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Abstract In this work, our prime focus is to study the one
to one correspondence between the conduction phenomena
in electrical wires with impurity and the scattering events
responsible for particle production during stochastic inflation
and reheating implemented under a closed quantum mechan-
ical system in early universe cosmology. In this connection,
we also present a derivation of quantum corrected version
of the Fokker—Planck equation without dissipation and its
fourth order corrected analytical solution for the probability
distribution profile responsible for studying the dynamical
features of the particle creation events in the stochastic infla-
tion and reheating stage of the universe. It is explicitly shown
from our computation that quantum corrected Fokker—Planck
equation describe the particle creation phenomena better for
Dirac delta type of scatterer. In this connection, we addition-
ally discuss Itd, Stratonovich prescription and the explicit
role of finite temperature effective potential for solving the
probability distribution profile. Furthermore, we extend our
discussion of particle production phenomena to describe the
quantum description of randomness involved in the dynam-
ics. We also present computation to derive the expression for
the measure of the stochastic non-linearity (randomness or
chaos) arising in the stochastic inflation and reheating epoch
of the universe, often described by Lyapunov Exponent. Apart
from that, we quantify the quantum chaos arising in a closed
system by a more strong measure, commonly known as Spec-
tral Form Factor using the principles of random matrix theory
(RMT). Additionally, we discuss the role of out of time order
correlation function (OTOC) to describe quantum chaos in
the present non-equilibrium field theoretic setup and its con-
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sequences in early universe cosmology (stochastic inflation
and reheating). Finally, for completeness, we also provide a
bound on the measure of quantum chaos (i.e. on Lyapunov
Exponent and Spectral Form Factor) arising due to the pres-
ence of stochastic non-linear dynamical interactions into the
closed quantum system of the early universe in a completely
model-independent way.

Contents

I Introduction . . . ... ... ... ........ 2
2 Modelling randomness in cosmology . . . . . . . . 6

3 Randomness from conduction wire to cosmology:
dynamical study with time dependent protocols . . . 11
3.1 Protocol I: m*(t) = m}(1 — tanh(p7))/2 . .. 14
3.1.1 Bogoliubov coefficients. . . . . . . . .. 14

3.1.2 Optical properties: reflection and trans-
mission coefficients . . . . . . ... ... 15

3.1.3 Chaotic property: Lyapunov exponent . . 15
3.1.4 Conduction properties: conductance and

resistance . . . . . ... ... 15

3.2 Protocol II: mz(r) = m(z) sechz(pt) ...... 17

3.2.1 Bogoliubov coefficients . . . . . .. . .. 17
3.2.2 Optical properties: reflection and trans-

mission coefficients . . . . . .. ... .. 18

3.2.3 Chaotic property: Lyapunov exponent . . 18
3.2.4 Conduction properties: conductance and

resistance . . . . . . .. .. .. ... .. 18

3.3 Protocol III: m?(r) = m% OC=t). .. ..... 20

3.3.1 Bogoliubov coefficients . . . . . ... .. 21
3.3.2 Optical properties: reflection and trans-

mission coefficients . . . . ... ... .. 21

3.3.3 Chaotic property: Lyapunov exponent . . 21
3.3.4 Conduction properties: conductance and
resistance . . . . .. ... ... 22

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-019-6751-2&domain=pdf
mailto:sayantan.choudhury@aei.mpg.de
mailto:sayanphysicsisi@gmail.com
mailto:arka262016@gmail.com
mailto:chauhan.prashali@gmail.com
mailto:www.farada@gmail.com

320 Page 2 of 107

Eur. Phys. J. C (2019) 79:320

4 Quantum chaos from out of time ordered correlators
(OTOC) . . . . oo oo 24
4.1 Chaos bound in out-of-equilibrium quantum

field theory (OEQFT) and its application to cos-

mology . . .. ... ... 24

4.2 Out of time ordered correlators (OTOC) in
OEQFT . ... ... ... ... ... .. ... 27
4.2.1 WhatisOTOC? . . . . . ... ... ... 27

4.2.2 Estimation of scrambling and dissipation
time scales from OTOC . . . . ... ... 28

5 Quantum chaos from RMT: an alternative treatment
incosmology . . . . ... ... . ... ... .. 30
5.1 Quantifying chaos using RMT . . .. ... .. 31
5.2 OTOC in random matrix theory (RMT) . ... 35
5.2.1 Twopoint OTOC . . . . ... ... ... 35
5.2.2 Four point OTOC . . . .. ... ... .. 36
5.3 Spectral form factor (SFF) from OTOC . ... 37

5.4 Two point SFF and thermal Green’s function in
RMT. .. ... . . 38
5.5 SFF for even polynomial random potentials . . 43
5.5.1 For Gaussian random potential . . . . . . 43
5.5.2 For quartic random potential . . . . . . . 44
5.5.3 For sextic random potential . . . . . . . . 49
5.5.4 For octa random potential . . . . .. .. 53

5.5.5 Estimation of dip-time scale from SFF . . 58
5.6 Universal bound on quantum chaos from SFF

and its application to cosmology . . . . . . .. 61

6 Randomness from higher order Fokker—Planck equa-
tion: a probabilistic treatment in cosmology . . . . . 62
6.1 Cosmological scattering problem . . . . . . . . 62
6.2 Fokker-Planck Equation . ... ... ... .. 66

6.3 Corrected probability distribution profiles: quan-
tum effects from non-Gaussianity . . . . . . . . 75
6.3.1 First order contribution . . . . . ... .. 76
6.3.2 Second order contribution . . . ... .. 77
6.3.3 Third order correction . . ... ... .. 81
6.3.4 Fourth order correction . . . . . ... .. 84

6.3.5 Total solution considering different order
correction . . . . . . ... ... 88

6.4 Calculation of statistical moments (or quantum
correlation functions) from corrected probabil-

ity distribution function . . . . . ... ... .. 88

6.4.1 Standard deviation

6.4.2 Skewness

643 Kurtosis . . . ... ... ... 98

7 Conclusion

A T1t6 solution of Fokker—Planck equation

B Stratonovitch solution of Fokker—Planck equation . . 103
C Generalized solution of Fokker—Planck equation at

infinite temperature . . . . . . . ... ... ... 103
D Generalized solution of Fokker—Planck equation at

finite temperature . . . . . .. ... L. 104
References . . . . . ... ... ... ... .. ... .. 105

@ Springer

1 Introduction

Quantum fields in an inflationary background [1-25] or dur-
ing reheating [26-32] gives rise to the burst of particle pro-
duction, which has been extensively studied in Refs. [33-35].
This has been studied to a great extent in the background of
the inflationary scenario of the universe in Refs. [36-38].
Such phenomena has been compared to that of the scatter-
ing problem in quantum mechanics with a specific effective
potential arising due to the impurity in the conduction wire,
which can approximately be solved using the well known
WKB technique [34,36].! Itis important to note that such par-
ticle production events are completely random (or chaotic)
when the evolution is non-adiabatic or tachyonic in nature.
A non-adiabatic change in the time dependent effective
mass profiles of the fields (which is actually coming from
integrating out the heavy degrees of freedom from the UV
complete theory and after path integration finally one gets the
time dependent effective coupling parameters between fields)
as the background evolution of the fields passes through spe-
cial points in field space produces these burst of particle cre-
ation in (quasi) de Sitter space time. There lies a physical
and mathematical equivalence between such cosmological
events to that of the stochastic random phenomena occur-
ring in mesoscopic systems where fluctuations in physical
quantities play a significant role of producing stochastic ran-
domness in the system under consideration. We also discuss
the cosmological systems which have been considered to
be rather non-linear and dissipative due to the significant
amounts of quantum fluctuations in the effective coupling
terms (or in the time dependent effective mass profile) of
the interactions between the fields. Important reviews on
the non-linear and dissipative effects arising in the context
of cosmology were put forward in the Refs. [9,39-41]. In
this paper we explicitly discuss bout the various non-linear
and dissipative effects in cosmological set up that arises in
(quasi) de-Sitter space with m?> > 0, where the term m?
represents the effective mass squared of the created parti-
cle in (quasi) de-Sitter background. In this connection it is
important to note that, the massless scalar field gets “ther-
malize” due to the effective time dependent interaction in the
(quasi) de-Sitter background. The cosmological events that
we talk about in this paper are identified with those of the par-

