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Abstract We present a D-dimensional Bardeen like Anti-
de Sitter (AdS) black hole solution in Einstein–Gauss–
Bonnet (EGB) gravity, viz., Bardeen–EGB–AdS black holes.
The Bardeen–EGB–AdS black hole has an additional param-
eter due to magnetic charge (e), apart from mass (M) and
Gauss–Bonnet parameter (α). Interestingly, for each value
of α, there exist a critical e = eE which corresponds to an
extremal regular black hole with degenerate horizons, while
for e < eE , it describes non-extremal black hole with two
horizons. Despite the complicated solution, the thermody-
namical quantities, like temperature (T ), specific heat(C)
and entropy (S) associated with the black hole are obtained
exactly. It turns out that the heat capacity diverges at critical
horizon radius r+ = rC , where the temperature attains max-
imum value and the Hawking-Page transition is achievable.
Thus, we have an exact D-dimensional regular black holes,
when evaporates lead to a thermodynamical stable remnant.

1 Introduction

The celebrated singularity theorems of Hawking and Pen-
rose [1–3] have shown that under fairly general conditions,
a sufficiently massive collapsing object will undergo con-
tinual gravitational collapse, resulting in the formation of a
curvature singularity. However, the singularity is not visible
to a far-away observer which essentially means that a black
hole has formed. It is widely believed that these singularities
do not exist in Nature, but that they are the artefact of clas-
sical general relativity. The existence of a singularity means
spacetime ceases to exist, signal a breakdown of physics laws
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and that they must be resolved in a theory of quantum gravity
[4,5]. While we are far from a definite quantum gravity, atten-
tion has been shifted to regular models that are motivated by
quantum arguments. The earliest idea of Sakharov [6] and
Gliner [7], suggests that singularities could be avoided by
matter, i.e., with a de Sitter core, with the equation of state
p = −ρ obeyed by the cosmological constant.

Bardeen [8], realized the idea, proposed the first regular
black holes, i.e., there are horizons but there is no singularity.
The spherically symmetric Bardeen metric is given by

ds2 = gμν ⊗ dxμ ⊗ dxν, (μ, ν = 0, 1, 2, 3), (1)

with gμν = diag(− f (r), f (r)−1, r2, r2 sin2 θ) and

f (r) = 1 − 2mr2

(r2 + e2)3/2

= 1 −
(m
e

) 2(r/e)2

(1 + (r/e)2)3/2 , and r ≥ 0.

An analysis of f (r) = 0 reveals a critical value ψ∗ such that
f (r) has a double root if ψ = ψ∗, two roots if ψ < ψ∗ and
no root if ψ > ψ∗, with ψ = m/e [9]. These cases illustrate,
respectively, an extreme black hole with degenerate horizons,
a black hole with Cauchy and event horizons, and no black
hole. Later, Ayon-Beato and Garcia [10–13] invoked nonlin-
ear electrodynamics a to generate the Bardeen model [8], i.e.,
an exact solution of general relativity coupled to nonlinear
electrodynamics. Bronnikov [14–17] purposed that it must
be a magnetic field instead of an electric field as purposed in
[10,11], which serves as matter field to get regular black hole
solutions of general relativity coupled to nonlinear electro-
dynamics. The Bardeen solution is regular everywhere, that
can be realized from behaviour of the scalar invariants, Ricci
scalar (R), Ricci square (R = RμνRμν) and Kretschmann
scalar (K = Rμνρσ Rμνρσ ), which are given by
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R = 6me2(4e2 − r2)

(r2 + e2)7/2 ,

R = 18m2e4(8e4 − 4e2r2 + 13r4)

(r2 + e2)7

K = 12m2

(r2 + e2)7

[
8e8 − 4e6r2 + 47e4r4 − 12e2r6 + 48r8

]
,

(2)

whereRμ,ν and Rμνρσ are, respectively, Ricci and Reimann
tensors. It is evident, that these are well behaved for m and
e �= 0.

Subsequently, also there has been intense activities in the
investigation of regular black holes and more recently [18–
21]. But most of these solutions are more or less based on
Bardeen’s model [8]. Also, some solutions in which general-
ized Bardeen model have been obtained in later years, which
includes the Bardeen de Sitter solution [22], rotating or Kerr-
like Bardeen’s solution [23] and noncommutative Bardeen
solution [24].

The Bardeen’s regular metric is commonly used to
compare with the classical black hole, in various appli-
cations which include thermodynamical properties [25–
27], geodesics equations [28], quasinormal modes [29–33],
Hawking evaporation [34,35] and black hole’s remnant [36].
The rotating Bardeen regular metric has been tested with a
black hole candidate in Cygnus X-1 [37], and also shown
that the it can also act as a natural particle accelerator [38].
Lately, the Bardeen’s solution is extended to higher dimen-
sional spacetime [39].

Last few decades gravity witnessed considerable activi-
ties in higher dimensions motivated by the superstring and
field theories. In addition to higher-curvature corrections
to Einstein theory, string theory makes several predictions
about nature, the most important ones are the existence of
extra dimensions [40]. The Einstein–Gauss–Bonnet grav-
ity is a natural and most effective generalization of Ein-
steins general relativity, to higher dimensions, motivated by
the heterotic string theory. It was discovered first by Lanc-
zos [41], and rediscovered by David Lovelock [42]. The
Einstein–Gauss–Bonnet (EGB) theory allow us to explore
several conceptual issues of gravity in a broader setup and
the theory is known to be free of ghosts while expanding
about the flat space [43]. The effective field equations, in
the EGB theory, are of second-order like in general rel-
ativity, but admit, in D > 5, new black hole solutions
[44] that are unavailable to the Einstein theory. The first
black hole solutions of EGB theory was obtained by Boul-
ware and Deser [43] which is similar to its general rela-
tivity counterpart with a curvature singularity at r = 0.
Later several authors studied exact black hole solutions
in EGB theory and their thermodynamical properties [45–
57].

