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Abstract The R(D(∗)) anomalies observed in B →
D(∗)τν decays have attracted much attention in recent years.
In this paper, we study the B → D(∗)τν, �b → �cτν,
Bc → (J/ψ, ηc)τν, B → Xcτν, and Bc → τν decays,
all being mediated by the same quark-level b → cτν tran-
sition, in the Standard Model Effective Field Theory. The
most relevant dimension-six operators for these processes are
Q(3)

lq , Qledq , Q(1)
lequ , and Q(3)

lequ in the Warsaw basis. Evolu-
tion of the corresponding Wilson coefficients from the new
physics scale � = 1 TeV down to the characteristic scale
μb � mb is performed at three-loop in QCD and one-loop
in EW/QED. It is found that, after taking into account the

constraint B(Bc → τν) � 10%, a single
[
C (3)
lq

]
3323

(�)

or
[
C (3)
lequ

]
3332

(�) can still be used to resolve the R(D(∗))

anomalies at 1σ , while a single
[
C (1)
lequ

]
3332

(�) is already

ruled out by the measured R(D(∗)) at more than 3σ . By min-
imizing the χ2(Ci ) function constructed based on the cur-
rent data on R(D), R(D∗), Pτ (D∗), R(J/ψ), and R(Xc),
we obtain eleven most trustworthy scenarios, each of which
can provide a good explanation of the R(D(∗)) anomalies
at 1σ . To further discriminate these different scenarios, we
predict thirty-one observables associated with the processes
considered under each NP scenario. It is found that most of
the scenarios can be differentiated from each other by using
these observables and their correlations.

1 Introduction

In the past few years, the B-physics experiments have
reported a number of interesting anomalies in the semi-
leptonic B-meson decays, which have aroused a lot of atten-
tion [1–3]. In the charged-current processes B → D(∗)	ν,
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for example, the ratios of the branching fractions1

R(D(∗)) = B(B → D(∗)τν)

B(B → D(∗)	ν)
, (1.1)

have been measured by the BaBar [4,5] and Belle [6–9] col-
laborations with 	 = e, μ, as well as the LHCb [10–12]
experiment with 	 = μ. These measurements have been
averaged by the Heavy Flavor Averaging Group (HFLAV)
[13], and the latest results read [14]

R(D)avg = 0.407 ± 0.039 ± 0.024,

R(D∗)avg = 0.306 ± 0.013 ± 0.007, (1.2)

with a correlation of −0.203. Comparing Eq. (1.2) with the
arithmetic average [14] of the latest Standard Model (SM)
predictions [15–18],

R(D) = 0.299 ± 0.003, R(D∗) = 0.258 ± 0.005, (1.3)

one can see that the difference between experiment and the-
ory is at about 3.78σ corresponding to 99.98% confidence
level (C.L.), implying therefore intriguing hints of lepton-
flavour universality violating new physics (NP) beyond the
SM. To understand these anomalies, many studies have been
done; see for instance Ref. [19] and references therein, as
well as Refs. [20–54].

On the other hand, in view of the absence (so far) of any
clear signal of new particles at the LHC, the NP scale �

should be much higher than the electroweak (EW) scale
μEW � 246 GeV. Assuming further that there exist no
undiscovered but weakly coupled light particles, any NP
effect in the processes proceeding at energy scales well
below � but above μEW can be effectively described by a
series of higher dimensional operators that are built out of
the SM fields and are invariant under the SM gauge group

1 The advantage of considering the ratios R(D(∗)) instead of the branch-
ing fractions themselves lies in the fact that, apart from the significant
reduction of the experimental systematic uncertainties, the CKM matrix
element Vcb cancels out and the sensitivity to the B → D(∗) transition
form factors becomes much weaker.
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SU (3)C ⊗ SU (2)L ⊗ U (1)Y [55,56]. The resulting effec-
tive field theory (EFT) is conventionally called the Standard
Model Effective Field Theory (SMEFT) [57–59], which has
now emerged as one of the most interesting tools to probe
systematically the data from the LHC and elsewhere for pos-
sible NP hints.2 For energies below �, the leading NP contri-
butions in the SMEFT formalism arise from the dimension-
six operators,3 which were firstly classified in Ref. [55], but
found to be redundant for some of them. The first com-
plete and non-redundant basis of dimension-six operators
was derived in Ref. [56] and is now commonly called the
Warsaw basis.4 The complete one-loop anomalous dimen-
sions of these dimension-six operators have also been calcu-
lated in Refs. [70–72].

The EFT approach is also an essential ingredient for B-
physics analyses both within and beyond the SM. As the
typical energy scale μb is around the bottom-quark mass
mb � 5 GeV, being much smaller than the EW and the NP
scale, all the B-physics processes can be well described by
an effective Lagrangian constructed by integrating out the
SM and NP heavy degrees of freedom (for classical reviews,
see for example Refs. [73,74]). The resulting EFT includes
only the QCD and QED gauge interactions coupled to all
the six leptons and the five lightest quarks, plus a full set of
dimension-six local operators built with these matter fields
as well as the gluon and photon field-strength tensors, and is
conventionally called the weak effective theory (WET) [75–
77]. In contrast to the SMEFT case, the dimension-six opera-
tors in WET are not invariant under the full SM gauge group,
but only under SU (3)C ⊗ U (1)em, as this EFT is defined
below the EW scale where SU (2)L ⊗U (1)Y is already bro-
ken. A complete and non-redundant set of dimension-six
operators relevant for B physics, together with the complete
one-loop anomalous dimensions in QCD and QED, can be
found in Refs. [75–77].

For a given set of SMEFT dimension-six operators with
the corresponding Wilson coefficients specified at the scale
�, to study their effects on the B-physics processes, one has
to follow the following three steps [78]: perform the renor-
malization group evolution (RGE) of the SMEFT Wilson
coefficients from the NP down to the EW scale [70–72];
match the given set of SMEFT operators onto the WET ones
at the EW scale [76,79]; perform the RGE of the WET Wil-
son coefficients from the EW down to the scale μb [75–77].

2 See, for example, Refs. [60–63] for recent reviews on the SMEFT.
3 There exists only a single dimension-five operator in the SMEFT, up to
Hermitian conjugation and flavour assignments [56,64]. It violates the
lepton number and, after the EW symmetry breaking, gives Majorana
masses for the SM neutrinos. This operator is irrelevant to this paper.
4 Apart from the Warsaw basis [56], other bases were also proposed,
with the most prominent ones being the HISZ [65] and the SILH [66,67]
basis. For an easy translation between these different bases, one can
resort to the computer codes Rosetta [68] and WCxf [69].

With the aid of these three steps, one can then bridge the gap
between the SMEFT Lagrangian and the low-energy mea-
surements in B physics. In this paper, following this pro-
cedure and motivated by the R(D(∗)) anomalies, we shall
study the B → D(∗)τν, �b → �cτν, Bc → (J/ψ, ηc)τν,
B → Xcτν, as well as Bc → τν decays, all being medi-
ated by the same quark-level b → cτν transition, in the
SMEFT formalism. It is found that the most relevant oper-
ators for these processes are Q(3)

lq , Qledq , Q(1)
lequ , and Q(3)

lequ
in the Warsaw basis. The RGEs of the corresponding Wilson
coefficients from the NP scale � down to the typical scale μb

is performed at three-loop in QCD and one-loop in EW/QED
(see Refs. [80–82] and references therein). Confronted with
the currently available data, we shall also perform a detailed
phenomenological analysis of these decays.

Our paper is organized as follows. In Sect. 2, after reca-
pitulating the SMEFT Lagrangian, we list the most relevant
dimension-six operators for b → cτν transitions, and then
discuss the evolution and matching of these operators in both
the SMEFT and WET. In Sect. 3, all the observables consid-
ered in the paper are listed, and the corresponding inputs for
the transition form factors are also mentioned. Our numerical
results and discussions are presented in Sect. 4. Finally, we
make our conclusions in Sect. 5. Explicit expressions of the
helicity amplitudes for �b → �cτν decay are collected in
the “Appendix”.