! In the context of cosmology conformal time dependent effective mass
profile exactly mimics the role of impurity potential in electrical con-
duction wire. Due to such one to one correspondence the time evolution
equation (i.e. Klien Gordon equation) of the Fourier modes correspond-
ing to the quantum fluctuation in the context of primordial cosmology
can be described in terms of the Schrodinger equation in electrical con-
duction wire with specific impurity potential. We have investigated this
possibility in detail in this paper. Additionally, it is important to note
that such time dependent effective mass profiles are also important to
study the role of quantum critical quench and eigen state thermalization
[] during the reheating epoch of universe.
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Fig. 1 This schematic diagram shows the correspondence between the conduction phenomena in electrical wires with impurity to that of the
cosmological random particle-creation events during the non-adiabatic stage of the early universe

ticle production stochastic random events. In this paper, we
present the dynamical features of inherent chaos (stochas-
tic randomness) in the physical system and its connection
with the quantum mechanics in detail. The model is exactly
similar to that of “massless scalar field” interacting with a
scatterer in the background which are treated to be the heavy
fields and are mainly responsible for cosmological particle
production in (quasi) de-Sitter space (see [36]). In this con-
text, when the free massless scalar field interacts with the
heavy field in the background space time, it mimics the role
of thermalization phenomena of the field which occurs dur-
ing the epoch of reheating of the universe (Fig. 1). In Fig. 2
we have depicted the summary and future prospects of the
present work. The detail of the discussions on each topic will
be discussed elaborately in the next sections of the paper.
The specific problem we will discuss here is similar to
one presented in Ref. [42]. This problem is similar to that
of a scattering problem in presence of impurity in quantum
mechanics where the Schrodinger equation yields approx-
imate solutions to the wave-function of the particle which
encounters a effective impurity potential barrier V (x) of a
given strength. The similarity in the following model is drawn
between the current carrying electrons responsible for con-
duction in electrical wires to that of the particle creation in
cosmology as a result of the non-adiabatic random events
occurring in the early (inflation and reheating) stage of the
universe. In this present problem for the sake of simplic-
ity we consider an one dimensional conducting electrical
wire, which implies that the current carrying electrons in
the electrical wire has only a single propagating degree of
freedom. As mentioned earlier, this has been considered to
reduce clutter in our computation. But the similar problem
can be generalized to more complicated situation.” Since, a
current carrying wire consists of a large number of impu-
rities, these act like the potential barriers V (x), which are

2 For an example, one can generalize the same prescription in three
space dimensions.

randomly distributed across the wire. Therefore, the motion
of the electrons while confronting these scatterers gets hin-
dered due to the presence of these randomly placed scatter-
ers. One of the most important outcome of such an event is
known as Anderson Localization as appearing in the context
of condensed matter systems. Usually this is characterized
by probability density of the localized wave-function:

[ ()I” ~ exp (Ix1/8), (1.1)

with £ being the localization length of the quantum mechani-
cal wave-function ¥ (x). This phenomena of Anderson Local-
ization usually occurs due to the interference of the waves
scattered from the impurities present in the conduction wire.
By formulating cosmological particle production as arandom
scattering problem, it has been shown in [42] that Anderson
localization maps to a problem of estimating exponential
particle production, as given by:

e (T) > ~ exp (ui), (1.2)

where  is the mean particle production rate which is char-
acterized by the conformal time dependent scalar field ¢y (7).
A striking similarity has been observed between such scat-
tering problems in conducting wires to that of the burst of
particle production in cosmological random events shown
in Ref. [42]. In such cases, it has been observed that the
solving a scattering problem in quantum mechanics using
Schrodinger equation is similar to solving a Klein—Gordon
equation for a massless scalar field in presence of a conformal
time-dependent effective mass squared coupling parameter
m?(7). In this context the scalar field with time-dependent
mass m?(t) mimics the role of coupling strength parame-
ter which characterizes the scattering to the massless scalar
field in (quasi) de Sitter background. For more details see
Refs. [43—45]. Moreover, such stochasticity in a cosmologi-
cal setup arises due to the stochastic time evolution of Hubble
parameter H (), so that the inflaton (or the field participat-
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Fig. 2 Overview of the computational strategy of the whole paper and how different parts are inter-related

ing in reheating) evolves with time stochastically due to the
quantum fluctuations in the FLRW background. In the simi-
lar context the role of interacting scalar field has been studied
to a great deal in Ref. [43].

In this context, we have presented the amount by which
the quantum mechanical system deviates with respect to the
initial conditions. This means that more the value of this
exponent, more is the chaos or stochastic randomness in the
system under consideration in this paper. This exponent plays
a significant role in our scenario as the number of particles
produces in a given scattering event per unit time is ran-
dom in nature. In a system of randomly spaced scatterers
chaos emerges out of the random scattering events that an
electron encounters while drifting across the wire with some
drift velocity v within the conducting wire. The number that
quantifies this increase in stochastic randomness or chaos in
the system is the Lyapunov Exponent. In Refs. [42,43], par-
ticle production phenomena in cosmological non-adiabatic
events has been exclusively studied which yields the fact that
the particle occupation number depends on Floquet indices
Wk, which finally control the number of produced particles
with the following number density:

o
ni () :/ dk k* exp [2m (v) i ], (1.3)
0
as well as the variances in the field fluctuation. The quantum
fluctuations in the inflationary state of the universe results
in the randomization of these bursts of particle production.
The number density has been arandom variable which is ren-
dered stochastic due to the scattering events in the context of
early universe cosmology. Our main objective in this paper
to quantify this characteristic number for the massless scalar
field having a conformal time-dependent mass coupling with
it. One of the prime reasons for finding a signature of chaos
in such a system is the well known thermalization phenom-

@ Springer

ena, which means that the FLRW background which embeds
the massless scalar field into it is being thermalized by the
massive field in interaction with the FLRW set up, which con-
stantly being giving rise to a burst of particle production in
the context of early universe cosmology. The scalar fields that
we considering in our paper are said to be massive or heavy
fields (m > H) which mimics the role of the scatterers in
the Schrodinger problem in quantum mechanics where the
strength of the effective potential or the scatterer is given by
the probability distribution function of the effective potential
function. We draw a picturesque landscape by considering
three distinct mass profiles:

2
22 [1 —tanh(p7)], Profile I
Profile IT
Profile IIT

m%(t) =

(1.4)

m(z) sechz(pr),
m3 O(—1).

which exactly mimics the role of cosmological scatterers in
early universe. We thereby investigate the momentum scale
dependent behaviour of the Lyapunov exponent. In this con-
text, the incoming momenta of the mode functions of the
quantized massless scalar field having random interactions
with the scatterer. In the following class of model, the Bogoli-
ubov coefficients arise due to the interaction between mass-
less scalar field with the heavy field. These Bogoliubov coef-
ficients gives the information about the transmission coef-
ficient viz.a.viz in similar problem to that of a scattering
problem in quantum mechanics, that we solve using the well
known WKB approximation technique.’ These WKB solu-

3 To find approximate solution of the Schrodinger equation (or in other
words the Klein—Gordon field equation) in presence of an arbitrary
impurity effective potential, (or the conformal time dependent mass
coupling parameter) WKB approximation method plays crucial role
[46,47].
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tions are extremely useful as it tell us the dynamical feature
of the particle production in cosmological scattering events.

In continuation with this, we discuss about the epoch of
reheating which occurs after the end of inflationary stage
of the universe which finally results in the stochastic random
burst of particle production. The dynamics of these stochastic
random bursts of particle production can be well understood
by using a Fokker—Planck equation, which gives us a statis-
tical interpretation of the number density of particles created
per scattering event. Since, the number of particles created in
a given non-adiabatic event is not discrete in nature but rather
its random, which means that there must be a probability dis-
tribution function associated with the particle number. The
various dynamical features of this type of probability distri-
bution and its physical consequences has been studied in Ref.
[42]. It has been phenomenologically proposed in Ref. [42]
that such probability density function would necessarily is
Gaussian one. The occupation number of the produced parti-
cles, ny, executes a drifting Brownian motion and a Fokker—
Planck (FP) equation that evolves the probability distribu-
tion, P(ng; t), emerging out of this Brownian motion has
been studied in Ref. [42]. We further compute the analytical
expressions for the mean, variance and other higher order
moments which are commonly known as, skewness and kur-
tosis and such additional statistical higher order moments are
very useful to study the exact mathematical form and asymp-
totic limits of the probability distribution function. The evo-
lution of mean, variance, skewness and kurtosis finally gives
a coarse-grained analysis of the Fokker—Planck dynamics to
more corrected orders of magnitude in quantum regime. We
show in this paper explicitly that though Gaussianity is an
inherent part of the probability density function, but the con-
sideration of the higher order moments in the Fokker—Planck
equation tells us that the density function may not be a Gaus-
sian one but with some higher-order corrections entailed into
it due to the quantum mechanical origin. Therefore, to a
greater extent we extend the more corrected quantum version
of the Fokker—Planck equation used to describe the dynam-
ics of the probability distribution function used in Ref. [42]
that tells us the dynamics of the bursts of particle production
in these random scattering events. The more quantum cor-
rected version tells us that the probability amplitude of the
particle production in the scattering events is more than a Log
normal distribution. The distribution profile of the probabil-
ity distribution function depends largely on the profile of the
scatterer, i.e., the effective potential V (x) in the Schrédinger-
like equation. While calculating the Fokker—Planck dynamics
we observe that the skewness gives us a clue about the rate
at which the particle production occurs meaning that longer
the trailing part of the profile more is the number density
of particles in the scattering event for a given time in the
frame of the observer, whereas, kurtosis tells us the width
of the probability distribution function which is essentially

the amplitude with which the particle production phenomena
occurs, which more suggestively tells us about the standard
deviation of the density function from Gaussianity. This may
be a signature of non-Gaussianity that arises in various mod-
els in early universe cosmology.