The black holes with higher derivative curvature in Anti-
de Sitter (AdS) spaces have been considered in the recent
years, e.g., static AdS black hole solutions in EGB gravity
with several interesting features [58–60]. Bardeen [8] was
the first to purpose the regular black hole solution by taking
a magnetic field as matter field, which have a de-Sitter core
instead of singularity at the center. The enormous advance-
ment on the applications of regular black holes makes it
important to study these types of solutions in a broader setup.
Demand of extra dimensions by string theory has made it
very important and interesting to study the solutions in higher
dimensional manifolds. Although, the generalized Bardeen
solution in general relativity has been already presented in
[39], but the broader setup of EGB gravities motivated us to
obtain generalized Bardeen solution in EGB. However, there
are many solutions of EGB coupled with nonlinear electro-
dynamics [61,62] already present in the literature, but those
are not regular black hole solutions. Thus, the purpose of
this paper is to obtain a D-dimensional spherically symmet-
ric Bardeen-like black holes solution for the EGB gravity
in AdS spacetimes, viz., Bardeen–EGB–AdS metric. It is
shown that the Bardeen–EGB–AdS metric is an exact black
hole solution of EGB coupled to nonlinear electrodynamics
in AdS spacetime thereby generalizing the Boulware–Desser
solution [43] which is encompassed as a special case. We ana-
lyze their thermodynamical properties to find a stable black
hole remnant and also perform a thermodynamic stability
analysis of the Bardeen–EGB–AdS black holes.

The paper is ordered as: we obtain D-dimensional
Bardeen–EGB–AdS black hole metric for a nonlinear elec-
trodynamics as a source in Sect. 2 and also give the basic
equations governing EGB theory. We investigated the struc-
ture and location of the horizons of the D-dimensional
Bardeen–EGB–AdS Black holes metric along with their
energy conditions in Sect. 2. Section 3 is devoted to the
study of the thermodynamical properties of D-dimensional
Bardeen–EGB–AdS Black holes with a focus on the stability
and also discuss black hole’s remnant. We end the paper with
our concluding remarks in Sect. 5. We use the units such that
G = c = 1.

2 Einstein–Gauss–Bonnet with nonlinear
electrodynamics

Our paper begins with the action of Einstein–Gauss–Bonnet
gravity with the negative cosmological constant coupled to
nonlinear electrodynamics [63] which reads:

IG = 1

2

∫

M
dDx

√−g

[
R + αLGB

+ (D − 1)(D − 2)

l2
+ L(F)

]
(3)
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where � = −(D − 1)(D − 2)/2l2 is the cosmological con-
stant and α is the Gauss–Bonnet coupling coefficient with
dimension [length]2. The discussion will be given here cor-
responding to the case with α ≥ 0 [64,65]. The nonlin-
ear electrodynamics is described by L(F) in the invariant
F = FμνFμν/4, where Fμν is associated with gauge poten-
tial Aν via Fμν = 2∇[μAν]. The Gauss-Bonnet Lagrangian
is of the form [44,57,63]

LGB = Rμνγ δR
μνγ δ − 4RμνR

μν + R2, (4)

Here Rμν , Rμνγ δ and R are respectively the Ricci tensors,
Riemann tensors, and Ricci scalar. The variation of the action
with respect to the metric gμν gives the following EGB equa-
tions of motion [57]

Gμν + αHμν + �gμν = Tμν

≡ 2

[
∂L(F)

∂F
FμρF

ρ
ν − gμνL(F)

]
, (5)

∇μ

(
∂L(F)

∂F
Fμν

)
= 0 and ∇μ

(∗Fμν

) = 0. (6)

where Gμν is the Einstein tensor and Hμν is Lanczos ten-
sor [66]

Hμν = 2
(

− Rμσκτ R
κτσ

ν − 2Rμρνσ R
ρσ − 2Rμσ R

σ
ν

+RRμν

)
− 1

2
LGBgμν, (7)

Following [22], we have the Lagrangian density of the matter
field is [39]

L(F) = D − 2

4se2

[ √
2e2F

1 + √
2e2F

] 2D−3
D−2

, (8)

with

s = eD−3

(D − 1)μ′D−3 (9)

We consider the following anstaz for the Maxwell
field [39]

Fμν = 2δ
θ1[μδ

θ2
ν] g sin θ1; D = 4,

Fμν = 2δ
θD−3
[μ δ

θD−2
ν]

gD−3

r D−4
sin θD−3

⎡
⎣
D−4∏
j=1

sin2 θ j

⎤
⎦ ; D ≥ 5.

(10)

Equation (6) implies that dF = 0, thereby we obtains

e′(r)2δ
θD−3
[μ δ

θD−2
ν]

gD−3

r D−4 sin θD−3

⎡
⎣

D−4∏
j=1

sin2 θ j

⎤
⎦

dθ ∧ dφ ∧ · · · ∧ dψ(D−2) = 0. (11)

This leads to e(r) = e = constant. Interestingly, the other
components of Fμν have negligible influence in comparison

of Fθφ [39,66]. The energy momentum tensor can be given
as

T t
t = T r

r = β
μ′eD−2

(r D−3 + eD−3)
2D−3
D−2

, (12)

with

β = (D − 1)(D − 2) (13)

Using energy momentum tensor from Eq. (12), we can obtain
the Bardeen–EGB–Ads black hole solution in the following
section.

3 Bardeen Anti de-Sitter black holes in EGB theory

We wish to obtain D-dimensional static spherically symmet-
ric solutions of Eq. (5). We assume the metric to be of the
following form [57,66]

ds2 = − f (r)dt2 + 1

f (r)
dr2 + r2γ̃i j dx

i dx j , (14)

where γ̃i j is the metric of a (D − 2)-dimensional constant
curvature space k = 1, 0, or − 1. The spherically symmet-
ric static black hole solution of EGB theory was obtained
by Boulware and Deser [43]. Using metric (14), the (r, r)
equation of field equation reduces to

(D − 2)
[ (

r3 − 2α̃r ( f (r) − 1)
)
f ′ (r)

+ (D − 3) r2 ( f (r) − 1)

− (D − 5) α̃ ( f (r) − 1)2
]

+ �

= β
μ′eD−2

(r D−3 + eD−3)
2D−3
D−2

, (15)

where prime denotes a derivative with respect to r and α̃ =
(D − 3) (D − 4) α. The Eq. (15) can be easily integrated to
give general solution as

f± (r)

= 1 + r2

2α̃

⎛
⎝1 ±

√√√√1 + 4α̃μ′
(
r D−2 + eD−2

) D−1
D−2

− 4α̃

l2

⎞
⎠ ,

D ≥ 5 (16)

where μ′ is the mass of the black hole it is related to the
Arnowitt–Deser–Misner (ADM) mass M with relation [57]