2 Theoretical framework

2.1 SMEFT Lagrangian

Following the common practice to truncate the SMEFT
Lagrangian at dimension-six level and assuming that the
EW symmetry breaking is realized linearly, we can write
the SMEFT Lagrangian as

LSMEFT = L(4)
SM + 1

�2

∑
i

Ci (�)Qi , (2.1)

where L(4)
SM is the usual SM Lagrangian before spontaneous

symmetry breaking (SSB). The dimension-six operators Qi ,
which are obtained by integrating out all the heavy NP par-
ticles and are invariant under the SM gauge symmetry, are
given by

Q(3)
lq = (l̄γμτ I l)(q̄γ μτ I q), Qledq = (l̄ j e)(d̄q j ),

Q(1)
lequ = (l̄ j e)ε jk(q̄

ku), Q(3)
lequ = (l̄ jσμνe)ε jk(q̄

kσμνu),

(2.2)

and so on [55,56]. Here τ I are the Pauli matrices, and ε jk is
the totally antisymmetric tensor with ε12 = +1. The fields q
and l correspond to the quark and lepton SU (2)L doublets,
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while u, d and e are the right-handed SU (2)L singlets. All
the NP contributions are encoded in the Wilson coefficients
Ci , which are dependent on the renormalization scale. This
scale dependence will, however, be canceled in a physical
amplitude by that of the matrix elements of Qi .

In this paper, we focus only on the operators Q(3)
lq , Qledq ,

Q(1)
lequ and Q(3)

lequ , as well as their hermitian conjugates, which
contribute to the b → cτν transitions at tree level [79,82].
Note that the operator Q(3)

lq is already self-conjugate [55,
56]. We also assume that the flavour of the neutrino in these
operators is pure ντ .

2.2 Evolution and matching

To explore the NP effect on the b → cτν transitions, we
should firstly link the SMEFT Lagrangian given at the NP
scale � to the WET Lagrangian given at the typical energy
scale μb associated with the processes considered. This can
be achieved through the following three steps, details of
which could be found, for example, in Refs. [75–79].

Firstly, we should evolve the Wilson coefficients Ci of the
SMEFT Lagrangian from the initial scale � down to the EW
scale μEW, under the SM gauge group SU (3)C ⊗ SU (2)L ⊗
U (1)Y . For simplicity, here we do not discriminate the masses
of W±, Z0, the top quark t , and the Higgs boson h, and set
approximately all of them to be μEW. The one-loop RGE
flow of Ci (μ) can be written schematically as

μ
dCi

dμ
= 1

16π2

∑
j

γi jC j ≡ 1

16π2 βi . (2.3)

Neglecting terms suppressed by the Yukawa couplings,
which are found to be negligibly small in our case, the one-
loop beta functions are given, respectively, by [70–72,83]

[
β

(3)
lq

]
prst

= 2

3
g2

{
3
[
C (3)
lq

]
prww

δst +
[
C (3)
lq

]
wwst

δpr

}

− (6g2 + g′2)
[
C (3)
lq

]
prst

, (2.4)

βledq = −
(

8

3
g′2 + 8g2

s

)
Cledq , (2.5)

β
(1)
lequ = −

(
11

3
g′2 + 8g2

s

)
C (1)
lequ

+
(

30g′2 + 18g2
)
C (3)
lequ, (2.6)

β
(3)
lequ =

(
2

9
g′2 − 3g2 + 8

3
g2
s

)

× C (3)
lequ + 1

8
(5g′2 + 3g2)C (1)

lequ . (2.7)

Here we have introduced the abbreviations
[
C (3)
lq

]
·ww· ≡

∑
w

[
C (3)
lq

]
·ww·, with p, r, s, t, w being the flavour indices

of the fermion fields in the weak-eigenstate basis, and gs ,
g and g′ are the SU (3)C , SU (2)L and U (1)Y gauge cou-
plings, respectively. The SMEFT Lagrangian will undergo
the SSB at an energy scale close to μEW, making it neces-
sary to switch from the weak to the mass eigenstates for the
fermions. Performing the same flavour transformations as in
Refs. [76,77,79,84], we can write the spontaneously broken
SMEFT Lagrangian in terms of the mass-eigenstate fermion
fields ( f (weak)

L ,R = PL ,R f (mass)) except the left-handed d-type
quarks, for which the usual relation between the weak and
mass eigenstates reads [76]

d(weak)
Lm = Vmd PLd

(mass) + Vms PLs
(mass)

+VmbPLb
(mass) ≡

∑
n

Vmn PLd
(mass)
n , (2.8)

where PR,L ≡ 1±γ5
2 are the right- and left-handed chiral pro-

jectors. As we are concerned mainly on the operators Q(3)
lq ,

Qledq , Q(1)
lequ and Q(3)

lequ , as well as their hermitian conjugates,
the effective quark-mixing matrix V appearing in Eq. (2.8)
coincides with the SM CKM matrix.

The second step is to perform the matching at the EW
scale μEW. After integrating out the SM heavy particles, the
W±, Z0, the top quark, and the Higgs boson, we can obtain
the WET Lagrangian suitable for describing the b → cτν

transitions [75,76,79]

LWET = L(u,d,c,s,b,e,μ,τ,νe,νμ,ντ )

QCD+QED + L(6)
SM + L(6)

NP, (2.9)

where L(u,d,c,s,b,e,μ,τ,νe,νμ,ντ )

QCD+QED is the QCD and QED
Lagrangian with all the six leptons and the five lightest quarks
as the active degrees of freedom for fermions, and

L(6)
SM = −4GF√

2
Vcb OVL + h.c., (2.10)

L(6)
NP = −4GF√

2
Vcb

(
CVLOVL

+ CVROVR + CSLOSL + CSROSR + CTOT
) + h.c.,

(2.11)

with the WET dimension-six operators given, respectively,
by5

OVL(R)
= (c̄γ μPL(R)b)(τ̄ γμPLν),

OSL(R)
= (c̄PL(R)b)(τ̄ PLν),

OT = (c̄σμν PLb)(τ̄σμν PLν). (2.12)

5 Neutrinos are assumed to be left-handed throughout this paper and,
hence, we need not consider the tensor operator (c̄σμν PRb)(τ̄σμν PLν),
which is obtained from OT by changing the chirality of the quark cur-
rent, because it is identically zero due to Fierz transformations.
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Matching at tree level the SMEFT operators given by
Eq. (2.2) onto the WET ones given by Eq. (2.12) at the scale
μEW, we get [76,79]

CVL = −
√

2

2GF�2

∑
n

[
C (3)
lq

]
332n

Vnb
Vcb

,

CSR = −
√

2

4GF�2

1

Vcb

[
Cledq

]∗
3332 ,

CSL = −
√

2

4GF�2

∑
n

[
C (1)
lequ

]∗
33n2

Vnb
Vcb

,

CT = −
√

2

4GF�2

∑
n

[
C (3)
lequ

]∗
33n2

Vnb
Vcb

. (2.13)

Here we do not consider the Wilson coefficient CVR , because
it is explicitly lepton-flavour universal in the SMEFT for-
malism, up to contributions of O(μ4

EW/�4) [76,79,85–87].
We shall also neglect terms proportional to the small CKM
factors Vub and Vcb [88], corresponding to n = 1 and
n = 2, respectively. In such a case, the b → cτν transitions

can only be affected by the Wilson coefficients
[
C (3)
lq

]
3323

,
[
Cledq

]
3332,

[
C (1)
lequ

]
3332

, and
[
C (3)
lequ

]
3332

.

The last step is to evolve the WET Lagrangian LWET from
μEW down to μb under the gauge group SU (3)C ⊗U (1)em,
with the corresponding RGEs given schematically by

μ
d
−→C

dμ
=

[
αe

4π
γem +

3∑
k=1

( αs

4π

)k
γ (k)
s

]
· −→C , (2.14)

where
−→C = (CVL , CSR , CSL , CT ), and αe = e2/(4π) and

αs = g2
s /(4π) are the electromagnetic and strong coupling

constants, respectively. The non-zero elements of the one-
loop electromagnetic anomalous dimension matrix γem read
[75,77,82,89–91]

[
γem

]
11 = −4,

[
γem

]
22 = 4

3
,

[
γem

]
33 = 4

3
,

[
γem

]
34 = 8,

[
γem

]
43 = 1

6
,

[
γem

]
44 = −40

9
. (2.15)

The QCD anomalous dimension matrices γ
(k)
s are known to

three loops, with all the non-zero entries given by [75,77,82,
92,93]

[
γ

(1)
s

]
22

=
[
γ

(1)
s

]
33

= −8,
[
γ

(1)
s

]
44

= 8

3
,

[
γ

(2)
s

]
22

=
[
γ

(2)
s

]
33

= 4

9
(−303 + 10n f ),

[
γ

(2)
s

]
44

= 4

27
(543 − 26n f ),

[
γ

(3)
s

]
22

=
[
γ

(3)
s

]
33

= 2

81
[−101169 + 24(277 + 180ζ3)n f + 140n2

f ],
[
γ

(3)
s

]
44

= 2

81
[52555 − 2784ζ3 − 40(131 + 36ζ3)n f − 36n2

f ].
(2.16)

As the reference energy scale in b → cτν transitions is at
around μb � 5 GeV, the RGE from μEW down to μb does
not involve crossing any threshold, and the effective number
of quark flavours n f can be fixed at n f = 5.

