)

−2e2φ2+4φ3
)
g2 − 4κa5e

2φ2
(

1 + e4φ3
)

�2

+2
√

2e2(φ2+φ3+g)g1�
3
]
, (123)

�′ = 1

12
e−2(φ2+φ3+g)

[
e2g

(√
3 − 2e2φ2

−√
3e4φ2 − √

3e4φ3 + √
3e4(φ2+φ3)

−2e2φ2+4φ3
)
g2 + 2κa5e

2φ2
(

1 + e4φ3
)

�2

−4
√

2e2(φ2+φ3+g)g1�
3
]
, (124)

φ′
1 = 0 (125)

φ′
2 = −

√
3e−2(φ2+φ3)

(
1 + e4φ2

) (
e4φ3 − 1

)
g2

4�
, (126)

φ′
3 = − 1

8�
e−2(φ2+φ3+g)

[
e2g

(
2e2φ2 − √

3

+√
3e4φ2 − √

3e4φ3 + √
3e4(φ2+φ3)

−2e2φ2+4φ3
)
g2 − 2κa5e

2φ2
(
e4φ3 − 1

)
�2

]
.

(127)
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(a) (b) (c)

Fig. 11 An RG flow solution from AdS5 with U (1) × SO(3) symmetry to N = 4 AdS3 × H2 geometry in the IR for U (1) × SL(3,R) gauge
group and g1 = 1

The Killing spinors εi are subject to the projection conditions
(44) and

iγ
θ̂φ̂

εi = −(σ1 ⊗ σ1)i
jε j . (128)

As in theU (1)× SO(3, 1) gauge group studied in [34], there
is only one supersymmetric AdS3 × H2 critical point given
by

φ1 = φ2 = φ3 = 0, � = −
(√

2 g2

g1

) 1
3

,

g = −1

2
ln

⎡
⎣ 1

a5

(
g2

1g2

2

) 1
3
⎤
⎦ L AdS3 =

( √
2

g1g2
2

) 1
3

.

(129)

This solution is dual to a two-dimensional N = (2, 2) SCFT.
By setting φ1 = φ2 = φ3 = 0, we find a domain wall inter-
polating between this critical point and the supersymmetric
AdS5 as shown in Fig. 11.

We now move to AdS3 × �2 solutions preserving four
supercharges. The analysis follows the same line as in the
previous two gauge groups, so we will be very brief in this
section. By the same analysis as in the previous two gauge
groups, we obtain the following BPS equations

f ′ = 1

12�2 e
−2(φ2+φ3+g)

[
2
√

2κa0e
2(φ2+φ3)

−e2g
(√

3 − 2e2φ2 − √
3e4φ2 − √

3e4φ3

+ √
3e4(φ2+φ3) − 2e2φ2+4φ3

)
g2�

+ 2κa5e
2φ2

(
1 + e4φ3

)
�3

+2
√

2e2(φ2+φ3+g)g1�
4
]
, (130)

g′ = − 1

12�2 e
−2(φ2+φ3+g)

[
4
√

2κa0e
2(φ2+φ3)

+e2g
(√

3 − 2e2φ2 − √
3e4φ2 − √

3e4φ3

+√
3e4(φ2+φ3) − 2e2φ2+4φ3

)
g2�

+4κa5e
2φ2

(
1 + e4φ3

)
�3

−2
√

2e2(φ2+φ3+g)g1�
4
]
, (131)

�′ = 1

12�
e−2(φ2+φ3+g)

[
−4

√
2κa0e

2(φ2+φ3)

+e2g
(√

3 − 2e2φ2 − √
3e4φ2 − √

3e4φ3

+ √
3e4(φ2+φ3) − 2e2φ2+4φ3

)
g2�

+2κa5e
2φ2

(
1 + e4φ3

)
�3

−4
√

2e2(φ2+φ3+g)g1�
4
]
, (132)

φ′
1 = 0, (133)

φ′
2 = −

√
3e−2(φ2+φ3)

(
1 + e4φ2

) (
e4φ3 − 1

)
g2

4�
, (134)

φ′
3 = − 1

8�
e−2(φ2+φ3+g)

[
e2g

(
2e2φ2 − √

3

+√
3e4φ2 − √

3e4φ3 + √
3e4(φ2+φ3)

−2e2φ2+4φ3
)
g2 − 2κa5e

2φ2
(
e4φ3 − 1

)
�2

]
.