μ′ = 16πM

(D − 2)VD−2
, with VD−2 = 2π(D−1)/2

�(D − 1)/2
,

(17)

where VD−2 is the volume of the (D − 2)-dimensional unit
sphere. There are two families of solutions which correspond
to the signs (±) in front of square root in (16). To get the real
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solution, f (r) must be real valued. So, we must consider
the value of radial co-ordinate (r ) such that the term under
square root in (16) must be non-negative. For the case, 1 −
4α̃/ l2 ≥ 0, that will always be non-negative. But for 1 −
4α̃/ l2 < 0, there will be some values of r for which that term
can be negative, so, for those values of r our solution is no
more real valued. Hence, we can say that the Gauss–Bonnet
coupling constant α̃ must lie in the interval [0, l2/4]. Besides,
the causality of dual theory demands another constraint on
Gauss–Bonnet coupling constant [67,68]

− (3D − 1)(D − 3)

4(D + 1)2 l2

≤ α̃ ≤ (D − 3)(D − 4)(D2 − 3D + 8)

4(D2 − 5D + 10)2 l2 (18)

The solution (14) with (16) is a general spherically symmetric
D-dimensional solution of EGB theory coupled to nonlinear
electrodynamics in an AdS spacetime thereby generalizing
the Bardeen solution. The special case in which charge e = 0
and � = 0, one get the Boulware–Deser solution [43]. It see
that solution (14) with (16) gets for other field equation. For
definiteness, henceforth, we shall call solution (16) Bardeen–
EGB–AdS black holes. In the case of no charge e = 0, Eq.
(16) reduces to D-dimensional EGB–AdS black holes [59,
60,63,69–74] and in the limit, α → 0, the negative branch
of (16) to D- dimensional Bardeen–AdS black holes [39]

ds2 = −
[

1 − μ′r2

(r D−2 + eD−2)
D−1
D−2

+ r2

l2

]
dt2

+ 1[
1 − μ′r2

(r D−2+eD−2)
D−1
D−2

+ r2

l2

]dr2 + r2γ̃i j dx
i dx j .

(19)

Further, the solution also goes over to Schwarzschild–
Tangherlini black hole [75] in the absence of charge. To study
the structure of solution, we take limit r → 0 to obtain

f (r) = 1 + r2

l2e f f
, (20)

where (1/ l2e f f ) is effective AdS length, it reads

1

l2e f f
= 1

2α̃

(
1 −

√
1 + 4μ′α̃

eD−1 − 4α̃

l2

)
, (21)

which is describing a de Sitter solution for α̃ > 0 in the
Bardeen–EGB–AdS black hole. When, we take r  e, we
get

f (r) ≈ 1 + r2

2α̃

⎡
⎣1 −

√√√√1 + 4α̃μ′

r D−1+
−

(
D − 1

D − 2

)
4α̃μ′eD−2

r2D−3+
− 4α̃

l2
+ O

(
e2D−4

r3D−5+

)⎤
⎦ . (22)

From Eq. (22), one can easily notice that the charge density
for our Bardeen–EGB–AdS solution is falling by 1/r2D−3+ ,
but when we look for the charged EGB black hole [76], it
falls by 1/r2D−4+ .

The regularity of the black hole solution (16) can be seen
by behaviour of the scalar invariants, which are given by

lim
r→0

R = D(D − 1)

2α̃

[
−1 +

(
1 + 4μ′α̃

eD−1 − 4α̃

l2

)1/2
]

,

lim
r→0

R = D(D − 1)2

2α̃2

[
1 + 2μ′α̃

eD−1 − 2α̃

l2

−
(

1 + 4μ′α̃
eD−1 − 4α̃

l2

)1/2
]

,

lim
r→0

K = D(D − 1)

α̃2

[
1 + 2μ′α̃

eD−1 − 2α̃

l2

−
(

1 + 4μ′α̃
eD−1 − 4α̃

l2

)1/2
]

. (23)

Thus, the spacetime is regular everywhere as seen from the
behavior of the invariants if e �= 0 and l �= 0. The D-
dimensional Bardeen–EGB–AdS black hole solution is well
defined everywhere by its curvature invariants.

The weak energy condition states that Tabtatb ≥ 0 for
all time like vectors ta , i.e., the local energy density cannot
be negative for any observer. The dominant energy condition
states that Tabtatb ≥ 0 and T abtb must be space like, for
any time like vector ta . Hence, the energy conditions require
ρ ≥ 0 and ρ + Pi ≥ 0,

ρ+P2 =ρ+P3 =ρ+P4 = β
(D − 2)μ′eD−2

(r D−3 + eD−3)
2D−3
D−2

. (24)

Where β = (D − 1) and (D − 4) are, respectively, for even
and odd dimensions. It is worthwhile to note that ρ > P3 and
P1 = −ρ. Thus the Bardeen–EGB–AdS black holes obey the
weak energy condition.

Next, we proceed to discuss the horizon structure of our
Bardeen–EGB–AdS black holes. The horizons radius, if
exists, are zeros of grr = f (r) = 0. The numerical analysis
of f (r) = 0 reveals that it is possible to find non-vanishing
value of α and e for which metric function f (r) is minimum,
i.e, f (r) = 0 admits two roots r±. The smaller and larger
roots, respectively, corresponds to the Cauchy and event hori-
zon of the black holes. We have shown that for a given value
of α and fixed μ′, there exists a critical charge parameter
eE , and critical horizon radius rE , such that f (rE ) = 0 has
a double root, i.e, rE = r±. This case corresponds to the
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Fig. 1 Plot of metric function f−(r) vs r in various dimensions D = 5, 6, 7, and 8 (top to bottom) for different values of charge e with Gauss–Bonnet
coupling α = 0.1 and 0.2 (left to right) with μ′ = 1
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Table 1 Radius of Cauchy
horizon (r−), the event horizon
(r+) and δ = r+ − r− for
different values of charge e and
dimension D