There exist several ready-made packages, such asWilson
[78] andDsixTools [94], to implement the evolution using
the full one-loop anomalous dimension matrices as well
as the tree-level matching. In our numerical analysis, we
shall work at three-loop in QCD and one-loop in EW/QED,
together with the same order for the corresponding coupling
constants αs , g, g′ and αe.

3 Observables in b → cτν transitions

3.1 B → D(∗)τν

There have been a lot of calculations for the differential decay
rates of B → D(∗)τν in the presence of all the operators
given in Eq. (2.12). In this paper, we shall follow the ana-
lytical expressions given in Refs. [95–97], and consider the
following observables:

• q2-dependent and q2-integrated ratios

RD(∗) (q2) = d�(B → D(∗)τν)/dq2

d�(B → D(∗)	ν)/dq2
, and

R(D(∗)) = B(B → D(∗)τν)

B(B → D(∗)	ν)
, (3.1)

where, on the theoretical side, we define

d�(B → D(∗)	ν)/dq2 = 1

2

[
d�(B → D(∗)μν)/dq2

+ d�(B → D(∗)eν)/dq2
]
,

B(B → D(∗)	ν) = 1

2

[
B(B → D(∗)μν)

+B(B → D(∗)eν)
]
.

• τ forward–backward asymmetry

AD(∗)

FB (q2)

=
(∫ 1

0 − ∫ 0
−1

)
d cos θ

[
d2�(B → D(∗)τν)/

(
dq2d cos θ

)]

d�(B → D(∗)τν)/dq2
,

(3.2)
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where θ is the angle between the three-momenta of the τ

lepton and the B meson in the τν rest frame.
• τ spin polarization

PD(∗)

τ (q2)

= d�λτ =1/2(B → D(∗)τν)/dq2 − d�λτ =−1/2(B → D(∗)τν)/dq2

d�(B → D(∗)τν)/dq2
,

(3.3)

which can be inferred from the distinctive τ decay pat-
terns.

• D∗ longitudinal and transverse polarizations

PD∗
L (q2) = d�λD∗=0(B → D∗τν)/dq2

d�(B → D∗τν)/dq2 , and

PD∗
T (q2) = 1 − PD∗

L (q2), (3.4)

which can be measured by fitting to the double differential
decay distribution or from the D∗ decays.

Integrating separately the numerator and denominator in
Eqs. (3.2)–(3.4) over the whole interval of the momentum
transfer squared, m2

τ ≤ q2 ≤ (mB − mD(∗) )2, we can get
theq2-integrated observables AFB(D(∗)), Pτ (D(∗)), PL(D∗),
and PT(D∗), respectively.

In analogy to the ratios R(D(∗)), we can also define the
following observables with the denominators involving only
the light-lepton modes:

• τ forward and backward fractions

X1,2(D
(∗)) = 1

2
R(D(∗))[1 ± AFB(D(∗))]. (3.5)

• τ spin 1/2 and −1/2 fractions

X3,4(D
(∗)) = 1

2
R(D(∗))[1 ± Pτ (D

(∗))]. (3.6)

• D∗ longitudinal and transverse polarization fractions

X5(D
∗) = R(D∗)PL(D∗), (3.7)

X6(D
∗) = R(D∗)PT(D∗) = R(D∗)

[
1 − PL(D∗)

]
.

(3.8)

It is important to note that in our scenario (i.e. only the
third-generation leptons are affected by the NP contributions)
these observables are not independent. However, because of
the different normalization and systematics, future measure-
ments of them would provide important information on the
size and nature of NP in B → D(∗)τν decays.

In our calculation, the B → D(∗) transition form factors
are taken from Ref. [16], in which both O(�QCD/mb,c) and

O(αs) corrections in the heavy quark effective theory are
included.

3.2 �b → �cτν

For an unpolarized �b, the twofold angular distribution for
�b → �cτν can be written as [98–100]

d2�

dq2d cos θτ

= G2
F |Vcb|2

2

v2|p�c |
256π3m2

�b

∑
λ�c

∑
λτ

1

2

∑
λ�b

|Mλ�c ,λτ

λ�b
|2, (3.9)

where v = √
1 − m2

τ /q
2, and |p�c | = √

Q+Q−/(2m�b )

is the magnitude of the �c three-momentum in the �b rest
frame, with Q± = (m�b ±m�c )

2 −q2, while θτ is the angle
between the three-momenta of the τ lepton and the �c baryon

in the τν rest frame. The helicity amplitudes Mλ�c ,λτ

λ�b
, with

the indices λ�b , λ�c and λτ denoting respectively the helici-
ties of the �b, �c baryons and the τ lepton, can be calculated
by following the helicity method described in Refs. [101–
104]; for convenience, their explicit expressions are given in
the “Appendix”.

The observables of this process we are considering include

• q2-dependent and q2-integrated ratios

R�c (q
2) = d�(�b → �cτν)/dq2

d�(�b → �cμν)/dq2 , and

R(�c) = B(�b → �cτν)

B(�b → �cμν)
. (3.10)

• τ forward–backward asymmetry

A�c
FB(q2)

=
(∫ 1

0 − ∫ 0
−1

)
d cos θτ

[
d2�(�b → �cτν)/(dq2d cos θτ )

]

d�(�b → �cτν)/dq2 .

(3.11)

• τ spin polarization

P�c
τ (q2)

= d�λτ =1/2(�b → �cτν)/dq2 − d�λτ =−1/2(�b → �cτν)/dq2

d�(�b → �cτν)/dq2 .

(3.12)

• �c spin polarization

P�c (q
2)

= d�λ�c =1/2(�b → �cτν)/dq2 − d�λ�c =−1/2(�b → �cτν)/dq2

d�(�b → �cτν)/dq2 .

(3.13)
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Integrating separately the numerator and denominator in
Eqs. (3.11)–(3.13) over the whole interval q2 ∈ [m2

τ , (m�b−
m�c)

2], we can get the q2-integrated observables AFB(�c),
Pτ (�c) and P�c , respectively. As in the mesonic case, we
can also construct the following observables normalized by
the corresponding muonic mode:

• τ forward and backward fractions

X1,2(�c) = 1

2
R(�c) [1 ± AFB(�c)] . (3.14)

• τ spin 1/2 and −1/2 fractions

X3,4(�c) = 1

2
R(�c) [1 ± Pτ (�c)] . (3.15)

• �c spin 1/2 and −1/2 fractions

X5,6(�c) = 1

2
R(�c)

[
1 ± P�c

]
. (3.16)

In our numerical analysis, we use the �b → �c transition
form factors computed in lattice QCD including all the types
of NP currents [100,105].

3.3 The rest observables

In this subsection, we introduce the rest observables relevant
for Bc → (J/ψ, ηc)τν, B → Xcτν and Bc → τν decays,
which could provide additional constraints on the NP param-
eters.

3.3.1 Bc → (J/ψ, ηc)τν

Similar to the definitions of R(D(∗)), the ratios R(J/ψ) and
R(ηc) for Bc → (J/ψ, ηc)τν decays are defined, respec-
tively, by

R(J/ψ) = B(Bc → J/ψτν)

B(Bc → J/ψμν)
,

R(ηc) = B(Bc → ηcτν)

B(Bc → ηcμν)
. (3.17)

Using the model-dependent calculations of Bc → (J/ψ, ηc)

transition form factors [106–118], the SM central values of
R(J/ψ) and R(ηc) vary within the ranges 0.24 − 0.30 and
0.25 − 0.35, respectively, with the former being lower than
the LHCb measurement R(J/ψ)exp = 0.71(17)(18) [119]
by 1.7σ . Recently, model-independent bounds on R(J/ψ)

[120–122] and R(ηc) [121–123] are also obtained by con-
straining the transition form factors through a combination
of dispersive relations, heavy-quark relations at zero-recoil,
and the limited existing form-factor determinations from lat-
tice QCD [124,125], resulting in 0.20 ≤ R(J/ψ) ≤ 0.39

[120] and 0.24 ≤ R(ηc) ≤ 0.34 [123], both of which agree
with the weighted averages of previous model predictions.
Here we shall use the Bc → (J/ψ, ηc) transition form fac-
tors calculated in Ref. [110], which are consistent with the
preliminary lattice QCD results [124,125] at all available q2

points, but would result in lower central values of R(J/ψ)

and R(ηc) [24].