(135)

These equations admit one supersymmetric AdS3 ×�2 solu-
tion given by

φ2 = φ3 = 0, � =
(√

2κ

a5g1

) 1
3

,

g = 1

3
ln

(√
2a2

5

g1

)
, L AdS3 =

(√
2a2

5

g1

) 1
3 2

(1 − κa5g2)
,

(136)

and a domain wall interpolating between this critical point
and the supersymmetric AdS5 is shown in Fig. 12. It should
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(a) (b) (c)

Fig. 12 An RG flow solution from AdS5 with U (1) × SO(3) symmetry to N = 2 AdS3 × S2 geometry in the IR for U (1) × SL(3,R) gauge
group and g1 = 1, a5 = 1

also be noted that this AdS3 × �2 solution is the same as in
U (1) × SO(3, 1) gauge group.

5.3 Supersymmetric black holes

We end this section with an analysis of AdS2 × �3 solu-
tions and domain walls connecting these solutions to the
supersymmetric AdS5. In order to preserve supersymmetry,
SO(3) ⊂ SL(3,R) gauge fields must be turned on. How-
ever, in the present case, there is no SO(3) singlet scalar
from the vector multiplets. After using the twist condition
g2a = 1 and projectors in (72) and (79) together with the
ansatz for the gauge fields in (70) and (77), we obtain the
BPS equations

f ′ = − 1

6�

(
2g2 − 6κae−2g�2 − √

2g1�
3
)

, (137)

g′ = − 1

6�

(
2g2 + 6κae−2g�2 − √

2g1�
3
)

, (138)

�′ = −1

3

(
g2 − 3κae−2g�2 + √

2g1�
3
)

. (139)

These equations turn out to be the same as in the SO(3, 1)

case after setting all the scalars from vector multiplets to
zero. A single AdS2 × H3 critical point is again given by
(111).

6 Conclusions and discussions

We have found a new class of supersymmetric black strings
and black holes in asymptotically AdS5 space within N = 4
gauged supergravity in five dimensions coupled to five vec-
tor multiplets with gauge groups U (1) × SU (2) × SU (2),
U (1) × SO(3, 1) and U (1) × SL(3,R). These generalize
the previously known black string solutions preserving eight
supercharges by including more general twists along �2. Fur-
thermore, unlike the half-supersymmetric solutions which
only exhibit hyperbolic horizons, the 1

4 -supersymmetric

black strings can have both S2 and H2 horizons. On the other
hand, the AdS5 black holes only feature H3 horizons.

For U (1) × SU (2) × SU (2) gauge group, we have iden-
tified a number of AdS3 × �2 solutions preserving four
supercharges. The solutions have U (1) × U (1) × U (1) and
U (1) × U (1)diag symmetries and correspond to N = (0, 2)

SCFTs in two dimensions. We have given many examples of
numerical RG flow solutions from the two supersymmetric
AdS5 vacua to these AdS3 × �2 geometries. We have also
found a supersymmetric AdS2 × H3 solution describing the
near horizon geometry of a supersymmetric black hole in
AdS5. For U (1) × SO(3, 1) and U (1) × SL(3,R) gauge
groups, all AdS3 × �2 and AdS2 × H3 solutions exist only
for vanishing scalar fields from vector multiplets and have
the same form for both gauge groups.

It would be interesting to compute twisted partition func-
tions and twisted indices in the dual N = 2 SCFTs com-
pactified on �2 and �3. These should provide a micro-
scopic description for the entropy of the aforementioned
black strings and black holes in AdS5 space. On the other
hand, it is also interesting to find supersymmetric rotating
AdS5 black holes similar to the solutions found in minimal
and maximal gauged supergravities [49,50] or black holes
with horizons in the form of a squashed three-sphere [51–53].
Furthermore, embedding these solutions in string/M-theory
is of particular interest and should give a full holograpic inter-
pretation for the RG flows across dimensions identified here.
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