In this connection it is important to note that, such stochas-
tic approaches to the early universe scenario have been stud-
ied in details in [48,49], where the authors give an account
of how chaos arises in the context of eternal inflation. As
any rapidly oscillating classical field looses its energy by
creating pairs of elementary particles, these particles inter-
act with each other and comes to a state of showing thermal
behaviour at some temperature 7. This implies that we must
eliminate the necessary assumption of the universe being in
thermal equilibrium. This means that the inflating universe
is rather thermal in the sense that the particle creation events
that occurs during the quantum fluctuation in the randomly
distributed scalar fields ¢ which results in a chaotic model
of the inflationary scenario of the universe thereby leading
to a generation of stochastic idea of the particle creation
events during the thermalization of the quantum states of the
field randomly distributed over the space-time. These parti-
cle creation events are more phenomenologically associated
with one of the fundamental ideas in out-of-equilibrium sta-
tistical mechanics known as Fokker—Planck equation which
gives the rate of the particle production during theses random
events in stochastically emerging space-time along with the
distribution function that this rate charts out. In Ref. [42],
such a phenomenon of particle creation events by the ran-
domly spaced scatterers in due context of cosmology has
been shown where the statistics of the produced particles
as a function of time which is the probability distribution
function P (ng, t) has been predicted to be following a Log-
Normal distribution. The entire process have been carried out
with the delta-scatterers which are localized in space-time.

Following Ref. [42], in this paper we give a more improved
quantum corrected version of the same approach to the prob-
ability density function of the particle production events and
our prediction from the results show that the higher order
quantum correction terms being included into the Fokker—
Planck equation introduces an approximation to the theory.
This tells us that the number of particles produced in a given
non-adiabatic event during the reheating stage of the universe
is quantized, which would mean that the rate of particle pro-
duction in a given event gives rise to a discrete set of occupa-
tion number ng. Furthermore, the quantum corrected terms
obtained by deriving the Fokker—Planck equation takes the
general form, which is linear in n; being the first order in t.
Using this information we calculate further the leading order,
second and third order terms in the Fokker—Planck equation.
Hence, we derive the analytic expression of the quantum cor-
rected version of Fokker—Planck equation. We also calculate
the various higher moments in order to get an overview of

@ Springer
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the nature of the solution of the quantum corrected Fokker—
Planck equation which are - standard deviation, skewness and
kurtosis which gives the hint of how the probability density
function deviates from its Gaussian nature when the higher
order quantum corrections are taken into account in the com-
putation. This in turn may will be another indirect signature
of the primordial non-Gaussianity in cosmology other than
obtaining the signatures provided by the 3-point functions
from scalar fluctuations.

Apart from that, we discuss about spectral form factor
(SFF), which measures the random distribution of eigen val-
ues of the energy hamiltonian of a chaotic system. For this
computation of SFF we use the principles of random matrix
theory (RMT) in this paper. In the present context an upper
bound on SFF denotes the saturation of eigen value distribu-
tion hence supports the Ref. [50] for quantum chaotic system.
Within the framework of quantum physics, chaotic systems
can be characterized using only some additional constraints.
This theoretical approach is discussed in Refs. [S1-55] and
the authors use the theory of random matrices to characterize
quantum mechanical system. In this method, any arbitrar-
ily complicated many-body Hamiltonian can be replaced by
matrix of random numbers drawn from a Gaussian statistical
ensemble. This random matrix approach towards quantum
mechanics help to characterize and understand the underly-
ing features of the chaotic random system. After studying
the behaviour of SFF with time one can further comment
that whether it is valid for a cosmological particle produc-
tion event (semi-classical) or not. For our purpose we discuss
generalized version of SFF for different even order poly-
nomial structure of random potential and then extend that
result to describe the cosmological particle production events
[56,57]. For any random potential we can use this method
of SFF and we can deal with scatterer of any arbitrary type.
For any such scatterer we can get a bound on randomness in
the chaotic system characterised by SFF. Also using specific
transfer matrix for different conformal time dependent effec-
tive mass profiles which are precisely known in this paper, we
can finally compute Lyapunov exponent which also measure
stochastic randomness.

Also it is important to note that in Ref. [42], the scatterers
were considered to be some localized potential functions in
space-time. On the contrary the choice of our specific time
dependent mass profiles mimics the role of thermalized fields
or effective potential functions, which are playing the role of
scatterers in this context. We see that the choice of these time
dependent mass profiles leads to particle production which is
chaotic in nature and therefore, to determine the rise of chaos
in such a system we quantify as well as analyse chaos by a
well known quantities known as the, Lyapunov exponent [58]
and Spectral Form Factor (SFF) [59]. Here fusing the princi-
ples of random matrix theory (RMT) we provide a general-
ized bound on randomness (or stochasticity) for any general

@ Springer

random scatterer whose potential can be expressed in terms
of an even polynomial. More precisely, we provide a possi-
ble method to compute the degree of randomness in a chaotic
system and from that one can check the bound on chaos.

The plan of the paper is as follows — In Sect. 2 we dis-
cuss about the model which is responsible for the quantum
description of chaos during the cosmological particle produc-
tion and have similarities with the quantum mechanical prob-
lem of electrical conducting wire with impurities. In Sect. 3,
we have presented the analytical expressions for the Bogoli-
ubov coefficients, transmission and reflection coefficients,
Lyapunov exponent, conductance, and resistance for differ-
ent time dependent mass profile. We have discussed the cor-
respondence between In Sect. 5 the specific role of Spectral
Form Factor (SFF) to quantify chaos in the context of particle
production rate is discussed. In Sect. 6 the particle produc-
tion event with quantum corrected Fokker—Planck equation
is discussed by taking contribution upto fourth order and also
different higher order moments from the quantum corrected
probability density function are explicitly computed. Finally,
in Sect. 7 we conclude with the future prospect and physical
impacts of our work.

Additionally it is important to note that, throughout this
paper, we use natural system of units, i = ¢ = 1.

2 Modelling randomness in cosmology

The background model which we consider in this section to
quantify quantum chaos in cosmology consists of a massless
scalar field interacting with coupled with a background scalar
field with conformal time dependent mass profile which in
principle have heavier or comparable to the Hubble scale
(m > H) [46,60,61]. It is important to note that such heavy
mass profiles play significant role in finding various cosmo-
logical correlation functions and also can be treated as an
additional probe to break the degeneracy between various
models of inflation from the perspective of implementing
cosmological perturbation theory in (quasi) de Sitter back-
ground. We know that in usual set up of primordial cosmo-
logical perturbation such heavy fields are not appearing in
the low energy effective field theory action. For that case in
the simplest situation we actually start with an one field set
up where the kinetic term is canonical in nature and the field
is minimally coupled with the background gravity which is
treated to be classical usually. Also such field has an effec-
tive structure of the interaction potential which play crucial
role to study the time dynamics in FLRW cosmological back-
ground. Here specifically the field is treated to be massless
compared to the Hubble scale (m <« H). However, this is
not the complete story yet. To explain this let us start with a
Ultra Violet (UV) complete set up of quantum field theory
(QFT) such as string theory in higher dimensions. There are
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various examples of string theory from which one can start
the computation, which are - Type II A, Type II B, Heterotic,
M - theory etc. Also the low energy extension of such theo-
ries (supergravity) are also useful for the computation in the
context of cosmology. Here it is important to note such all
such theories contain massive (m >> H), intermediate mass
(m ~ H) and massless (m < H) fields in the matter multi-
plet. To write down an effective field theory (EFT) one need
to integrate out all such heavy degrees of freedom from the
UV complete version of the action.* After doing dimensional

4 Important notes:
Here we note the following points which are very useful to study the
consequences from EFT set up:

1. In this context, one can construct an EFT by utilizing the under-
lying symmetries appearing in the field theoretic set up. In such
a generalized description where EFT is constructed by following
the top down approach, we really don’t care about the exact UV
completion of the parent theory i.e. detailed quantum field theory
origin at high energy scale of such effective constructions are not
important in this case. See Refs. [4,24] for more technical details.

2. Inamore generalized prescription of EFT one can construct the set
up which requires to correctly account for all relevant self interac-
tions of adiabatic modes around and after the cosmological horizon
crossing. Specifically the adiabatic mode contains all types of EFT
relevant operators, including transient reductions in the effective
sound speed cg each time the background field undertakes non-
geodesic motion in background target space. In an EFT framework
with single field setting, where heavy directions are such that the
mass of the field under consideration is heavy compared to the
Hubble scale i.e. m >>> H, one gets transient drops in the effective
sound speed cg during slow roll if the potential is such that the
field traverses a bend even if the parent theory consists of canoni-
cally normalized scalar fields. So for general consideration one can
allow many more possibilities without following any restriction to
time dependent mass profile. However, these three specific types of
time dependent mass profiles are very popular in the context of the
study of quantum critical quench in a analytical fashion. We have
considered these profiles particularly as our future objective is to
apply the idea of quantum quench in the context of De Sitter space
to quantify randomness during reheating phase. It is important to
note that, using a simple field redefinition at the level of quantum
fluctuation to the Mukhanov—Sasaki variable which results in a
time dependent mass for the rescaled variable appearing with addi-
tional contributions of the mathematical form, cs/cs ~ SH. Here
S = s/ Hcg is the associated slow roll parameter with the effective
time dependent sound speed cs and H is the Hubble parameter and
it is associated with the changes in the radius of curvature of the
inflaton trajectory. In this case the effective sound speed is given
by, cgz =1+ 4(}32/K2M2, where « is the radius of curvature of
the background inflaton (¢) trajectory and M is the effective cut-off
scale of the EFT at high energy (UV) regime. Equivalently, it refers
to the degree to which effective sound speed cg is reduced, which
actually quantify the distance from the adiabatic minimum of the
potential in the background inflaton trajectory is forced by its evo-
lution. Each of these possibilities has different applications in the
low energy limiting region of EFT. When the effective sound speed
cs < land ¢g ~ 0 is fixed over few e-folds of expansion then it is
extremely difficult to maintain a meaningful derivative expansion
without considering other types of special symmetries appearing in
the set up. However, as mentioned earlier, within certain limits one
can consider an adiabatic region where the effective sound speed
cs < land ¢s ~ csH and S = ¢s/Hcs ~ 1 is fixed over a