3.3.2 B → Xcτν

For the inclusive decay B → Xcτν, we consider the ratio

R(Xc) = B(B → Xcτν)

B(B → Xc	ν)
. (3.18)

The analytic expression of the total decay width within the
SM is given by [126]

�SM(B → Xcτν) = �0 S
2
em

[
C (0)

0 + αs

π
C (1)

0 + Cμ2
π

μ2
π

m2
b

+ Cμ2
G

μ2
G

m2
b

+ Cρ3
D

ρ3
D

m3
b

+ Cρ3
LS

ρ3
LS

m3
b

]
, (3.19)

where �0 = G2
F |Vcb|2m5

b
192π2 , and Sem accounts for the short-

distance electromagnetic correction to the SM four-fermion
operator mediating the semi-leptonic decay [89,90]. The
coefficients C (0)

0 and C (1)
0 represent the partonic-level con-

tributions with the leading- and next-to-leading-order cor-
rections in αs , respectively; while Cμ2

π
, Cμ2

G
and Cρ3

D
, Cρ3

LS

account for contributions from the 1/m2
b and 1/m3

b correc-
tions in the heavy-quark expansion, respectively. Explicit
analytic expressions of C (0)

0 , Cμ2
π

, Cμ2
G

and Cρ3
D

can be
found, for example, in Refs. [126–128], whereas Cρ3

LS
≡ 0

[126]. The result of C (1)
0 can be deduced, on the other

hand, from Refs. [129–131]. The non-perturbative param-
eters μ2

π , μ2
G and ρ3

D , ρ3
LS are defined in terms of the

forward matrix elements of dimension-five and -six oper-
ators, respectively. To calculate the ratio R(Xc), we take
[33,132]: μ2

π = 0.464(67) GeV2, μ2
G = 0.333(61) GeV2,

ρ3
D = 0.175(40) GeV3, and ρ3

LS = −0.146(96) GeV3,
with mkin

b (1GeV) = 4.561(21) GeV and mkin
c (1GeV) =

1.092(20) GeV in the kinetic scheme [133]; the correlations
between these parameters [33,132] are also considered.

To discuss the NP effects from Eq. (2.9) on the inclusive
B → Xcτν decay, we take the partonic-level approximation,
and decompose the decay width as [134]

�(B → Xcτν) = �SM + �NP
(1) + �NP

(2) , (3.20)

where the first term arises solely from the SM and is given
by Eq. (3.19), while �NP

(1) and �NP
(2) represent respectively the

interference term with the SM as well as the term that is
of second order in the NP couplings, explicit expressions of
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which are taken from Ref. [134]. Some recent works, dis-
cussing NP effects in this inclusive mode, can be found in
Refs. [126,135–140].

3.3.3 Bc → τν

The decay Bc → τν, despite being at the moment out of the
experimental reach [141], can provide a powerful constraint
on NP scenarios involving scalar operators [138,139,142,
143]. In terms of the WET Lagrangian given by Eq. (2.9), its
branching ratio can be written as

B(Bc → τν) = τBc

mBcm
2
τ f 2

Bc
G2

F |Vcb|2
8π

(
1 − m2

τ

m2
Bc

)2

×
∣∣∣∣∣1 + CVL − CVR + m2

Bc

mτ (mb + mc)
(CSR − CSL )

∣∣∣∣∣
2

,

(3.21)

where mb and mc are the bottom- and charm-quark run-
ning masses in the MS scheme evaluated at the scale μb.
In our numerical analysis, we take as input the lifetime
τBc = 0.507(9) ps, the mass mBc = 6.2751(10) GeV, and
the decay constant fBc = 0.434(15) GeV [144].

An upper bound obtained from the LEP data, B(Bc →
τν) � 10% [143], is stronger than the conservative con-
straint, B(Bc → τν) � 30% [142], by demanding that the
rate does not exceed the fraction of the total width allowed
by the calculation of the Bc lifetime within the SM. Here we
shall use the former in our numerical analysis.

4 Numerical results and discussions

Before presenting the numerical results, we firstly collect
in Table 1 the remaining theoretical input parameters used
throughout this paper. The CKM parameters are taken from
Ref. [145], in which the leptonic and semi-leptonic decays
involving the μ and τ leptons have been removed from

the global fit to the CKM parameters, following the cur-
rent experimental indications that the electronic modes are
in agreement with the SM predictions.

4.1 Numerical effects of evolution and matching

In this subsection, we illustrate the numerical effects of the
evolution and matching procedure, based on Eqs. (2.3)–(2.7)
and (2.14)–(2.16). To this end, we firstly calculate the cou-
plings αs , g and g′ at the initial scale � via their RGEs within
the SM. Using Eqs. (2.3)–(2.7), we can then obtain the val-

ues of
[
C (3)
lq

]
3323

,
[
Cledq

]
3332,

[
C (1)
lequ

]
3332

and
[
C (3)
lequ

]
3332

at the scale μEW. Performing the tree-level matching at the
scale μEW, we can obtain the values of the Wilson coef-
ficients associated with the WET operators, which can be
finally run down to the scale μb by using Eqs. (2.14)–(2.16).
Numerically, we have the following relations (for simplicity,
the Wilson coefficients are all assumed to be real):

CVL (μb) = −1.503
[
C (3)
lq

]
3323

(�), (4.1)

CVR (μb) = 0, (4.2)

CSL (μb) = −1.257
[
C (1)
lequ

]
3332

(�)

+ 0.2076
[
C (3)
lequ

]
3332

(�), (4.3)

CSR (μb) = −1.254
[
Cledq

]
3332 (�), (4.4)

CT (μb) = 0.002725
[
C (1)
lequ

]
3332

(�)

− 0.6059
[
C (3)
lequ

]
3332

(�), (4.5)

with μb = 4.18 GeV and � = 1 TeV. At the same time, the
SM effective Lagrangian L(6)

SM given by Eq. (2.10) should be

changed to SemL(6)
SM, with Sem � 1.0075 encoding the short-

distance electromagnetic correction to the SM four-fermion
operator [89,90]. It can be clearly seen from Eqs. (4.3) and
(4.5) that there exists a large mixing of the tensor operator into
the (pseudo)scalar ones under EW/QED interactions [80–
82].

Table 1 Summary of the remaining theoretical input parameters used throughout this paper

QCD and electroweak parameters [146]

GF [10−5 GeV−2] αs(MZ ) αe(MW ) MZ [GeV] sin2 θW

1.1663787(6) 0.1181(11) 1/128 91.1876(21) 0.23122(4)

Quark and lepton masses [GeV] [146]

mb(mb) mc(mc) mτ mμ me

4.18+0.04
−0.03 1.275+0.025

−0.035 1.77686(12) 0.10566 5.10999 × 10−4

CKM parameters [145]

λ A ρ η

0.2251(4) 0.831+0.021
−0.031 0.155(8) 0.340(10)
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Table 2 Predictions for the observables listed in Sect. 3 within the SM

B → Dτν

R(D)SM AFB(D)SM Pτ (D)SM X1(D)SM X2(D)SM X3(D)SM X4(D)SM

0.2989(33) 0.3597(3) 0.3222(22) 0.2032(22) 0.0957(11) 0.1976(24) 0.1013(10)

B → D∗τν

R(D∗)SM AFB(D∗)SM Pτ (D∗)SM PL(D∗)SM X1(D∗)SM X2(D∗)SM X3(D∗)SM

0.2572(29) −0.0559(22) −0.5039(37) 0.4552(31) 0.1214(13) 0.1358(17) 0.0638(8)

X4(D∗)SM X5(D∗)SM X6(D∗)SM

0.1934(23) 0.1171(14) 0.1401(19)

�b → �cτν

R(�c)
SM AFB(�c)