Dimensions α = 0.1 α = 0.2

e r− r+ δ e r− r+ δ

D = 5 eE = 0.493 0.6242 0.6242 0 eE = 0.373 0.566 0.566 0

0.3 0.2519 0.8695 0.6176 0.2 0.2152 0.7632 0.548

0.4 0.3746 0.8164 0.4418 0.3 0.3501 0.7182 0.3681

D = 6 eE = 0.52 0.607 0.607 0 eE = 0.372 0.4773 0.4773 0

0.3 0.2619 0.8038 0.5419 0.2 0.1583 0.6276 0.4693

0.4 0.3278 0.768 0.4402 0.3 0.2871 0.5969 0.3098

D = 7 eE = 0.547 0.5939 0.5939 0 eE = 0.423 0.4656 0.4656 0

0.3 0.1767 0.7564 0.5797 0.2 0.1142 0.6062 0.4920

0.4 0.2840 0.7442 0.4602 0.3 0.2182 0.5950 0.3768

D = 8 eE = 0.578 0.5816 0.5816 0 eE = 0.475 0.4881 0.4881 0

0.3 0.1460 0.7380 0.5920 0.2 0.0860 0.6175 0.5315

0.4 0.2442 0.7319 0.4877 0.3 0.1732 0.6090 0.4358

extremal Bardeen–EGB–AdS black holes with degenerate
horizons. When e < eE the two horizons r± correspond to
the non-extremal black hole and e > eE has no horizon, i.e.,
no black holes (cf. Fig. 1 and Table 1). It is clear that the crit-
ical value of eE and rE depend upon the coupling constant α.
For α = 0.1, 0.2 the critical value of the charge corresponds
to the degenerate horizon for D = 5, 6, 7 and 8 are shown in
Table 1. Also, the radius of the event horizon decreases with
increase in Gauss–Bonnet coefficient α and increases with
charge e and dimensions D as shown in Fig. 1.

4 Black hole thermodynamics

In this section, we explore the thermodynamics of the
Bardeen–EGB–AdS black holes. Henceforth, we shall res-
trict our discussion to the negative branch of solution (16).
The black hole thermodynamics provides the insight into
quantum properties of gravitational field, in particular, the
thermodynamics of AdS black holes has been of great inter-
est to the astrophysicists since the pioneering work by Hawk-
ing and Page [77], who suggested the existence of a phase
transition in AdS black holes. The Bardeen–EGB–AdS black
hole is characterized by mass M , charge e and �. The black
hole mass can be determined by using f (r+) = 0 in terms
of horizon radius r+ as

M+ = (D − 2)VD−2 r
D−3+

16π

×
⎡
⎣

(
1 + α̃

r2+
+ r2+

l2

)(
1 + eD−2

r D−2+

) D−1
D−2

⎤
⎦ . (25)

The mass expression (25) reduces to the mass of EGB–AdS
black hole [44,59,60,63,69,69–74] in the absence of charge
(e = 0) as

M+ = (D − 2)VD−2 r
D−3+

16π

[
1 + α̃

r2+
+ r2+

l2

]
, (26)

we recover the mass obtained for the EGB black hole [57,
78] when e = 0, and � = 0 and further the mass for D-
dimensional Bardeen–AdS black hole [39], in the limit α →
0, yields

M+ = (D − 2)VD−2 r
D−3+

16π

×
⎡
⎣

(
1 + r2+

l2

)(
1 + eD−2

r D−2+

) D−1
D−2

⎤
⎦ . (27)

The Eq. (25) reduce to the mass of Schwarzschild–Tangher-
lini black hole [57,79] when e = 0, α → 0 . The black
hole does have a temperature known as Hawking temperature
defined by T = κ/2π , where κ is the surface gravity given
by [57,79]

κ2 = −1

2
∇μξν∇μξν, (28)

where ξμ is a Killing vector. For static spherically symmetric
case the Killing vector ξμ, takes the form ξμ = ∂

μ
t . Using the

metric function (14), the surface gravity takes the following
form

κ = 1

2

∂
√−grr gtt

∂r
|r=r+= 1

2

d f (r)

dr
|r=r+ . (29)

Hence, using (16), the Hawking temperature for the Bardeen–
EGB–AdS black hole can be calculated as

T+ = 1

4πr+

⎡
⎢⎣

(D − 3)r2+ + (D − 5)α̃ − 2eD−2

r D−2+
(r2+ + 2α̃) + D−1

l2
r4+

(r2+ + 2α̃)
(

1 + eD−2

r D−2+

)

⎤
⎥⎦ .

(30)
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Table 2 The maximum Hawking temperature T Max+ at critical radius
rTC for different values of charge e and different dimension D = 5, 6, 7
and 8 with fixed value of l = 10

Dimensions α = 0.1 α = 0.2

e rTc T Max+ e rTc T Max+

D = 5 0.4 1.040 0.09785 0.3 1.088 0.08127

0.493 1.115 0.08723 0.373 1.367 0.0786

0.6 1.330 0.08252 0.5 1.400 0.07480

D = 6 0.4 1.083 0.12140 0.3 0.914 0.09704

0.52 1.179 0.11610 0.374 1.099 0.09477

0.6 1.287 0.11180 0.5 1.356 0.09114

D = 7 0.45 0.871 0.14500 0.36 0.668 0.13180

0.547 1.069 0.13760 0.423 0.814 0.12130

0.65 1.274 0.13090 0.55 1.075 0.10830

D = 8 0.52 0.869 0.17070 0.42 0.666 0.17440

0.578 0.964 0.16250 0.475 0.772 0.15880

0.65 1.105 0.15500 0.6 0.983 0.13630

The Hawking temperature is positive if

eD−2 <
(D − 3)l2rd+ + (D − 1)rd+2+ + (D − 5)α̃l2

2l2(r2+ + 2α̃)
(31)

Note that the charge term modifies the Hawking temperature
of EGB black holes, and taking limit e = 0,� = 0, we
recover the EGB black hole [57,78] temperature as

T+ = 1

4πr+

[
(D − 3)r2+ + (D − 5)α̃

r2+ + 2α̃

]
, (32)

We recover the D-dimensional Bardeen black hole tempera-
ture when α = � = 0

T+ = 1

4πr+

⎡
⎢⎣

(D − 3) − 2 eD−2

r D−2+

1 + eD−2

r D−2+

⎤
⎥⎦ , (33)

which further reduces to T+ = (D − 3)/4πr+, for
Schwarzschild–Tangherlini black hole [57,79] in the absence
of charge (e = 0). The maximum temperature occurs at the
critical radius rTC shown in Table 2. We can say that hori-
zon radius rE of the extremal black hole corresponds to zero
temperature T+ = 0.

By numerical analysis, we conclude that the Hawking tem-
perature vanishes at the radius of the black hole double hori-
zon. The Hawking temperature diverges in the absence of
charge (e = 0), when r+ → 0 except in 5D (see Fig. 2).
However, it becomes finite for non zero value of charge e
Fig. 2. The temperature depends on both charge e and Gauss–
Bonnet parameter α. From Fig. 3, one can see that for small
and large horizon radius (r+), slope of the plot is positive,
whereas it is negative for intermediate horizon radius, which

is showing van der Waals like small-large black hole phase
transition [80,81].