reduction along with applying various compactification tech-
niques one can derive various types of UV complete effective
field theories at cosmological scale where the effective cou-
plings of various relevant and irrelevant Wilsonian operators
have time dependent profile in FLRW background and in
such a case from the relevant quadratic operator one can also
get the time dependent effective mass which is in general
heavy (m > H). It is further important to mention here that,
such heavy fields can give rise to non vanishing one point
function for scalar (curvature) perturbation in cosmology,
which carries the signature of Bell’s inequality violation in
primordial universe [46,61-66]. Also it is important to note
that such Bell violating set up can be explained using the
theory of quantum entanglement in (quasi) de Sitter back-
ground and can give rise to non-vanishing quantum infor-
mation theoretic measure i.e. Von Neumann entropy, Rényi
entropy, quantum discord, logarithmic entangled negativity
[67-70] etc. Additionally, one can get correct expression for
two point function and also the three point function from
scalar (curvature) perturbation, which will show significant
effect in estimating primordial non-Gaussianity from single
field models of inflation. Apart from this one can consider a
simplest situation in four space-time dimensions where the
cosmological dynamics is explained in terms of two interact-
ing scalar fields. The light field (m < H) is participating in
inflation and the other heavy field (m > H) is participating
to explain the dynamics of reheating. If we path integrate
out the reheating degrees of freedom then we get an effec-
tive field theory of inflation which is exactly same as we
have explained earlier. But here one can consider the other
possibility as well in which one can path integrate out the
light inflaton degrees of freedom and write down an effec-

Footnote 4 continued

very small e-fold of expansion and this in turn generate all possible
consistent transient strong coupling parameters without violating
perturbative uniterity and these terms are explicitly appearing in the
derivative expansion in the EFT. Consequently, the nature of these
two types of features in the effective sound speed cg give rise to
distinctive contributions to the physical observables studied in the
EFT set up. The positive detection of these physical observables
in different experiments allow to extract the underlying non-trivial
physics from the EFT set up. In the technical ground the adiabatic
mode is identified with the Goldstone boson, which is appearing due
to spontaneously broken time translational symmetry prior to the
path integration of the heavy fields. In this context, the invariance
of the parent theory completely fixes the entire non-perturbative
structure of all possible Wilsonian EFT operators and the associ-
ated coupling parameters can be expressed entirely by the effective
sound speed cg of adiabatic perturbations, where the adiabaticity
conditions ¢g <« 1 and ¢5 ~ csH are respected. In principle, cg
can be computed in terms of the parameters of the parent theory.
Thus the additional contributions appearing in the adiabatic limit
cs < 1 and ¢s ~ cgH directly justifies the validity of our treat-
ment in this paper. For further technical details of this EFT set up
see Refs. [71-73].
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tive field theory to describe reheating in terms of the heavy
fields (;m > H). In such a description this reheating field
have mass and in the effective field theory description one
can write down some time dependent coupling in terms of
the integrated inflaton degrees of freedom and the mass of
the reheating field appearing in the coefficient of the relevant
quadratic operator. In this description such time dependent
coupling is treated to be the time dependent effective mass
parameter profile which is considered in the present discus-
sion. So it is evident from this discussion that using both the
effective field theory of inflation and reheating one can actu-
ally explain the origin of such time dependent effective mass
profiles in four dimensions. However, in this paper since our
objective is to study the cosmological particle production
phenomena, we will mostly focus on the reheating epoch of
the universe.

The dynamics of this fluctuating scalar field® in FLRW
cosmological background with a time-dependent coupling
obeys the following Klein—-Gordon equation®:

d2
[W + (k2 + m2(r)>] D (1) = 0, @.1)

where m?(t) is the time dependent mass of the scalar field
with which is originating from the effective field theory
(EFT) of massless scalar field coupled with other heavy
degrees of freedom by following the two possibilities:

1. In EFT time dependent couplings are appearing after
path integrating out the massive degrees of freedom. This
prescription is usually used to construct a most generic
EFT of inflation.

2. InEFT time dependent couplings are appearing after path
integrating out the massless degrees of freedom. This
prescription is usually used to construct a most generic
EFT of reheating.

Here ¢y (7) is the associated Fourier mode of the fluctuating
scalar field with momentum k, where it plays the role of wave
number in the present context.

5 Here it is important to note that, for inflation this scalar field is actually
massless and in the effective field theory description one can construct
the time dependent effective mass profile. On the other hand, in the
context of reheating the scalar field is massive and in the effective field
theory description one can construct time dependent effective mass in
terms of the original mass of the reheating field and other degrees of
freedom which are integrated out from the original theory.

6 Here we have assumed that the effective sound speed parameter, cs =
1, which indirectly implies the fact that for background time evolution
we are considering a single scalar field with canonical kinetic term
minimally coupled to the gravity. Effective mass of the scalar field is
m(t), which has time dependent profile. However, one can generalize
this prescription for any general non-canonical single field (i.e. P (X, ¢)
theory) theoretic framework where the effective sound speed parameter

cs # 1.
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In this paper, our prime objective is to find a precise equiv-
alence between the dynamics of this scalar field resulting in
stochastic particle production in cosmological events during
reheating and the similarity with the dynamics of the elec-
tron transport in conduction wires. To establish this equiva-
lence we start with the fact that the above mentioned Klein—
Gordon equation for the fluctuating scalar field in (quasi) de
Sitter background shows a striking similarity with the time-
independent one dimensional Schrodinger equation appear-
ing in the context of quantum mechanical system which
describes the space evolution of electron inside a wire in
presence of impurity as given by:

d2
[— TE- V(x):| ¥ (x) =0, 2.2)

dx?
where, V(x) corresponds to the time-dependent potential
which is appearing as an outcome of impurity in the electrical
wire and plays the similar role of negative of the square of
time-dependent mass profile as appearing in the context of
cosmology i.e. —m? (7). Also E represents the energy eigen
value which mimics the role of the wave number squared
i.e. k2. Finally, ¥ (x) represents the wave function of the
quantum mechanical system under consideration which is
similar to the Fourier modes of the time dependent fluctuat-
ing scalar field in the context of cosmology i.e. ¢ (7). The
above set up can be re-expressed in terms of solving a transfer
matrix problem since the scatterers can be thought as poten-
tial profiles in Schrédinger problem in quantum mechanics
with the incoming and outgoing modes of the scalar field
related to each other with the Bogoliubov coefficients. A
complete overview of the connection between the variables
that quantify the scattering problem in the context of quantum
mechanics to the one in the cosmological particle production
problem has been shown in Table 1.

It is very well known fact that the conductance of the
electrical wire is related to the transmission probability of
electrons across the wire and this can be obtained by explic-
itly solving the time-independent Schrodinger equation (see
Eq. (2.3)) in the presence of the impurities. Before going
to the further details of the computation here we begin by
reviewing the scattering problem by a single impurity local-
ized at the position x = x;. To the left (L) and the right (R)
of the impurity potential, the wave-function can be written as
a linear combination of right-propagating waves (exp (ikx))
and the left-propagating waves (exp (—ikx)) as:

Ya(x) = Baexp (ikx) + ap exp (—ikx)

where A = L, R. 2.3)

This is essentially a scattering problem in the context of
quantum mechanics in which the impurities act as interac-
tion potentials or scatterers across which the electrons get
transmitted within the conduction wire. The map between



Eur. Phys. J. C (2019) 79:320

Page 9 of 107 320

Table 1 A brief overview of the

. Scattering in conduction wire
connection between the

Cosmological particle creation

scattering problem in quantum Symbol Physical interpretation Symbol Physical interpretation

mechanics to that of

cosmological particle creation X Distance T Conformal time

events V() Potential —m?3(1) Time dependent mass parameter
W(x) Wave function o1 (1) Mode function in Fourier space
Ny No. of scatterers Nj No. of non-adiabatic events
AX Distance between scatterers AT Time between non-adiabatic events
& Localization length Uk Mean particle production rate
p(x) Resistance ni(t) Particle occupation number
E Energy eigen value k? Wave number of Fourier modes
N, Number of channels Ny Number of fields

the Bogoliubov coefficients (Br, og) from the right (R) side R

and the Bogoliubov coefficients (81, o) from the left (L) {E - v(x)}

side can be expressed in terms of the following Bogoliubov
transformation equation as:

Br =M; Bg, 2.4)

where we define:

Ba = <’3A) where A = L, R, (2.5)
ap

and in this context the transfer matrix for the j-th scatterer
M is given by the following expression:

Lzl
1 1
M; = J J (2.6)
—r; 1
Ij Ij

which is essentially an unitary matrix related the incom-
ing and the outgoing wave functions and their normalization
coefficients.