SM Pτ (�c)
SM PSM

�c
X1(�c)

SM X2(�c)
SM X3(�c)

SM

0.3328(101) 0.0244(76) −0.3077(139) −0.7588(125) 0.1705(49) 0.1623(55) 0.1152(37)

X4(�c)
SM X5(�c)

SM X6(�c)
SM

0.2176(75) 0.0401(27) 0.2927(86)

The rest observables

R(J/ψ)SM R(ηc)
SM R(Xc)

SM B(Bc → τν)SM

0.2483+0.0060
−0.0055 0.2813+0.0181

−0.0153 0.2138(44) 2.37+0.21
−0.24%

The numerical relations given by Eqs. (4.1)–(4.5) allow
us to connect the values of the SMEFT Wilson coefficients
at the NP scale � = 1 TeV to that of the WET ones at the
scale μb = 4.18 GeV. In order to directly use the theoretical
expressions of the observables listed in Sect. 3, which are all
given in terms of the WET Wilson coefficients at the scale
μb, we need only replace Eq. (4.1) by CVL (μb) = (Sem −
1) − 1.503

[
C (3)
lq

]
3323

(�), making the EW/QED evolution

of the SM four-fermion operator also taken into account. In
the following discussions, we shall use the abbreviations

C1 ≡
[
C (3)
lq

]
3323

(�), C2 ≡ [
Cledq

]
3332 (�),

C3 ≡
[
C (1)
lequ

]
3332

(�), C4 ≡
[
C (3)
lequ

]
3332

(�), (4.6)

for the sake of brevity.

4.2 SM results and comparison with data

Our predictions for the observables listed in Sect. 3 within
the SM are collected in Table 2. The values of observables
for B → D(∗)τν decays are always obtained by averaging
over the charged and neutral modes. Although the relations
Xi (H) +Xi+1(H) = R(H) (i = 1, 3 for H is D, D∗ or �c,
and i = 5 for H is D∗ or �c) hold, we are still presenting
all of them in Table 2, because these observables involve
different normalization and systematics and can, therefore,
provide complementary information on the NP scenarios.
This is clearly indicated by the reduced uncertainties of the
observables Xi (H) compared to that of R(H).

Among the observables listed in Table 2, the following
ones have been measured: R(D)exp = 0.407(39)(24) and

R(D∗)exp = 0.306(13)(7) with a correlation of −0.203
[14], Pτ (D∗)exp = −0.38+0.51+0.21

−0.51−0.16 [8], R(J/ψ)exp =
0.71(17)(18) [119], and R(Xc)

exp = 0.220(22).6 The dif-
ferences between the experimental measurements and the
SM predictions (�Obs. = Obs.exp − Obs.SM) for these
observables read: �R(D) = 0.1081(459) and �R(D∗) =
0.0488(150) with a correlation of −0.199, �Pτ (D∗) =
0.1239(5500), �R(J/ψ) = 0.4617(2477), and �R(Xc) =
0.0062(224). These discrepancies will be used to constrain
the SMEFT Wilson coefficients.

4.3 Constraints on the SMEFT Wilson coefficients

In this subsection, we shall use �R(D), �R(D∗), �Pτ (D∗),
�R(J/ψ), and �R(Xc) to constrain the SMEFT Wilson
coefficients C1−4 (see Eq. (4.6)). Firstly, we show in Fig. 1
the contributions to these observables in the presence of only
a single Ci . It can be seen that, after taking into account the
constraint B(Bc → τν) � 10%, the scenario with a single
C3 is already ruled out by �R(D(∗)) at 3σ (99.73% C.L.),
and a singleC2 can be used to explain the R(D(∗)) anomalies
only marginally at about 2σ (95.45% C.L.), while a singleC1

6 This value is obtained by using the world average for the semi-leptonic
branching fractions into the light leptons, B(B → Xc	ν) = (10.65 ±
0.16)% [146], and an averaged constraint from LEP, B(b → Xτν) =
(2.41 ± 0.23)% [146], which is dominated by b → Xcτν because of
|Vub|2/|Vcb|2 ∼ 1% and, after correcting for the b → u contribution
that is about 2% due to the larger available phase space, is reduced to
B(b → Xcτν) = (2.35 ± 0.23)% [139]. It should be noted that the
LEP measurement corresponds to a known admixture of initial states
for the weak decay [147]. The inclusive decay rate does, however, not
depend on this admixture to leading order in 1/mb. The corrections to
this limit are hadron-specific and only partly known [127,135].
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Fig. 1 Contributions to the observables in the presence of a single
SMEFT Wilson coefficients Ci (see Eq. (4.6)). The red, blue, black,
and purple lines stand for the contributions from C1, C2, C3, and C4,
respectively, with the dashed parts being already ruled out by the con-

straint B(Bc → τν) � 10%. The dark-green, green, and light-green
areas represent the 1-, 2-, and 3-σ differences between the measure-
ments and the SM predictions for the observables, respectively

or C4 can provide a resolution of the R(D(∗)) anomalies at
1σ (68.27% C.L.), especially with the finding that the central
values of the current world averages of R(D(∗)) can be well
reproduced with a single C4.

Due to the large experimental uncertainty of Pτ (D∗), the
constraint �Pτ (D∗) on the NP Wilson coefficients is quite
weak. It can be seen from the upper-right plot of Fig. 1 that,
with the constraint B(Bc → τν) � 10% taken into account,
only C4 has a significant impact on �Pτ (D∗). Future more
precise measurements of Pτ (D∗) at, for example, Belle II
[148] will be, therefore, very helpful to discriminate between
the C1 and C4 scenarios, both of which have been found to
provide reasonable explanations of the R(D(∗)) anomalies

while satisfying the constraint B(Bc → τν) � 10%. Using
the constraints �R(J/ψ) and �R(Xc), on the other hand,
we can further exclude some allowed intervals of C1 and C4

at 99.73% C.L., which do not however affect the upper-left
plot of Fig. 1. The constraint from �R(Xc) is also found to
be stronger than that from �R(J/ψ).

In the case where two NP Wilson coefficients are present
simultaneously, we show in Fig. 2 the allowed regions
in the (Ci ,C j ) planes under the separate constraint from
�R(D(∗)), �R(J/ψ), and �R(Xc), all being varied within
3σ , as well as from the upper bound B(Bc → τν) � 10%.
As the experimental uncertainty is still quite large, we do
not impose the constraint from �Pτ (D∗) in this figure. It
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Fig. 2 Constraints on the NP Wilson coefficients in the simultaneous
presence of twoCi s. The green, cyan, and blue areas are allowed respec-
tively by �R(D(∗)), �R(J/ψ), and �R(Xc), all being varied within
the 3σ range of their respective experimental data, while the purple
bands are allowed by the upper bound B(Bc → τν) � 10%. The red
regions are obtained by requiring �χ2 ≤ 11.83 near the corresponding

best-fit points given in Table 3, under the combined constraints from
the measured R(D), R(D∗), Pτ (D∗), R(J/ψ), and R(Xc), being also
compatible with the B(Bc → τν) � 10% constraint. With such a treat-
ment, all coloured areas (except the purple ones) correspond to 99.73%
C.L. regions

is found that, among all these constraints, the ones from
�R(D) and �R(D∗) are the strongest, but the one from
B(Bc → τν) � 10% is very complementary to them,
making parts of the regions allowed by �R(D(∗)) already
excluded. It can also be seen that the B(Bc → τν) constraint
in the (C2,C3) plane is stronger than in the other five cases.

In order to constrain the NP Wilson coefficients Ci under
the combined constraints from the measured R(D), R(D∗),
Pτ (D∗), R(J/ψ), and R(Xc), we construct the usual χ2

function:

χ2(Ci ) = V(Ci ) Cov[�R(D),�R(D∗)]−1 VT (Ci )

+
∑

O=Pτ (D∗), R(J/ψ), R(Xc)

(
ONP(Ci ) − �O

)2

σ 2
�O

,

(4.7)

where V(Ci ) = [R(D)NP(Ci ) − �R(D), R(D∗)NP(Ci )

− �R(D∗)], and Cov[�R(D),�R(D∗)] = Cov[R(D)exp,

R(D∗)exp] + Cov[R(D)SM, R(D∗)SM] is the covariance
matrix between �R(D) and �R(D∗), the numerical value of
which can be calculated by using the variance and correlation
of �R(D) and �R(D∗) given in Sect. 4.2. Here we take in
the fitting the averaged values of R(D(∗)) over the separate
measurements by different experimental groups [4–12], as
compiled by HFLAV [14].