To calculate an important quantity associated with the
black hole, in term of horizon radius r+, known as entropy,
we note that black hole behaves as thermodynamical system,
quantities associated must obey first law of thermodynam-
ics [82]

dM+ = T+dS+ + �de, (34)

where S is the entropy of the black hole and � is potential
and e is the constant charge. The entropy can be obtained by
integrating Eq. (34) as

S+ =
∫

T−1+ dM+ =
∫

T−1+
∂M+
∂r+

dr+. (35)

Now, substituting Eqs. (25) and (30) in Eq. (35), the entropy
of Bardeen–EGB–AdS black hole becomes

S+ =
(D − 2)VD−2

(
1 + eD−2

r D−2+

) D−1
D−2 r D−2+

4

×
[
(D − 4)

r D−2+
eD−2 H1 + (D − 3)

[
2α̃

r2+
H2 − (D − 4)H3

]

−(D − 3)(D − 4)α̃
eD−2

r D+
H4

]
, (36)

with

H1 = 2F1

[
1, 2,

−(2D − 5)

(D − 2)
,−r D−2+

eD−2

]
,

H2 = 2F1

[
1,

3

(D − 2)
,

2

(D − 2)
,−eD−2

r D−2+

]
,

H3 = 2F1

[
1, 1,

(D − 3)

(D − 2)
,−r D−2+

eD−2

]
, and

H4 = 2F1

[
1,

(D + 1)

(D − 2)
,

D

(D − 2)
,−eD−2

r D−2+

]
. (37)

Where 2F1 is the hyper geometric function. The entropy (36)
reduces to the entropy of EGB–AdS black hole [44,59,60,
63,69,69–74] in the absence of charge,

S+ = (D − 2)VD−2r
D−4+

4

[
r2+

D − 2
+ 2α̃

D − 4

]
. (38)

We recover the entropy of the EGB black hole [57] when
e = 0, and � = 0 and further we obtained the entropy for
D-dimensional Bardeen black hole [39] in the limit α → 0

S+ =
(D − 2)VD−2

(
1 + eD−2

r D−2+

) D−1
D−2

r D−2+

4

×
[
(D − 4)

r D−2+
eD−2 H1 − (D − 3)(D − 4)H3

]
, (39)
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Fig. 2 The Hawking temperature T+ vs horizon radius r+ in various dimensions D = 5, 6, 7, and 8 (top to bottom) for different values of charge
(e) with Gauss–Bonnet coupling parameter α = 0.1 and 0.2 (left to right) with μ′ = 1
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Fig. 3 The Hawking temperature T+ vs horizon radius r+ for different values of charge e = 0.3, 0.45, 0.6, 0.7 (top to bottom) with Gauss–Bonnet
coupling parameter α = 0.1 and 0.2 (left to right) in various dimensions with μ′ = 1
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Fig. 4 The specific heat C+ vs horizon radius r+ in various dimensions D = 5, 6, 7, and 8 (top to bottom) for different values of charge e with
Gauss–Bonnet coupling parameter α = 0.1 and 0.2 (left to right) with μ′ = 1
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The Eq. (36) reduce to the entropy of Schwarzschild–
Tangherlini black hole [57,79] when e = 0, α → 0. The
entropy for our model differs from the expression for entropy
in general relativity, in which it is proportional to the area of
the event horizon [83]. However, it is interesting to note that

the expression for entropy of the black hole is independent
of cosmological constant.

5 Local stability and black hole remnants

In order to analyze local stability, we shall consider the spe-
cific heat of Bardeen–EGB–AdS black holes. The heat capac-
ity of the black hole is given [44,57]

C+ = ∂M+
∂T+

=
(

∂M+
∂r+

) (
∂r+
∂T+

)
. (40)

The region of the parameter space where the specific heat
is positive, the black hole are locally stable [57] to thermal
fluctuations. Thus, when the specific heat is positive, then
increase in the black hole temperature will result an increase
in the entropy thereby giving the thermodynamic stable con-
figuration. This is because a black hole at higher temperature
is stable, while unstable at low temperature [57]. The heat
capacity of Bardeen–EGB–AdS black hole reads

C+ =
(D − 2)VD−2

(
1 + eD−2

r D−2+

) 2D−3
D−2

(r2+ + 2α̃)2r D−4+

4

(
A

(
eD−2

r D−2+

)2

+ B eD−2

r D−2+
− C + E 1

l2

)

×
[
(D − 3)r2+ + (D − 5)α̃

−2
eD−2

r D−2+
(r2+ + 2α̃) + D − 1

l2
r4+

]
, (41)

where

A = 2(r2+ + 2α̃)2,

B = (D2 − 4D + 7)r4+ + (3D2 − 10D + 23)α̃r2+
+2(D2 − 4D + 11)α̃2,

C = (D − 5)(3r2+ + 2α̃)α̃ + (D − 3)(r2+ − 2α̃)r2+,

E =
[
(D − 1)2r6+ + 2(D2 − 1)α̃r4+

] eD−2

r D−2+
+(D − 1)(r2+ + 6α̃)r4+. (42)

It can be seen clearly, that the heat capacity depends on the
Gauss–Bonnet coefficient α, charge e, cosmological con-
stant � and the dimension D. In the absence of charge e,
we reduce to the expression for heat capacity of EGB–AdS
black hole [44,59,60,63,69,69–74], which reads

C+ =
(D − 2)VD−2(r2+ + 2α̃)2

[
(D − 3)r2+ + (D − 5)α̃ + D−1

l2
r4+

]
r D−4+

4

[
(D − 3)(r2+ − 2α̃)r2+ − (D − 5)(3r2+ + 2α̃)α̃ + (D−1)(r2++6α̃)

l2
r4+

] , (43)

which is also the specific heat of EGB black hole when switch
off the charge e = 0 [57,78]. We recover the D-dimensional
Bardeen black hole [39] specific heat in the limit α = � = 0

C+ =
(D − 2)VD−2

(
1 + eD−2

r D−2+

) 2D−3
D−2

[
(D − 3) − 2eD−2

r D−2+

]
r D−2+

4

[
2

(
eD−2

r D−2+

)2

+ (D2 − 4D + 7) e
D−2

r D−2+
− (D − 3)

] .