Ultimately, using this methodology our objective is to con-
nect several impurities together. This is particularly very easy
to describe in terms of the transfer matrix approach, since the
total rransfer matrix across Ny number of scatterers is simply
given by the simple matrix multiplication of the individual
transfer matrices as given by the following expression:

Ns
M=MWy) =][M;
j=1

=My QMpy_1® - QM3 Ma@M;. (2.7)

For our choice of convenience of symbols we will drop the
term Ny for the Ny number of scatterers and hence we will
be considering this to be equal to M. In Fig. 3 we show the
electron(wave) encounter a potential(impurity or scatterer).It
transmit and reflect through it. From similarity of Klein—
Gordon equation and the time-independent one dimensional
Schrodinger equation we calculate R and T for particle pro-
duction event. Further, let us consider the simplest possibility

=

Incident

+H{E-V@)P x) =0

R+T =1

dx?

Fig. 3 This diagram shows that incoming wave of electron encounter
a scatterer and it partially passes through it with T (transmission prob-
ability) and partially reflected back with R (reflection probability)

of having two (N = 2) scatterers across which the transmis-
sion probability can be written as:

T = Ak 2.8)
1= VRiR P '

where the transmission and reflection coefficients for the j-th
scatterer can be expressed as:

Tj:l‘jtj, Rj:l‘*rj Vj=1,2, 2.9)

J

and additionally ¢’ is the overall phase factor which
describes the shift in phase between the reflecting waves
across the scatterers due to the presence of impurities. If
the distance between the two impurities is random in nature
and uniformly distributed over a region with the assumption,
kAx > 1 (where Ax = xp — x is the distance between the
scatterers), then the phase 6 is also uniformly distributed over
the interval 0 < 6 < 2. Using this fact explicitly we take
logarithm on both sides of the above equation and further
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doing average over the phase within the interval 0 < 6 < 27
we finally get’:

(log T)o = log T1 + log T» + 2{log |1 — /R R2¢"|)e
=0

2 2
=log HTj =ZlogTj.
j=1 j=1

The phase-averaged logarithm of the total transmission prob-
ability across Ny number of scatterers then further simply can
be written as:

@2.11)

Ny Ny
(logT)g =log | [[Ti | =D logTj = —Nyy. (2.12)
j=1 j=1

where y is known as the Lyapunov exponent, which is defined
as:

Ny Ny
y_—NslzlogTj——Nsllog HTJ
j=1 j=1

= —N; (log T)s. (2.13)

This actually determines the rise of chaos in the system.
Using this information the typical transmission probability
is defined as:
Ns
Tryp = exp ({log T)g) = [ [ Tj = exp (—=Nsy)
j=1
= exp(L/§),

which corresponds to the most probable transmission proba-
bility in the ensemble of random potentials. Also it is impor-
tant to note that,

(2.14)

L = NyAx = Ns(xn, — x1), (2.15)

represents the total length of the conduction wire. Here the
localization length is defined as:

N -1
Ax -
E=—=-L log T;
y ; !

-1
Ny
=—L (log (1_[ Tj)) =—L((logT)p)"".
j=1

In one spacial dimension, the localization length is of the
same order as the transport mean free path as pointed in
Refs. [74,75]. If the mean distance between scatterers, Ax,

(2.16)

7 Following this discussion, one can generalize this statement for N
number of scatterers as:

N

Ny
(logT)e = log (l_[ Tj) = Zlog T;.
j=1

(2.10)

Jj=1

@ Springer

and the average logarithm of the transmission probability per
scattering, y, are fixed, then the total transmission probability
decays exponentially with the length L of the conduction
wire.® This is commonly known as Anderson localization
[76].

Naturally, it is well known that the resistance of the con-
duction wire scales inversely with the total transmission prob-
ability. At zero temperature, all one-dimensional conduction
wire are therefore can be treated as an insulator, which is
independent of the strength of the impurities appearing in
the wire. However, the mathematical structure of the total
transmission probability 7 is preserved for Ny number of
such scatterers and this can be shown as:

1 T 1 3
* E3 e E3
M = INg INg ® - ® i3 f3
—rNg 1 -3 1
INg INg 1] ]
1 1
£ * E3 *
ol 2 Hh |el| 4 g 2.17)
—r 1 - 1

For a one-dimensional non relativistic electron in con-
duction wire under the influence of certain potential V (x)
evolution of the wave function ¥ (x, ) is given by:

dZ
[—2 +E— V(x):| Y(x) =0, (2.18)
dx
with the Hamiltonian for this particle is given by:
P’
H="—+V®x). (2.19)
2m

If we consider the particle is initially prepared in presence
of potential V(x) wave-packet take the specific form of
¥ (x, t). The final stationary density distribution |y (x, 7)|? at
long time carries important information both in their average
and fluctuations. The quantum mechanical wave can tunnel
through potential hills and reflect for by small fluctuations.
So the initial wave packet split on each potential fluctuations
into a transmitted and a reflected part. After huge number
of scattering instances this reduce to a random walk prob-
lem and on average the motion at long times will have the
diffusion constant in it. This is exactly the case of electron
is propagating in a conduction wire. At long times average
dynamics [77] of the wave packet freeze and it takes the shape
as given by the equation

W (z, 1)]>  exp <—%> )

Here, £ is the localization length as discussed in Eq. 2.16. An
electron in random potential is normally studied using statis-

(2.20)

8 Equivalently, here one can say that it exponentially decays with the
number of scatterers.
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tical ensemble of random one-electron matrix Hamiltonians.
Using Tight Binding approximation in orthogonalized lattice-
site basis representation. The diagonal matrix elements are
chosen from a flat probability distribution of width W,the
strength of disorder. The off-diagonal hopping matrix ele-
ments for every pair of nearest-neighbour sites and repre-
sented by 2 x 2 matrix where potential take the form,

V=t0«I+ith-a=t0«I+ipL(tx-(rx—i—ty-(ry—l—tz»oz)
(2.21)

where, I, oy, 0y, 0, are identity and Pauli spin matrices
forming the complete basis set. Here u is the random
spin-orbit coupling strength, t*, t”, #* are independent ran-
dom variables taken from uniform distribution on interval
[—1/2,1/2]. The metal-insulator transformation occur at
specific values. Below that mobility edges appear in band
separating localised states near edges from extended states
near band center.

The tight-binding random matrix ensembles (TBME)
classified scheme is possible on symmetry. Orthogonal
Ensemble in random potential. Localisation and mobility
occur in all 3-D tight-binding ensembles and in 2-D for sym-
plectic and unitary classes. From this distinction one found
striking similarities with symmetry classification of Gaussian
random matrix ensemble. The Gaussian ensemble belongs to
high dimensionality limit of TBME and always metallic. So
the metallic phase is well approximated by Gaussian ran-
dom matrix theory. From our discussion on RMT we use the
Nearest Neighbour Spacing Distribution function [P(w) see
Eq. 5.1] and measure it in units of mean level spacing A.
Around the mobility edge and intermediate law from P (w)
can be obtained. Anderson localization in this context mimics
quantum chaotic transition. The fluctuations for the density
of states are partially responsible for the conductance fluc-
tuations. Although average density of states is insensitive to
Anderson transition its higher order moments are sensitive to
it. On an other approach we can relate Anderson localization
to RMT using Lyapunov Exponents. Equations 2.13 and 2.16
relates Anderson localization to Lyapunov exponents. Now
statistical property of the Lyapunov spectrum with large num-
ber of degrees of freedom can be described universally by
RMT [78]. As described in [78], the spectrum of Lyapunov
exponents is well approximated by the following expression:
pA, 1) = ?; vV Amax — Al
4)Lr%lax

(2.22)

Here 1,4y is the time independent parameter which approxi-
mately equals to bound of Lyapunov exponent. This equation
shows striking similarity with Wigner law (Eq. 5.146). In this
approach we can also show the connection between Ander-
son localization and RMT. But there is a striking difference
too. Random matrix theory takes all its entries from Gaus-

sian random variables but for electronic models [Scattering
matrix theory] matrix ensemble have short-ranged and sparse
random matrix with most of the matrix elements having main
diagonal non-zero.

3 Randomness from conduction wire to cosmology:
dynamical study with time dependent protocols

In this section, our objective is to explain the various fea-
tures from the time dependent effective mass profiles which
are related to the quantum mechanical scattering problem
in conduction wire as mentioned earlier. These features are
appended bellow:

1. Lyapunov exponent: It actually quantify the amount of
chaos appearing in the quantum mechanical systems that
we are studying in the context of early universe cosmol-
ogy. In our discussion it tells us the degree of random-
ness in the stochastic particle production. In our case,
the chaos emerges due to the random scattering events
which are non adiabatic and we call these as cosmolog-
ical scattering events leading to particle production. In
this section, we discuss about Lyapunov exponent and try
to discuss their behaviour for the different time depen-
dent mass profiles. In thus context, Lyapunov exponent
is defined as [42,79]:

A= —logT, (3.1
where, T is the transmission coefficient given by the fol-
lowing expression:
T ="t = |t]%, (3.2)
with ¢ and * being the transmission amplitude of the

incoming and the outgoing wave. In the present discus-
sion, the transmission coefficient can be expressed as:

1
T:'”ZZW’

3.3)
where 8 and « are the Bogoliubov coefficients. Also, it
is important to note that, in the present context one can
define the reflection coefficient as:

*

2 18I

R=F ==
||

F=|F 34
where 7 and 7* being the reflection amplitude of
the incoming and the outgoing wave. Finally from
Eqgs. (6.176) and (3.4), we get the following conserva-
tion equation:
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1+ 1817

R+T=|fP+t]>= ar 1, (3.5)

where we have used the following normalization condi-

tion for the Bogoliubov coefficients, as given by:

el — 18 = 1. (3.6)

2. Conductance: It quantify the degree of support of the
flow of electron inside an electrical conduction wire. this
is exactly reciprocal of resistance. In the present context,
conductance refers to the ability of the massless scalar
fields to transmit through the massive fields which are
the specific heavy mass profiles that we have discussed
above. This may be more suggestive in telling us about
the interaction of the massless scalar field with the mas-
sive fields. More value of conductance refers to the larger
transmitivity of the background fields through the scat-
terers and vice-versa. Thus, conductance also carries a
valuable information about the transmission coefficient
of the scalar field interacting with the scatterer. In this
context, the conductance can be expressed as:

1
4
= —, 3.7
= 3.7)

G=exp(=20)=T2=
where A is the Lyapunov exponent, T is the transmis-
sion coefficient, |¢| is the transmission amplitude of the
incoming/outgoing wave and f, o are the Bogoliubov
coefficients as mentioned above.