By minimizing the χ2(Ci ) function in different scenarios,
we can get the corresponding best-fit solutions, the results
of which are shown in Table 3. Here the first column shows
all possible cases with either a single Ci or a combination
of two Ci s, in addition to the SM case. The second column
gives the values of χ2

min with respect to different numbers
of degrees of freedom (dof), with the corresponding best-fit
points as well as the 1σ ranges (�χ2 = χ2(Ci )−χ2

min ≤ 1)
for the single-parameter fits shown in the third column. Only
the cases satisfying the condition χ2

min � dof are selected as
the most possible solutions and are marked by different sce-
narios in the fourth column. In this way, we obtain eleven
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Table 3 Best-fit solutions of the NP Wilson coefficients Ci at the scale � = 1 TeV, under the combined constraints from the measured R(D),
R(D∗), Pτ (D∗), R(J/ψ), and R(Xc). See text for details

NP scenario χ2
min/dof Best-fit point Index 99.73% C.L. and B(Bc → τν) � 10%

SM (Ci = 0) 23.5/5

C1 4.40/4 −0.0679(150) S1 −0.1111 → −0.0220

4.40/4 1.408(150) S2 1.362 → 1.452

C2 10.46/4 −0.2198(546) −0.2087 → −0.0423

C3 17.12/4 −0.1814(655) −0.3481 → 0.0425

C4 6.51/4 −0.5571(148) S3 −0.5979 → −0.5101

9.14/4 0.0611(149) 0.0139 → 0.1020

(C1,C2) 3.59/3 (−0.0554,−0.0781) S4 The red areas shown in Fig. 2

3.59/3 (1.396, 0.0781) S5

(C1,C3) 3.62/3 (−0.0627,−0.0658) S6

3.62/3 (1.403, 0.0658) S7

(C1,C4) 3.79/3 (−0.0962,−0.0352) S8

3.79/3 (1.437, 0.0352) S9

6.51/3 (0.0003,−0.5572)

6.51/3 (1.340, 0.5572)

(C2,C3) 3.50/3 (−0.5169, 0.3580)

3.19/3 (0.1919, 1.109)

(C2,C4) 3.38/3 (−0.1632, 0.0471) S10

6.06/3 (0.9467,−0.5814)

6.51/3 (−0.0020,−0.5570)

(C3,C4) 3.38/3 (−0.1643, 0.0596) S11

6.51/3 (−0.0028,−0.5571)

most trustworthy scenarios, each of which can provide a
good explanation of the R(D(∗)) anomalies at 1σ . The best-
fit points allowed by �χ2 ≤ 9 (for the single-parameter fits)
or �χ2 ≤ 11.83 (for the two-parameters fits) as well as by
the upper boundB(Bc → τν) � 10% are finally represented
in the fifth column. It is found that, after taking into account
the combined constraints from �Pτ (D∗), �R(J/ψ), and
�R(Xc), the scenario with a single C4 is no better than that
with a single C1 for resolving the R(D(∗)) anomalies.

4.4 Predictions for the observables in different NP
scenarios

In order to further discriminate among the eleven most trust-
worthy scenarios obtained in the last subsection, we now
calculate all the observables listed in Sect. 3 within these
different scenarios. Our final numerical results are collected
in Tables 4 and 5. During the calculation, we use the central
values of the NP Wilson coefficients obtained in scenarios
S1 to S11, and take into account the uncertainties caused by
the input parameters.

From Tables 4 and 5, we can see that the scenarios S1 and
S2, S4 and S5, S6 and S7, as well as S8 and S9, all of which
involve the NP Wilson coefficient C1 that would induce only

the left-handed vector current at the scale μb (see Eq. (4.1)),
cannot be distinguished from each other. There are, however,
a number of observables, such as Pτ (D), X4(D), AFB(D∗),
Pτ (D∗), PL(D∗), X5(D∗), Pτ (�c), P�c , and X5(�c), that
can be used to distinguish the scenario S3 from the other
ones. In addition to the scenario S3, there exist another two
scenarios S10 and S11 that do not involve the Wilson coef-
ficient C1. As the predicted branching fraction of Bc → τν

decay in the scenario S11 is much smaller than in the other
scenarios as well as in the SM, we can use the observable
B(Bc → τν) to distinguish the scenario S11 from the other
ones. On the other hand, the observables Pτ (D), AFB(D∗),
AFB(�c), Pτ (�c), and B(Bc → τν) have the potential to
distinguish the scenario S10 from the other ones.

The scenarios S4, S5 and S6, S7 might be distinguished
only by the observable B(Bc → τν). While the observ-
ables Xi can help to distinguish the scenarios S1, S2 from
the SM, the corresponding observables normalized by the
tauonic modes, such as the τ forward-backward asymme-
tries AFB(D), AFB(D∗), and AFB(�c), fail to do, because
they are all identically the same in the scenarios S1 and S2
as well as in the SM.

In order to further differentiate these different scenarios,
we now consider the correlations among the observables dis-
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Table 4 Predictions for the observables involved in B → D(∗)τν decays in all the NP scenarios

Obs. S1, S2 S3 S4, S5 S6, S7 S8, S9 S10 S11

R(D) 0.3625(40) 0.3986(42) 0.4016(46) 0.4007(45) 0.3956(43) 0.4015(48) 0.4015(48)

AFB(D) 0.3597(3) 0.4297(4) 0.3485(4) 0.3504(4) 0.3695(4) 0.3130(5) 0.3072(4)

Pτ (D) 0.3222(22) 0.0280(28) 0.4087(21) 0.3956(21) 0.3016(23) 0.5275(17) 0.5364(17)

X1(D) 0.2465(27) 0.2850(30) 0.2708(30) 0.2706(30) 0.2709(29) 0.2636(31) 0.2624(31)

X2(D) 0.1161(13) 0.1137(12) 0.1308(16) 0.1302(16) 0.1247(14) 0.1379(17) 0.1391(18)

X3(D) 0.2397(29) 0.2049(21) 0.2829(35) 0.2796(34) 0.2574(30) 0.3067(39) 0.3085(39)

X4(D) 0.1229(12) 0.1937(22) 0.1187(12) 0.1211(12) 0.1381(14) 0.0949(9) 0.0931(9)

R(D∗) 0.3119(35) 0.3042(43) 0.3049(35) 0.3050(35) 0.3057(35) 0.3057(34) 0.3058(35)

AFB(D∗) −0.0559(22) 0.0312(15) −0.0468(22) −0.0634(22) −0.0827(23) 0.0010(20) −0.0280(20)

Pτ (D∗) −0.5039(37) 0.1808(33) −0.4867(40) −0.5176(33) −0.5173(42) −0.4432(37) −0.4973(21)

PL(D∗) 0.4552(31) 0.1415(13) 0.4614(32) 0.4501(30) 0.4612(31) 0.4556(32) 0.4280(27)

X1(D∗) 0.1473(16) 0.1569(22) 0.1453(16) 0.1428(15) 0.1402(15) 0.1530(16) 0.1486(16)

X2(D∗) 0.1647(20) 0.1474(21) 0.1596(19) 0.1622(20) 0.1655(20) 0.1527(18) 0.1572(19)

X3(D∗) 0.0774(9) 0.1796(23) 0.0783(10) 0.0736(9) 0.0738(10) 0.0851(10) 0.0769(8)

X4(D∗) 0.2346(28) 0.1246(21) 0.2267(27) 0.2315(28) 0.2319(28) 0.2206(27) 0.2289(28)

X5(D∗) 0.1420(17) 0.0430(8) 0.1407(18) 0.1373(17) 0.1410(18) 0.1393(17) 0.1309(15)

X6(D∗) 0.1700(23) 0.2612(36) 0.1642(22) 0.1677(22) 0.1647(22) 0.1664(22) 0.1749(23)

Table 5 Predictions for the observables involved in �b → �cτν decay, as well as for R(J/ψ), R(ηc), R(Xc), and B(Bc → τν) in all the NP
scenarios

Obs. S1, S2 S3 S4, S5 S6, S7 S8, S9 S10 S11

R(�c) 0.4037(123) 0.3646(247) 0.4085(125) 0.4090(125) 0.4107(123) 0.4044(130) 0.4043(133)