(44)

We can find the specific heat for Schwarzschild Tangharhelini
black hole in the limit e = 0 and � = α = 0 [57]

C+ = − (D − 2)VD−2r
D−2+

4
. (45)

In what follows, we analyze the stability of the EGB–AdS
black hole with the nonlinear electrodynamics source. Due
to the complexity of Eq. (41), it is difficult to analyze the heat
capacity analytically; hence, we plot it in Fig. 4 for differ-
ent values of parameters in different dimensions. Clearly, the
positivity of heat capacity C+ > 0 of the black hole is suffi-
cient to state that the black hole is thermodynamically stable.
Figure 4 shows that heat capacity is discontinuous exactly at
one point for a given value of e and α, which is identified
as the critical radius rC+ . Further, we noticed that the heat
capacity changes its sign around rC+ . Thus, we can say the
black hole is thermodynamically stable for r1 < r+ < rC+ ,
whereas it is thermodynamically unstable for r+ > rC+ , and
there is a second order phase transition at r+ = rC+ from the
stable to unstable phases. So, the heat capacity of Bardeen–
EGB–AdS black hole, in any dimension for different values
of e, α and �, is positive for r1 < r+ < rC+ , and it is negative
for r1 > r+ > rC+ . Here, we noticed from the Fig. 4 that the
value of critical radius rC+ increases with the increase in the

Table 3 The state and stability of black hole with horizon radius r+
Region State Stability

r0 < r+ < r1 Small Unstable

r1 < r+ < rC Intermediate Stable

r+ > rC Large Unstable
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Fig. 5 Gibb’s free energy G+ vs horizon radius r+ in various dimensions D = 5, 6, 7, and 8 (top to bottom) for different values of charge (e) with
Gauss–Bonnet coupling parameter α = 0.1 and 0.2 (left to right) with μ′ = 1

123



Eur. Phys. J. C (2019) 79 :275 Page 13 of 16 275

Table 4 The remnant size r0
and the remnant mass term μ′

0
for different values of parameter
e with Gauss–Bonnet coupling
constant α = 0.1 with l = 10

Charge D = 5 D = 6 D = 7 D = 8

e r0 μ′
0 r0 μ′

0 r0 μ′
0 r0 μ′

0

1 1.12 3 1.04 3.80 1.02 5.70 0.98 6.70

2 2.00 10.90 1.92 22.37 1.86 47.93 1.82 106.9

3 2.89 25.10 2.71 72.20 2.69 215.5 2.67 660.4

4 3.76 46.80 3.48 173.83 3.46 668.2 3.45 2636

5 4.55 77.4 4.32 353.56 4.26 1669.56 4.24 8090

Table 5 The remnant size r0
and the remnant mass term μ′

0
for different values of parameter
e with fixed value of
Gauss–Bonnet coupling
constant α = 0.2 with l = 10

Charge D = 5 D = 6 D = 7 D = 8

e r0 μ′
0 r0 μ′

0 r0 μ′
0 r0 μ′

0

1 1.14 3.41 1.12 5.12 1.05 7.70 1.01 11.17

2 2.10 11.45 1.95 25.47 1.93 59.60 1.90 143.7

3 2.93 25.60 2.78 77.30 2.75 243.3 2.72 796.7

4 3.79 47.30 3.56 181.20 3.51 721.6 3.51 2972

5 4.57 77.96 4.34 363.58 4.32 1757 4.31 8775

charge e, for given value of Gauss–Bonnet coupling constant
α and cosmological constant. Thus, the change in the value
of charge affected the thermodynamical stability of the black
hole. One can find that the Bardeen–EGB–AdS black holes
have two unstable regions and a stable region as shown in
Table 3.

The global stability of the black hole can be the study by
the behaviour of free energy. The Gibb’s free energy of black
hole can be defined as [84]

G+ = M+ − T+S+, (46)

substituting Eqs. (25) and (30) into Eq. (46), we get the
expression for Gibb’s free energy of Bardeen–EGB–AdS
black hole, which reads

G+ = (D − 2)VD−2r
D−3+ (1 + eD−2

r D−2 )
D−1
D−2

16π

[(
1 + α̃

r2+
+ r2+

l2

)

−
(D − 3)r2+ + (D − 5)α̃ − 2 eD−2

r D−2+
(r2+ + 2α̃ + D−1

l2
r4+)

(
r2+ + 2α̃

)(
1 + eD−2

r D−2+

)

×
[
(D − 4)

r D−2+
eD−2 H1 + (D − 3)

×
(

2α̃

r2+
H2 − (D − 4)H3

)
− (D − 3)(D − 4)α̃

eD−2

r D+
H4

]]
.

(47)

The Gibb’s free energy (47) reduces to the Gibb’s free
energy of EGB–AdS black hole [44,63,69,69–74] in the
absence of charge e = 0,

G+ = (D − 2)VD−2r
D−3+

16π

⎡
⎣

(
1 + α̃

r2+
+ r2+

l2

)

−
(

r2+
D − 2

+ 2α̃

D − 4

)

×
⎡
⎣ (D − 3)r2+ + (D − 5)α̃ + (D−1)r4+

l2

r2+(r2+ + 2α̃)

⎤
⎦

⎤
⎦ (48)

we recover the Gibb’s free energy of the EGB black hole [44]
when e = 0, and � = 0 and further we obtained the Gibb’s
free energy for D-dimensional Bardeen black hole [39] in
the limit α → 0

G+ =
(D − 2)VD−2

(
1 + eD−2

r D−2

) D−1
D−2

r D−3+

16π

[(
1 + r2+

l2

)

−
(D − 3)r2+ − 2eD−2

r D−2+

(
r2+ + D−1

l2
r4+

)

r2+
(

1 + eD−2

r D−2+

)

×
[
(D − 4)

r D−2+
eD−2 H1 − (D − 3)(D − 4)H3

]]
. (49)
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Fig. 6 Plot of metric function f (r) vs radius r in various dimensions D = 5, 6, 7, and 8 (top to bottom) for different values of charge e with
Gauss–Bonnet coupling parameter α = 0.1 and 0.2 (left to right) with μ′ = 1
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The plot for Gibb’s free energy with horizon radius in various
dimensions has been shown in Fig. 5. Here, from Fig. 5, we
noticed that the peaks of free energy increase and shift to
the right as the value of charge e grows for given value of
Gauss–Bonnet coupling parameter α and �. The peak also
increase as the value of α grows. The behaviour of free energy
suggests it is mostly positive for larger r+. From Fig. 5, one
can see that Bardeen–EGB–AdS black hole more stable for
smaller r+.