3. Resistance: It quantify the degree of oppose of the flow
of electrons inside an electrical conduction wire. It is
the property by the virtue of which the scatterers (which
are the time dependent mass profiles in our case) resist
the massless scalar field to tunnel through them. In other
words, it is the same Schrodinger formulation in quan-
tum mechanics where the incoming wave interacts with a
potential barrier and the strength of the barrier is the mea-
surement of resistance to the tunneling of the incoming
particle through it. This means that more the resistance to
the incoming wave, more is the lower is the transmission
probability across the barrier. Resistance is defined as the
reciprocal of conductance G (k), which gives:

! 4
— =laf*. (38

1 1
r(k) = —— =exp(2Ar) = 77 = ]

~ Gk

We will discuss details of these features for three different
mass profiles as mentioned in Eq. (1.4). All of these mass
profiles that we choose here mimics the role of scatterers
inside the conduction wire. Such scatterers provide the way
for scattering events to occur resulting in random particle
production in cosmological space-time.

@ Springer

To study the cosmological particle creation problem dur-
ing early epoch of universe (specifically during reheating)
we use the analogy with the quantum mechanical scattering
problem inside an electrical conduction wire in presence of
time dependent effective mass profile we will perform the
computation in (quasi) de Sitter space using FLRW spatially
flat metric.

Here we consider a massive free scalar field with time-
dependent mass®:

1
S=-5 f d*x/=g(8" 0ux dux —m*(©)x°)

2
l/d3x dt az(t) |:<—8X(X’ ﬂ)
2 at

~a@ {(Vxx )+ mA @) (ex, 0)?) }

1 [ d’k
= dr a?
2/ @n)3 ra®

d 2
g U—X;f(r)' —a2<f><k2+m2<r>)|;<k(r>|2}, (3.9)

where the scalar field satisfies the following constraint:

x(—=k, ) = x*(k, 1), (3.10)
and the Fourier transform of the field is defined as:

4’k k.
X(x.7) me 1 (1) €%, G.11)

Also in the (quasi) de Sitter background the scale factor a(7)

can be expressed in terms of conformal time as!:
1 .
—H De Sitter
amy={ " . (3.13)
- % (1+e€), Quasi De Sitter

where € is the slow-roll parameter in quasi de Sitter space,
which is defined as:

1 dH _ 1 dH _ €

~ H*dt  a(n)H?dtr  a(r)
Here, we define a new slow-roll parameter with respect to
the conformal time:

= —Hér. (3.14)

(3.15)

9 Here it is important to note that our approach is similar to that of used
in Refs. [58,80] to explain the time dynamics of quantum quench.

10 1n de Sitter and quasi de Sitter space one can compute the relation
between the conformal time (7) and the physical time (¢) as given by
the following expressions:

= —% exp(—Ht), De Sitter

. _/ﬂ _ Ha
a —ﬁ(] +€) = —%(1 + €) exp(—Ht), Quasi De Sitter ’
3.12)
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Now we use the following field redefinition in Fourier space:

$1(7) = a(r) xi (7).

Consequently, the scalar field action as stated in Eq. (3.17)
can be recast in terms of the newly defined field ¢ (7) as:

(3.16)

1 &k dey(7) 1 da(z) 2
=2 ) @ ‘ i a@) ar
— (K> + m* (1)) lpr ()] (3.17)

Further, varying the above action with respect to the redefined
field ¢; () we get the following equation of motion:

d? 1 da(z) d
dt?  a(r) dtr drt

1 da(r)>2

2 2
K Hm (T)_(a(t) dt
x ¢ (t) = 0.

Further, Eq. (3.18) can be simplified for de Sitter and quasi
de Sitter space as:

(3.18)

De Sitter:
[d*> 1d 1
—_—— - K> 2(7) — — =0.
¥e Tdﬁ( +m2 (1) T2>i|¢k(f)
(3.19)
Quasi De Sitter:
2 1 | 262\ d
dt? 1 1+¢€/dr
e+ mo-L( 2\’ du(1) =0
m - — — =0.
72 l+e¢ k
(3.20)

It is important to note that, the main contribution to parti-
cle production is originating from the excitations of the field
with k/a > m > H, at the stage of oscillations. Therefore,
in the first approximation we can neglect the expansion of
the Universe, taking the scale factor a(t) as a constant dur-
ing reheating. We call it reheating approximation'' Con-

T Important note: In the present context, the analysis is perfectly
valid for the highly localized particle production events after neglect-
ing the cosmological expansion during reheating approximation. But
this approximation fail for the events that are sufficiently spaced out. If
we don’t neglect the cosmological expansion in this computation then
the conformal time dependent mass term of the form 272 is restored
from the background cosmological background. This actually implies
that the scattering problem is being performed on a conformal time
dependent potential of the form 1/72 (inverse square), which makes
the analytic computations of the Bogoliubov coefficients and all the
other derived physical quantities to quantify quantum randomness from
the present set up extremely difficult. Here it is important to note

Pi(D + (K*+m* (D)}¢p(r) =0
la|? =117 =1

Fig. 4 This diagram shows that ground state fluctuations from the past
can in future be amplified which can be measured by the coefficient «
whereas particle excitation from ground state can be measured by

sequently, one can approximately write Eq. (3.18) in the fol-

lowing simplified form!?:

2
[d— + (k2 + mz(z))] dp(t) = 0. (3.22)
dt?

The Fourier modes of the scalar field follow the equation of
motion in as stated in Eq. 3.22, with every Fourier mode sat-
isfying the Schrodinger equation where —m?(t) playing the
role of a potential. In Fig. 4 the particle produced show fluctu-
ation from ground state and from calculating the Bogoliubov
coefficients we predicted all its properties. For the solution
we refer to Ref. [36], for the field ¢ (7) can be expressed in
two distinctive ways, as given by:

D (1) = ain (ki (k, T) +a (k) (—k, )
= dout ttour (k, T) + @y (—hOu,, (—k, T),  (3.23)

where u;, i, (k, T) and u;y ous(k, T) are the ‘ingoing’ and
‘outgoing’ wave-functions. Also, the in- and out- oscillators
are related to each other through the Bogoliubov coefficients
(k) and B (k)

ain (k) = &* (K)o (k) — B*(k)al,, (—k),

Footnote 11 continued

that, for long wavelength cosmological observables particle production
appears more than an e-fold apart and consequently the corrections
appearing due to the cosmological expansion seem certainly relevant in
the computation as the incoming and outgoing wave functions depart
from plane waves. Although for localized particle production events,
the reheating approximation considered in this paper perfectly holds
good. In the present context this approximation breaks when we con-
sider the particle production events for a sustained period of time or
may be separated by times approaching an e-fold expansion.

12 Here it is important to note that, since the scale factor a(t) is approx-
imately a constant during reheating (reheating approximation), then
conformal time (7) and the physical time (7) is related through the fol-
lowing coordinate rescaling transformation:

dt t
T= | —=-.
a a

(3.21)
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aour (k) = a(K)ain (k) + B* (k)aj, (—k). (3.24)

Now, we calculate the various electrical properties and also
the expression for the Lyapunov exponent to quantify quan-
tum chaos for the various time dependent effective mass pro-
files which are equivalent to the impurity potential term in the
time Independent Schrodinger Equation describing a scatter-
ing problem inside a conduction wire.

3.1 Protocol I: m%(1) = m%(l — tanh(p71))/2

Here we start with the following mass profile:

m?(t) = m§(1 — tanh(p1))/2. (3.25)

The corresponding Schrédinger problem for this potential
function can be solved by using the potential function as
given bellow:

V(t) = —m*(r) = —m3(1 — tanh(p1))/2. (3.26)

In Fig. 5a, b, we have explicitly shown the conformal time
dependent behaviour of the mass profile under considera-
tion and also the corresponding potential used in Schrodinger
scattering problem.

We can find the following explicit solutions for u;, (k, t)
and u,y; (k, t), as given by:

e—iw,'n‘[
uink, 7) = 2 Fy
Win
Coformal time dependence of mass profile |
[ "~ "~ T T T T T T
3.0 i
[ — my=1
2510 - my=2
[ - my=3
20f 1
-~
N
-~ |
NE 150
1.07 \ 1
0.5[
0.0
Ll TR T N TR L T S Y TR 1
10 5 0 5 10

T (time)

(@) m?(7) vs T profile.