AFB(�c) 0.0244(76) 0.1129(166) 0.0393(75) 0.0280(76) 0.0181(81) 0.0628(68) 0.0412(67)

Pτ (�c) −0.3077(139) 0.1002(282) −0.2487(155) −0.2734(155) −0.3076(145) −0.1791(164) −0.2108(169)

P�c −0.7588(125) 0.1170(736) −0.7570(117) −0.7433(117) −0.8031(111) −0.6833(126) −0.6188(127)

X1(�c) 0.2068(59) 0.2029(155) 0.2123(62) 0.2102(61) 0.2091(59) 0.2149(66) 0.2104(66)

X2(�c) 0.1969(67) 0.1617(98) 0.1962(67) 0.1988(68) 0.2016(68) 0.1895(66) 0.1938(69)

X3(�c) 0.1397(45) 0.2006(155) 0.1535(53) 0.1486(52) 0.1422(47) 0.1660(61) 0.1595(61)

X4(�c) 0.2640(91) 0.1641(114) 0.2551(88) 0.2604(89) 0.2685(91) 0.2384(85) 0.2447(89)

X5(�c) 0.0487(32) 0.2037(249) 0.0496(31) 0.0525(32) 0.0404(28) 0.0640(37) 0.0770(41)

X6(�c) 0.3550(104) 0.1610(107) 0.3589(106) 0.3565(105) 0.3703(108) 0.3404(105) 0.3272(102)

R(J/ψ) 0.3012+0.0073
−0.0066 0.1980+0.0215

−0.0167 0.2939+0.0073
−0.0066 0.2949+0.0069

−0.0064 0.2935+0.0080
−0.0069 0.2953+0.0067

−0.0064 0.2971+0.0062
−0.0063

R(ηc) 0.3412+0.0219
−0.0185 0.3159+0.0304

−0.0261 0.3766+0.0268
−0.0227 0.3760+0.0264

−0.0223 0.3692+0.0216
−0.0181 0.3780+0.0324

−0.0277 0.3788+0.0332
−0.0285

R(Xc) 0.2381(40) 0.2439(39) 0.2388(39) 0.2391(39) 0.2405(39) 0.2366(40) 0.2365(40)

B(Bc → τν)[%] 2.87+0.26
−0.29 5.32+0.47

−0.54 5.36+0.48
−0.55 1.29+0.11

−0.13 3.27+0.29
−0.33 8.02+0.71

−0.82 7.68+0.68
−0.78 × 10−3

cussed in this paper. There are totally 465 correlation plots,
with a small part of them shown in Fig. 3. As can be seen from
the R(D) − R(D∗) correlation plot, it is interesting to note
that all the NP scenarios can resolve the R(D(∗)) anomalies at
1σ very well and, except in S1 and S2, the predicted R(D(∗))

in the other nine scenarios are very close to the center val-
ues of the current experimental data. The R(D) − R(D∗)
and R(D) − X1(D) correlation plots have, therefore, the
potential to distinguish the scenarios S1 and S2 from the
other ones. Different patterns for different NP scenarios are

also observed in the other correlation plots. For example,
the AFB(D) − Pτ (D), AFB(D) − X4(D), X2(D) − X3(D),
AFB(D)−B(Bc → τν), and Pτ (D)−B(Bc → τν) correla-
tion plots can be used to distinguish the scenarios S1 and S2
from the scenarios without C1. The predicted patterns in the
Pτ (D∗)− PL(D∗) and AFB(D)− Pτ (D∗) in the scenario S3
are also found to be very different from the ones in the other
scenarios.

Based on all the above observations, we can, therefore,
conclude that all the eleven NP scenarios, except S1 and
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Fig. 3 Correlations among some of the observables discussed in this paper. Gray star point in the R(D) − R(D∗) and R(D∗) − Pτ (D∗) plots
correspond to the experimental central values
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S2, S4 and S5, S6 and S7, as well as S8 and S9, can be
distinguished from each other by the above observables as
well as their correlations.

4.5 The SU (2)L -invariant implications

Due to the SU (2)L invariance of the SMEFT Lagrangian, the
non-zero Wilson coefficients C1−4 at the high-energy scale
� enter not only in the b → cτντ processes studied in this
paper but also in other low-energy charged and/or neutral
current processes [85,88,149]. With our prescription for the
weak and mass eigenstates of fermion fields (see Eq. (2.8)),
the processes c → dnτν, dm → dnνν̄ and dn → dmτ+τ−,
with dm being one of the d-type quarks in the mass eigen-
state, will also receive the NP contributions fromC1−4. How-
ever, compared with the b → cτν transitions, the NP effects
on c → dnτν (dn = d or s) processes are suppressed by
the small factor VcbVtn/Vcn � 1.6 × 10−3, and we can,
therefore, neglect safely the NP impacts on the D(s)-meson
decays. On the other hand, it is found that the upper bound on
the branching fraction of B+ → K+νν̄ decay given by the
Belle [150] and BaBar [151] collaborations will disfavour the
larger parameter regions for C1 given in Table 3. Combin-
ing the χ2-fit results with the constraint from the branching
fraction of B+ → K+νν̄ [152–161], we also find that the C1

contributions to the branching fractions of some b → sτ+τ−
processes, such as Bs → τ+τ−, B → K (∗)τ+τ−, and
Bs → φτ+τ− decays, can be enhanced by about two orders
of magnitude compared to the SM [88]. The NP effects on
ϒ(nS) → τ+τ− decays are, however, suppressed by the
small factor VcbVts/Vcs compared to these b → sτ+τ− pro-
cesses. Finally, it should be noted that there also exist some
collider signals directly implied by the R(D(∗)) anomalies.
For example, the partonic-level process gc → bτν implied
by crossing symmetry from the b → cτν decay should
also take place at the LHC [162]. Furthermore, the τ+τ−
resonance searches at the LHC [163,164] should also be
confronted with what have been found in this paper [165].
Detailed analyses of the SU (2)L -invariant implications will
be presented in a forthcoming paper.

5 Conclusions

In this paper, we have discussed the B → D(∗)τν, �b →
�cτν, Bc → (J/ψ, ηc)τν, B → Xcτν, and Bc → τν

decays, all being mediated by the same quark-level b → cτν

transition, in the SMEFT framework. First of all, we obtained
the WET Lagrangian describing the b → cτν transitions
at the scale μb = 4.18 GeV, in terms of the Wilson coef-

ficients of the SMEFT operators C1 ≡
[
C (3)
lq

]
3323

(�),

C2 ≡ [
Cledq

]
3332 (�), C3 ≡

[
C (1)
lequ

]
3332

(�), and C4 ≡

[
C (3)
lequ

]
3332

(�) given at the NP scale � = 1 TeV. This

is achieved by using the RGEs at three-loop in QCD and
one-loop in EW/QED based on Eqs. (2.3)–(2.7) and (2.14)–
(2.16), as well as the tree-level matching of the SMEFT
Lagrangian onto the WET one at the EW scale μEW, with
the final numerical relations summarized by Eqs. (4.1)–(4.5),
which allow us to connect the values of the SMEFT Wilson
coefficients given at � to that of the WET ones given at μb.

We then explored the contributions to the observables
R(D), R(D∗), Pτ (D∗), R(J/ψ), and R(Xc) in the pres-
ence of a single SMEFT Wilson coefficient. It is found that
the scenario with a single C1 or C4 can be used to resolve
the R(D(∗)) anomalies at 1σ , especially with the finding that
the experimental central values can be well reproduced with
a single C4. A single C3 is, however, already ruled out by the
measured R(D(∗)) and the constraint B(Bc → τν) � 10%
at more than 3σ . In the case where two SMEFT Wilson coef-
ficients are present simultaneously, on the other hand, we
found that the constraints from �R(D) and �R(D∗) are the
strongest, but the one from B(Bc → τν) � 10% is very
complementary to them, making parts of the regions allowed
by �R(D(∗)) already excluded. Under the combined con-
straints from the measured R(D), R(D∗), Pτ (D∗), R(J/ψ),
and R(Xc), we obtained the best-fit points and the allowed
regions at 99.73% C.L., which are shown in Table 3 and
Fig. 2, respectively. Due to the extra combined constraints
from Pτ (D∗), R(J/ψ), and R(Xc), the scenario with a sin-
gle C4 is also found to be no better than that with a single C1

for resolving the R(D(∗)) anomalies.
Through a global fit, we have identified eleven most trust-

worthy scenarios, each of which can provide a good expla-
nation of the R(D(∗)) anomalies at 1σ . In order to further
discriminate these different scenarios, we have also predicted
the observables in each NP scenario and considered the cor-
relations among them. It is found that most of the scenarios
can be differentiated from each other by using these observ-
ables as well as their correlations. In particular, the predicted
B(Bc → τν) in the scenario S11 is found to be much smaller
than in the other scenarios as well as in the SM. The observ-
ables Pτ (D), X4(D), AFB(D∗), Pτ (D∗), PL(D∗), X5(D∗),
Pτ (�c), P�c , X5(�c), as well as the Pτ (D∗) − PL(D∗) and
AFB(D)−Pτ (D∗) correlation plots can be used to distinguish
the scenario S3 from the other ones.