The remnant of a black hole is a localized late stage of
the black hole after the Hawking evaporation, which is either
absolutely stable or long-lived [85]. It is very important to
study the black hole remnant as it is a candidate to be the
source of dark matter [86] as well to resolve the information
loss paradox of black hole [87]. We can get the radius rE
of black hole remnant from f ′(r)|r=rE = 0. Here r = rE
corresponds to the extremal black hole with the degenerate
horizon. As it is very tedious to solve f ′(rE ) = 0 analyti-
cally, so we tabulated the numerical results of remnant size
and remnant term μ′ in Table 4 and Table 5 in various dimen-
sions for different values of charge e with Gauss–Bonnet
coupling constant α = 0.1 and α = 0.2 respectively. The
remnant mass M0 can be calculated very easily by inserting
the value of μ′

0 in Eq. (17). In order to analyze the emit-
ted features of Bardeen–EGB–AdS black hole, we plotted
the metric function given in Eq. (16) as a function of radius
for extremal Bardeen–EGB–AdS black hole in Fig. 6 for
different values of e and α. From Fig. 6, we can say that
at the minimal non zero mass M0, there is a possibility of
the extremal configuration with one degenerate event hori-
zon. So, M = M0 is the condition for having one degen-
erate event horizon and there will be no event horizon for
M < M0.

6 Conclusion

The EGB gravity is a higher curvature generalization of gen-
eral relativity which is also considered as quantum corrected
gravity model and AdS black holes help us to understand
the idea from quantum gravity as well as general relativity.
Further, the holography beyond the AdS/CFT continues to
exist in true quantum gravity that requires the inclusion of
higher order curvature derivative term. Motivated by this,
we studied exact static spherical D-dimensional Bardeen–
EGB–AdS black holes and discuss their properties. Thus, we
obtained an exact black hole in EGB gravity for a static and
spherically symmetric D-dimensional AdS spacetime with
energy-momentum given by a nonlinear electrodynamics.
The solution is characterized by analyzing horizons which
could be at the most two.

Later, we compute exact expressions for Hawking temper-
ature, entropy, heat capacity and free energy associated with

the black holes, also demonstrate that Hawking-Page tran-
sition is achievable. We perform a detailed analysis of the
thermodynamical specific heat with focus on the local and
global stability. It turns out that heat capacity can be nega-
tive or positive depending on the choice of parameters e and
α, which further, respectively, tells us that the black hole is
unstable or stable.

Indeed, the phase transition of black hole is characterized
by the divergence of its specific heat at a critical horizon
radius rC+ which is varying with the spacetime dimension
D and parameter α. The black holes are thermodynamically
stable with a positive heat capacity for the range r1 < r+ <

rC+ and unstable for r1 > r+ > rC+ (cf. Fig. 4). We discussed
the black hole remnant and tabulated the numerical values
of black hole remnant size and mass. The results presented
here are the generalization of the previous discussions and in
the appropriate limits, go over to AdS-EGB black holes and
EGB black holes. The possibility of a further generalization
of these results to Lovelock gravity is an interesting problem
for future research.

Acknowledgements D.V.S. acknowledges the University Grant Com-
mission, India, for financial support through the D. S. Kothari Post Doc-
toral Fellowship (Grant no. BSR/2015-16/PH/0014). S.G.G. would like
to thanks SERB-DST Research Project Grant no. SB/S2/HEP-008/2014
and DST INDO-SA bilateral project DST/INT/South Africa/P06/2016
and also to IUCAA, Pune for the hospitality while this work was being
done.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: In this article, we
presented a purely theoretical work and no observational data is used.]

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

References

1. R. Penrose, Phys. Rev. Lett. 14, 57 (1965)
2. S.W. Hawking, Proc. R. Soc. Lond. A 300, 187 (1967)
3. S.W. Hawking, R. Penrose, Proc. R. Soc. Lond. A 3(14), 529 (1970)
4. R. Penrose, Riv. Nuovo Cimento 1, 252 (1969)
5. R. Penrose, in General Relativity, an Einstein Centenary Volume,

ed. by S.W. Hawkingand, W. Israel (Cambridge University Press,
Cambridge, 1979)

6. A.D. Sakharov, Sov. Phys. JETP 22, 241 (1966)
7. E.B. Gliner, Sov. Phys. JETP 22, 378 (1966)
8. J. Bardeen, in Proceedings of GR5 (U.S.S.R, Tiflis, 1968)
9. S. Ansoldi, arXiv:0802.0330 [gr-qc]

10. E. Ayon-Beato, A. Garcia, Phys. Rev. Lett. 80, 5056 (1998)
11. E. Ayon-Beato, A. Garcia, Gen. Relativ. Gravit. 31, 629 (1999)
12. E. Ayon-Beato, A. Garcia, Phys. Lett. B 493, 149 (2000)
13. E. Ayon-Beato, A. Garcia, Gen. Relativ. Gravit. 37, 635 (2005)
14. K.A. Bronnikov, Phys. Rev. Lett. 85, 4641 (2000)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/0802.0330


275 Page 16 of 16 Eur. Phys. J. C (2019) 79 :275

15. K.A. Bronnikov, Phys. Rev. D 63, 044005 (2001)
16. K.A. Bronnikov, Int. J. Mod. Phys. D 27, 1841005 (2018)
17. K.A. Bronnikov, Gravit. Cosmol. 23, 343–348 (2017)
18. L. Xiang, Y. Ling, Y.G. Shen, Int. J. Mod. Phys. D 22, 1342016

(2013)
19. H. Culetu, Int. J. Theor. Phys. 54, 2855 (2015)
20. L. Balart, E.C. Vagenas, Phys. Lett. B 730, 14 (2014)
21. L. Balart, E.C. Vagenas, Phys. Rev. D 90, 124045 (2014)
22. S. Fernando, Int. J. Mod. Phys. D 26, 1750071 (2017)
23. C. Bambi, L. Modesto, Phys. Lett. B 721, 329 (2013)
24. M. Sharif, W. Javed, Can. J. Phys. 89, 1027 (2011)
25. K. Ghaderi, B. Malakolkalami, Gravit. Cosmol. 24, 61 (2018)
26. N. Bretn, S.E. Perez Bergliaffa, A.I.P. Conf, Proc. 1577, 112 (2014)
27. J. Man, H. Cheng, Gen. Relativ. Gravit. 46, 1660 (2014)
28. Z. Stuchlk, J. Schee, Int. J. Mod. Phys. D 24, 1550020 (2014)
29. S. Fernando, J. Correa, Phys. Rev. D 86, 064039 (2012)
30. C.F.B. Macedo, L.C.B. Crispino, E.S. de Oliveira, Int. J. Mod. Phys.