) (lw—_ oy Lo, —ezpf)’ (3.27)

p p P
—iWour T
uour (k, T) = ﬁ 2 Fy
out
o .
y (&, [0 Oou . _e_z,,,> . (3.28)
o’ p P

where we define w4, w;, and w,y,; in the following:

Wip = \/kz +m%7 wour = kI,

1
Wt = z(wout + wjn). (3.29)

3.1.1 Bogoliubov coefficients

For this specific mass profile the Bogoliubov coefficients can
be expressed as:

iwoy _ M
Wout F<_ Pt)r(] I )
; i

(k) - . ’
o Win F(—l;)r‘(l—lg);)
IB(k) _ Dout r (ifl)gut) r (1 — l_a;ln) . (330)
o T (15

In Fig. 6a, b, we have shown the variation of the Bogoli-
ubov Coefficients with wave number k.

Coformal time dependence of potential |

— — T T T

0.0:
-1.0 1
r — m0=1
1': [
; A5 b m0=2
L — m0=3
2.0 [ 1
-2.5:
3.0 1
O S Y S S N SO ST S PR R T SO A ST S S S |
10 5 0 5 10

T (time)

(b) V(7) vs 7 profile.

Fig. 5 Conformal time dependent behaviour of the mass profile I and its corresponding potential used in Schrédinger scattering problem is explicitly

shown here. Here we fix p = 1
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Fig. 6 Wave number dependence of the Bogoliubov coefficients from the mass profile I is shown here. Here we fix p = 1

3.1.2 Optical properties: reflection and transmission
coefficients

For this specific mass profile the transmission and reflection
coefficients can be expressed as:

iw. i 2
U e T(=5)r(1-%))

T = ()12~ oo r (_%)F (1 B n;m) |2, (3.31)
g T ()P
T la? m (<) p
LEB)TL-5)" (3.32)

io_ i\
|F<2ﬂ>r<1+ 20)'

In Fig. 7a, b, we have shown the variation of the transmis-
sion and reflection coefficients with wave number k.

3.1.3 Chaotic property: Lyapunov exponent

For this specific mass profile the Lyapunov exponent can be
expressed as:

A(k) = —log T =2log|a(k)|

LWout _MJ
= 2log Bout F(_.T)F(l .p )
fo S (%)

2p

(3.33)

In Fig. 8, we observe that with increase in wave num-
ber k the Lyapunov exponent decreases. This shows that

the Lyapunov exponent is dependent on the momenta val-
ues of the fields interacting with the massive field acting as
a scatterer. Furthermore, we discover that for the mass pro-
file I, the chaos in the event reduces with increase in the
wave number. This suggests that lesser the number of fields
interacting with the massive field more is the chaos in the
quantum system considered in this paper. Since, a negative
value of Lyapunov Exponent pulls a system out of chaos,
this further tells us that the Lyapunov exponent is inversely
related to the number of background fields interacting with
the scatterer or the massive field. This may be interpreted
in the following way in the context of Schrodinger problem
in quantum mechanics that a higher value of wave number
k of the incoming wave would be able to cross a potential
barrier of a given strength and would be able to get transmit-
ted through the barrier and the pulse won’t damp easily than
that of a wave with lower k value. This means that the scat-
terer acts as a definitive medium which allows only certain
wave numbers to pass through thus reducing the chaos in the
system.

3.1.4 Conduction properties: conductance and resistance

For the given mass profile the expression for conductance
and resistance can be expressed as:

G (k) = exp(—2(k))

iy _ oy
= 2log | |2 F(_20>F<1 ZP)
Wout T (_iwout) I (1 _ WJ)

0

(3.34)
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Transmission coefficient
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Fig. 7 Wave number dependence of transmission and reflection coefficients for the mass profile I is shown here. Here we fix p = 1

Fig. 8 Wave number
dependence of Lyapunov

exponent is shown for mass
profile I. Here we fix p = 1

A(k)

r(k) = exp(2A(k))

o F ()R-

In Fig. 9a we have shown the variation of conductance
with wave number k. This figure shows that with increase in
the momenta value of the massless scalar field, the conduc-
tance also increases. Now, accounting for mq values, we see
that for mo = 1 the conductance shoots up at a much lower k
value than that of mo = 2 and mo = 3. This suggests that for
mo = 1 the field has a much higher transmission probability

= 2log

(3.35)
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than that of mg = 2 and mo = 3. An increase in transmission
probability gives a direct evidence of the conductance value.
Therefore, we conclude that for my = 1 the field has more
conductance value in comparison to my = 2 and mo = 3.
We also conclude that larger the momenta value, more is the
transmission coefficient and thereby shoots up the conduc-
tance of the system. This means that an incoming wave with
large momenta value would eventually cross a barrier poten-
tial field thereby increasing the conductance of the system as
the transmission probability would be much higher than an
incoming wave with lower momenta value.
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Fig. 9 Wave number dependence of conductance and resistance for the mass profile I is shown here. Here we fix p = 1

In Fig. 9b we have shown the variation of resistance with
wave number. We observe that with an increase in the value
of k the resistance starts decreasing which suggests that with
an increase in momenta value the transmission probability
across the scatterer. This may be viewed in accordance with
the potential barrier in the Schrodinger equation in quantum
mechanics also starts increasing thereby allowing the incom-
ing wave to tunnel through the barrier thereby increasing the
transmission probability and hence,reducing the resistance.
We also observe that with an increase in k value the resis-
tance reduces less rapidly for mo = 1 than that of my = 3
and my = 2. Whereas, it reduces more rapidly for my = 3
suggesting that higher the value of the constant m( lower is
the value of resistance offered.

3.2 Protocol Il: m2(z) = m% sechz(pr)

Here we consider the following mass profile:

mz(r) = m(z) sech2(,0r). (3.36)
The corresponding Schrédinger problem for this potential
function can be solved by using the potential function as
given bellow:

V(t) = —m*(r) = —m3 sech®(p1). (3.37)
In Fig. 10a, b, we have explicitly shown the conformal time
dependent behaviour of the mass profile under considera-
tion and also the corresponding potential used in Schrodinger
scattering problem.

Now using the coordinate transformation y = e2rt [58,
80] one can recast the equation of motion, analogous to the
time independent Schrodinger equation takes the following
form:

/ 2 2
ol + 2 ( i 0

y 4p%y  pr(1+ y)2> e =0

(3.38)
The solution of this equation is given by:
M(k, T) — e—ikr(l + 62/3'[)01

. |k |k
X |:C1 2k Ry ((x, = +a, 1+ l—, —62/”)
P p

|k |k
+ Ca2F (Ol, Sy o, 1 — l—, _e2ﬂt>i| )
0

o
(3.39)
where we define a parameter « as:
Vo1 2
a =<+ —/4mj+ p=. (3.40)
2 p

3.2.1 Bogoliubov coefficients

Now we fix C; = 1 and C, = 0, which gives the incom-
ing solution u;, (k). Further taking the t — +oo limit and
using Bogoliubov transformation we can express incoming
solution in terms of the outgoing solution as given by:

win (k) = a(k)uou (k) + BK)uz,, (k), (3.41)
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Fig. 10 Conformal time dependent behaviour of the mass profile II and its corresponding potential used in Schrodinger scattering problem is

explicitly shown here. Here we fix p = 1

where « (k) and (k) are the Bogoliubov coefficients, which
are defined as:

rt 4+ nrid

k) = . . ,
) P& —a+ DI(E + )

B(k) = isin(wra)cosech (%) . (3.42)

In Fig. 11a, b, we have shown the variation of the Bogoli-
ubov coefficients with wave number k.

3.2.2 Optical properties: reflection and transmission
coefficients

For this specific mass profile the transmission and the reflec-
tion coefficients can be expressed as:

1
T(K) = A . ,
() |F%Hm% 2
L5 —a+ DI (5 +a)?
|i sin(;ra)cosech (’%‘) 12
R(k) = (3.43)

ri&4nr)

2
ik ik |
T(E —a+ DI (E+a)

In Fig. 12a, b, we have shown the variation of the trans-
mission and reflection coefficients with wave number k.

@ Springer

3.2.3 Chaotic property: Lyapunov exponent

The Lyapunov exponent for this case may be given as:
A= —log T =2log|a(k)|
ik ik
r(t +nr)
P& —a+ D+ a)?

= 2log (3.44)

In Fig. 13, we have shown the wave number dependence
of Lyapunov exponent. Here we observe that with increase in
k value the Lyapunov exponent decreases. This implies that
the Lyapunov exponent is dependent on the momenta values
of the fields interacting with the massive field acting as a
scatterer. Furthermore, we also discover that for this mass
profile II, the chaos in the event reduces with increase in the
k value.

3.2.4 Conduction properties: conductance and resistance

For this specific mass profile the expression for the conduc-
tance and resistance can be computed as:

INC R NNC)

Gk) = —21(k)) = . .
® = P28 = | T

(3.45)

P — o+ DI 402

ré&+nri)

r(k) = exp(2A(k)) = '

(3.46)
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11 Wave number dependence of the Bogoliubov coefficients are shown here for mass profile II. Here we fix p = 1
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Fig. 12 Transmission and Reflection Coefficient for mass profile m2(t) = m%sechz(pt)

In Fig. 14a we have shown the wave number dependence
of conductance. We observe that for my = 1 conductance
starts increasing at a larger value of k than that of my = 2
and mq = 3. But, in contrast to the variation of conductance
with momenta k in the above figure, here the conductance
starts increasing rapidly for my = 3 than that for mg = 1
which suggests that the transmission probability for my = 3

plot.

is much higher than my = 1 and mo = 2, thereby making it

more conductive than the other two.