As both the LHCb and Belle II experiments will be in an
ideal position to provide additional information by signifi-
cantly reducing the uncertainties of the observables already
measured and by measuring new observables that can provide
complementary constraints on the NP parameters, we shall
expect a better understanding of the different NP scenarios
involved in b → cτν transitions.
Note added: After this work was finished, we are informed
that there has been a preliminary Belle measurement of the
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D∗ longitudinal polarization fraction in B → D∗τν [166].
This preliminary result PL(D∗) = 0.60 ± 0.08 ± 0.035
shall exclude the scenario S3, which predicts a very small
PL(D∗) = 0.142±0.001 (see Table 4). This implies that the
solution to the R(D) and R(D∗) anomalies with the tensor
operator is not favored.
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Appendix: Helicity amplitudes for �b → �cτν decay

Here we give the explicit expressions of the helicity ampli-
tudes for �b(p�b ) → �c(p�c)τ (pτ )ν(pν) decay calcu-
lated by ourselves. Following the helicity method described
in Refs. [101–104], we can write the helicity amplitudes

Mλ�c ,λτ

λ�b
as [100]

Mλ�c ,λτ

λ�b
= H

(SP)λ�c
λ�b

Lλτ +
∑
λ

ηλH
(V A)λ�c
λ�b ,λ Lλτ

λ

+
∑
λ,λ′

ηληλ′ H
(T )λ�c
λ�b ,λ,λ′L

λτ

λ,λ′ . (A.1)

Here, H and L denote the hadronic and leptonic helicity
amplitudes, respectively, λ(′) indicates the helicity of the vir-
tual vector boson, with ηλ(′) = 1 for λ(′) = t and ηλ(′) = −1
for λ(′) = 0, ±1, and the momentum transfer squared is
given by q2 = (p�b − p�c)

2 = (pτ + pν)
2.

Starting with the effective Lagrangian given by Eq. (2.9)
and using the helicity-based definition of the �b → �c tran-
sition form factors in Refs. [100,167], we can obtain the
hadronic helicity amplitudes as follows:

• The non-zero scalar and pseudo-scalar helicity ampli-
tudes,

H (SP)−1/2
−1/2 = (CSL + CSR ) F0

√
Q+

mb − mc
(m�b − m�c )

− (CSL − CSR )G0

√
Q−

mb + mc
(m�b + m�c ),

(A.2)

H (SP)1/2
1/2 = (CSL + CSR ) F0

√
Q+

mb − mc
(m�b − m�c )

+ (CSL − CSR )G0

√
Q−

mb + mc
(m�b + m�c ),

(A.3)

where mb and mc are the b- and c-quark running masses
in the MS scheme and should be evaluated at the typical
energy scale μb.

• The non-zero vector and axial-vector helicity amplitudes,

H (V A)−1/2
−1/2,0 = (1 + CVL + CVR ) F+

√
Q−√
q2

(m�b + m�c )

+ (1 + CVL − CVR )G+
√
Q+√
q2

(m�b − m�c ),

(A.4)

H (V A)−1/2
−1/2,t = (1 + CVL + CVR ) F0

√
Q+√
q2

(m�b − m�c )

+ (1 + CVL − CVR )G0

√
Q−√
q2

(m�b + m�c ),

(A.5)

H (V A)−1/2
1/2,1 = (1 + CVL + CVR ) F⊥

√
2Q−

+ (1 + CVL − CVR )G⊥
√

2Q+, (A.6)

H (V A)1/2
−1/2,−1 = (1 + CVL + CVR ) F⊥

√
2Q−

− (1 + CVL − CVR )G⊥
√

2Q+, (A.7)

H (V A)1/2
1/2,0 = (1 + CVL + CVR ) F+

√
Q−√
q2

(m�b + m�c )

− (1 + CVL − CVR )G+
√
Q+√
q2

(m�b − m�c ),

(A.8)

H (V A)1/2
1/2,t = (1 + CVL + CVR ) F0

√
Q+√
q2

(m�b − m�c )

− (1 + CVL − CVR )G0

√
Q−√
q2

(m�b + m�c ).

(A.9)

• The non-zero tensor helicity amplitudes,

H (T )−1/2
−1/2,t,0 = H (T )−1/2

−1/2,1,−1 = CT (h+
√
Q− − h̃+

√
Q+),

(A.10)

H (T )−1/2
1/2,1,0 = H (T )−1/2

1/2,t,1

= √
2CT

[
h⊥

√
Q−√
q2

(m�b + m�c)

− h̃⊥
√
Q+√
q2

(m�b − m�c )

]
, (A.11)
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H (T )1/2
−1/2,0,−1 = H (T )1/2

−1/2,t,−1

= √
2CT

[
h⊥

√
Q−√
q2

(m�b + m�c)

+ h̃⊥
√
Q+√
q2

(m�b − m�c)

]
, (A.12)

H (T )1/2
1/2,1,−1 = H (T )1/2

1/2,t,0 = CT (h+
√
Q− + h̃+

√
Q+),

(A.13)

together with the other non-vanishing tensor-type helicity
amplitudes related to the above ones by

H
(T )λ�c
λ�b ,λ,λ′ = −H

(T )λ�c
λ�b ,λ′,λ. (A.14)

For the leptonic helicity amplitudes, on the other hand, we
obtain [100,168]:

• The non-zero scalar and pseudoscalar leptonic helicity
amplitudes,

L1/2 = 2
√
q2 v. (A.15)

• The non-zero vector and axial-vector amplitudes,

L−1/2
0 = 2

√
q2 v sin(θτ ), (A.16)

L−1/2
±1 = −

√
2q2 v [1 ∓ cos(θτ )] , (A.17)

L1/2
0 = −2mτ v cos(θτ ), (A.18)

L1/2
±1 = ±√

2mτ v sin(θτ ), (A.19)

L1/2
t = 2mτ v. (A.20)

• The non-zero tensor amplitudes,

L−1/2
0,±1 = ∓√

2mτ v [1 ∓ cos(θτ )] , (A.21)

L−1/2
0,t = L−1/2

1,−1 = −2mτ v sin(θτ ), (A.22)

L−1/2
±1,t = √

2mτ v [1 ∓ cos(θτ )] , (A.23)

L1/2
0,±1 =

√
2q2 v sin(θτ ), (A.24)

L1/2
0,t = L1/2

1,−1 = 2
√
q2 v cos(θτ ), (A.25)

L1/2
±1,t = ∓

√
2q2 v sin(θτ ), (A.26)

as well as the other non-vanishing tensor-type helicity
amplitudes related to the above ones by

Lλτ

λ,λ′ = −Lλτ

λ′,λ. (A.27)

Integrating the twofold angular distribution given by
Eq. (3.9) over cos θτ but without the first two summations

over λ�c and λτ , we can obtain the following expression for
the helicity-dependent differential decay rate:

d�λ�c ,λτ

dq2

= G2
F |Vcb|2

2

v2|p�c |
256π3m2

�b

1

2

∑
λ�b

∫ 1

−1
d cos θτ |Mλ�c ,λτ

λ�b
|2,

(A.28)

from which we get the differential decay rates

d�λ�c=1/2

dq2 =
∑
λτ

d�1/2,λτ

dq2 ,

d�λ�c=−1/2

dq2 =
∑
λτ

d�−1/2,λτ

dq2 , (A.29)

for a polarized �c baryon, and

d�λτ =1/2

dq2 =
∑
λ�c

d�λ�c ,1/2

dq2 ,

d�λτ =−1/2

dq2 =
∑
λ�c

d�λ�c ,−1/2

dq2 , (A.30)

for a polarized τ lepton.
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