D 25, 1641008 (2016)
31. S.C. Ulhoa, Braz. J. Phys. 44, 380 (2014)
32. W. Wahlang, P.A. Jeena, S. Chakrabarti, Int. J. Mod. Phys. D 26,

1750160 (2017)
33. M. Saleh, B.B. Thomas, T.C. Kofane, Eur. Phys. J. C 78, 325 (2018)
34. D.V. Singh, N.K. Singh, Ann. Phys. 383, 600 (2017)
35. H. Huang, M. Jiang, J. Chen, Y. Wang, Gen. Relativ. Gravit. 47, 8

(2015)
36. S.H. Mehdipour, M.H. Ahmadi, Astrophys. Space Sci. 361, 314

(2016)
37. C. Bambi, Phys. Lett. B 730, 59 (2014)
38. S.G. Ghosh, M. Amir, Eur. Phys. J. C 75, 553 (2015)
39. Md Sabir Ali, S.G. Ghosh, Phys. Rev. D 98, 084025 (2018)
40. D. Gross, E. Witten, Nucl. Phys. B 277, 1 (1986)
41. C. Lanczos, Ann. Math. 39, 842 (1938)
42. D. Lovelock, J. Math. Phys. (N.Y.) 12, 498 (1971)
43. D.G. Boulware, S. Deser, Phys. Rev. Lett. 55, 2656 (1985)
44. R.G. Cai, Phys. Rev. D 65, 084014 (2002)
45. J.T. Wheeler, Nucl. Phys. B 268, 737 (1986)
46. J.T. Wheeler, Nucl. Phys. B 273, 732 (1986)
47. S.G. Ghosh, D.W. Deshkar, Phys. Rev. D 77, 047504 (2008)
48. S.G. Ghosh, Phys. Lett. B 704, 5 (2011)
49. R.C. Myers, J.Z. Simon, Phys. Rev. D 38, 2434 (1988)
50. M.H. Dehghani, R.B. Mann, Phys. Rev. D 72, 124006 (2005)
51. S.G. Ghosh, S.D. Maharaj, Phys. Rev. D 89, 084027 (2014)
52. H. Maeda, N. Dadhich, Phys. Rev. D 75, 044007 (2007)
53. S.G. Ghosh, D.V. Singh, S.D. Maharaj, Phys. Rev. D 97, 104050

(2018)

54. G. Kofinas, R. Olea, Phys. Rev. D 74, 084035 (2006)
55. S.G. Ghosh, Class. Quantum Gravity 35, 085008 (2018)
56. D.V. Singh, M.S. Ali, S.G. Ghosh, Int. J. Mod. Phys. D 27, 1850108

(2018)
57. S.G. Ghosh, U. Papnoi, S.D. Maharaj, Phys. Rev. D 90, 044068

(2014)
58. T. Torii, H. Maeda, Phys. Rev. D 71, 124002 (2005)
59. Y.M. Cho, I.P. Neupane, Phys. Rev. D 66, 024044 (2002)
60. I.P. Neupane, Phys. Rev. D 69, 084011 (2004)
61. S.H. Hendi, S. Panahiyan, M. Momennia, Int. J. Mod. Phys. D 25,

1650063 (2016)
62. S. H. Hendi, S. Panahiyan, B. Eslam Panah, PTEP 103E01 (2015)
63. M.H. Dehghani, S.H. Hendi, Int. J. Mod. Phys. D 16, 1829 (2007)
64. D.J. Gross, J.H. Sloan, Nucl. Phys. B 291, 41 (1987)
65. M.C. Bento, O. Bertolami, Phys. Lett. B 368, 198 (1996)
66. S.H. Hendi, S. Panahiyan, B. Eslam Panah, J. High Energy Phys.

01, 129 (2016)
67. X. Zeng, W. Liu, Phys. Lett. B 726, 481 (2013)
68. Y. Sun, H. Xu, L. Zhao, J. High Energ Phys. 09, 060 (2016)
69. N. Deruelle, L. Farina-Busto, Phys. Rev. D 41, 3696 (1990)
70. M.H. Dehghani, Phys. Rev. D 69, 064024 (2004)
71. N. Deruelle, J. Katz, S. Ogushi, Class. Quantum Gravity 21, 1971

(2004)
72. M.H. Dehghani, S.H. Hendi, Phys. Rev. D 73, 084021 (2006)
73. A. Padilla, Class. Quantum Gravity 20, 3129 (2003)
74. M.H. Dehghani, G.H. Bordbar, M. Shamirzaie, Phys. Rev. D 74,

064023 (2006)
75. F.R. Tangherlini, Nuovo Cim. 27, 636 (1963)
76. D. Wiltshire, Phys. Rev. D 38, 2445 (1988)
77. S.W. Hawking, D.N. Page, Commun. Math. Phys. 87, 577 (1983)
78. C. Sahabandu, P. Suranyi, C. Vaz, L.C.R. Wijewardhana, Phys. Rev.

D 73, 044009 (2006)
79. P. Kanti, Lect. Notes Phys. 769, 387–423 (2009)
80. D. Kubiznak, R.B. Mann, J. High Energ Phys. 033, 1207 (2012)
81. S.-W. Wei, Y.-X. Liu, Phys. Rev. D 90, 044057 (2014)
82. J.M. Bardeen, B. Carter, S.W. Hawking, Commun. Math. Phys. 31,

161–170 (1973)
83. J.D. Bekenstein, Phys. Rev. D 7, 2333 (1973)
84. E. Herscovich, M.G. Richarte, Phys. Lett. B 689, 192200 (2010)
85. P. Chen, Y.C. Ong, D.H. Yeom, Phys. Rep. 603, (2015)
86. J.H. MacGibbon, Nature 329, 308 (1987)
87. J. Preskill, arXiv:hep-th/9209058

123

http://arxiv.org/abs/hep-th/9209058

	D-dimensional Bardeen–AdS black holes in Einstein–Gauss–Bonnet theory
	Abstract 
	1 Introduction
	2 Einstein–Gauss–Bonnet with nonlinear electrodynamics
	3 Bardeen Anti de-Sitter black holes in EGB theory
	4 Black hole thermodynamics
	5 Local stability and black hole remnants
	6 Conclusion
	Acknowledgements
	References