In Fig. 14b, we have shown the w
of resistance. Here like the first mass
mo = 3 falls more rapidly than that

ave number dependence
profile the resistance for
of mg =2 and mg = 1.

This suggests that for the given mass profile II, as the value
of mg increases, the value of resistance also decreases. But
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Fig. 13 This shows the
variation of Lyapunov exponent 2.0
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Fig. 14 Wave number dependence of conductance and resistance for the mass profile II is shown here. Here we fix p = 1

unlike the first mass profile, the resistance for mg = 3 falls
more rapidly suggesting that for mo = 3 this specific mass
profile offers more resistance than the first one. Therefore,
we conclude that for the same values of m this mass profile
offers less resistance in comparison to the first mass profile.

3.3 Protocol III: m?(t) = m3 ©(—7)
Here we consider the following time dependent mass profile:

m?(t) = m} O(—1). (3.47)

@ Springer

This ® function in T makes the mass profile a quenched one.

The corresponding Schrodinger problem for this potential
function can be solved by using the potential function as given
bellow:

V(t) = —m*(t) = —m} O(—1). (3.48)

In Fig. 15a, b, we have explicitly shown the conformal time
dependent behaviour of the mass profile under considera-
tion and also the corresponding potential used in Schrodinger
scattering problem.
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Fig. 15 Conformal time dependent behaviour of the mass profile II and its corresponding potential used in Schrodinger scattering problem is

explicitly shown here

3.3.1 Bogoliubov coefficients

For this specific mass profile the Bogoliubov coefficients can
be expressed as:

_ LIk + win 1 k] — win
2 Viklwin 2 klwin
with the solution of the incoming and the outgoing waves are
given by the following expressions:

a (k) Bk) = (3.49)

—iwint e—iw,m[l‘
uin(k,t) = mv Uoyr (k, 1) = o (3.50)
in out

In Fig. 16a, b, we have shown the variation of the trans-
mission and reflection coefficients with wave number k.

3.3.2 Optical properties: reflection and transmission
coefficients

For this specific mass profile the transmission and the reflec-
tion coefficients can be computed as:

2/ Klwim | 2/ TKlwin
==, Rl =7
k| + win k| — win

2

T (k) (3.51)

In Fig. 17a, b, we have shown the variation of the trans-
mission and reflection coefficients with wave number k.

3.3.3 Chaotic property: Lyapunov exponent

The Lyapunov in this case is written as:
11kl + win
2 hY% |k|win

A= —2log T =2log|a(k)| = ZIOg‘

(3.52)

From Fig. 18 we observe that with increase in wave num-
ber the Lyapunov exponent decreases more like a rectangular
hyperbolic fashion. In comparison to the other two mass pro-
files where the reduction in the value of the Lyapunov expo-
nent is much less rapid in comparison to this mass profile
discussed here. This suggests that since, the mass profile is a
heavy side theta function, which is a quenched mass protocol,
the Lyapunov exponent also gives a similar like profile. This
shows that the Lyapunov exponent is dependent on the wave
number of the fields interacting with the massive field acting
as a scatterer. Furthermore, we discover that for this given
mass profile, the chaos in the event reduces with increase in
the k value. So, in this case the Lyapunov exponent decays
much rapidly than the first two mass profiles. Next, we will
try to find an upper bound of Lyapunov exponent using the
definition of [81].
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Fig. 16 Wave number dependence of Bogoliubov coefficients for mass profile II is shown here
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Fig. 17 Wave number dependence of the transmission and reflection coefficients for mass profile III is shown here

3.3.4 Conduction properties: conductance and resistance

For this specific mass profile the expression for the conduc-
tance and resistance can be written as:

4

2/ 1klwin

G(k) = exp(—2xr(k)) = o (3.53)

’
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1 1k] + win |*

2 JKlwin

In Fig. 19a, we have shown the wave number dependence
of conductance. This figure shows that with increase in the
wave number of the massless scalar field, the conductance
also increases. Now, accounting for m( values, we see that
for mp = 1 the conductance shoots up at a much lower k

. (3.54)

r(k) = exp(2r(k)) = ‘
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Fig. 18 Variation of Lyapunov
exponent is shown with respect
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Fig. 19 Wave number dependence of conductance and resistance for the mass profile III is shown here

value than that of mg = 2 and mo = 3. This suggests that
for my = 1 the field has a much higher transmission prob-
ability than that of mg = 2 and mo = 3. An increase in
transmission probability gives a direct evidence of the con-
ductance value. Therefore, we conclude that for mg = 1 the
field has more conductance value in comparison to mgy = 2
and mg = 3.

In Fig. 19b, unlike the mass profile I the resistance for
mq = 1 falls more rapidly than that of mg = 2 and my = 3.
This suggest that for the given mass profile, as the value of mg
increases, the value of resistance also increases suggesting
that heavier the field gets lesser is the transmission probabil-
ity of the incoming wave to tunnel through it thereby reducing
the value of conductance for this specific mass profile.
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4 Quantum chaos from out of time ordered correlators
(0TOC)

4.1 Chaos bound in out-of-equilibrium quantum field
theory (OEQFT) and its application to cosmology

We know that in the context of quantum field theory itis possi-
ble to achieve the following universal bound on the Lyapunov
exponent [50] 13,14,

Universal chaos bound in OEQFT:

2wkpT 2
A< — = —_—,
=" 7B

4.2)

where kp is the Boltzmann constant and 7 is the temperature
associated with the dynamical system. This upper bound of
the Lyapunov exponent is treated as the saturation bound of
chaos.'> Our aim is to establish this bound in the context of
cosmology and study its further consequences. This bound
was first proposed in the context of quantum information the-
ory of black hole [82—-85]. Additionally it is important that,
the bound on the Lyapunov exponent saturates in the context
of Sachdev—Ye—Kitaev (SYK) model [56,57,86-92], which
describes the quantum features of Majorana fermions in pres-
ence of infinitely long range disorder. Saturation of the Lya-
punov exponent implies that SYK model mimics a quantum
description of black hole via AdS/CFT correspondence. In
the strict classical limit z — O the Lyapunov exponent take
any values, which is consistent with the requirement.

13 For this specific discussion only we keep the Planck’s constant 7 and
the Boltzmann constant kp in our computation. But for the rest of the
paper we fix i = 1 and kp = 1 for which the parameter 8 can be written
as, f = 1/T. In such a situation chaos bound is given by, A < 27/p.

14 In the context of weakly coupled gauge theory one can introduce 't
Hooft coupling A7 which is independent of N and in such a theory the
Lyapunov exponent is given by the following expression:

Lyapunov exponent in gauge theory: “.n
A hir 2mkpT
rG = 2L = apkpT = ZLZAXBL 5
B 2 n

15 Considering the bulk contribution weakly coupled with string the-
ory with large radius of curvature one can show that the perturbative
stringy correction to the Einstein gravity computation of the scram-
bling can give rise to the following first order corrected expression for
the Lyapunov exponent []:

Stringy correction: “4.3)
2 2
B 2
— e

Stringy correction

where Ly is the stringy length scale and 12 is a specific constant which
is appearing in the shock wave equation propagating along the horizon.

@ Springer

To give an explicit derivation of the chaos bound on Lya-
punov exponent in the context of cosmology let us follow the
steps appended below:

1. Let us start with a completely mathematical problem
described by a time dependent function g(t), which sat-
isfy the following set of properties:

(a) Inthe complex plane g(t +iT) is analytic in the half
strip described within T > 0 and —g <TZ«< g. In
this context, T and 7 represent the real and imaginary
part of the complex number t + i T after analytical
continuation in complex plane.

(b) The function g(t) is completely real at T = O.

(c) After analytical continuation the function in the com-
plex plane satisfy the following constraint:

gz +iT)| <1, “4.4)

which is perfectly valid in the complete half strip.

(c) Next, we actually conformally map the entire half strip
to a unit thermal circle in the complex plane, which can
be done using the following Mobius transformation:

1= Ag(r+iT)

1+ Ap(x +iT)’
4.5)

Mobius transformation: z

where Ag(t +iT) is the temperature dependent func-
tion in the complex plane, described by the following
expression:

Ag(t +iT) :=sinh <%T(t+iT)> . (4.6)
InFig. 20a, we have shown the behaviour of the amplitude
of the complex number z with respect to the parameters
(z, T) in 3D plot. Finally, to check the consistency with
Schwarz—Pick inequality we have plotted the complex
number z at 7 = 0 in Fig. 20b.

3. Further using Eq. (4.4) one can further say that the com-
plex function g(z) is an analytic function from one to one
conformal map from unit disk to unit disk.

4. A variant of the Schwarz lemma can be represented as a
invariant contribution under analytic automorphisms on
the unit disk, which implies the bijective holomorphic
mappings of the unit disc to itself. This specific variant
is known as the Schwarz—Pick theorem.

5. Now the hyperbolic metric in complex plane is defined
as:

2
dzdz 2|dz]
ds’> =4 = )
(1—1z2)° ((1 - |z|2))

4.7)
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(a) |z| with 8 = 1.

Fig. 20 Parametric dependence |z| and z(T = 0) at different temperatures

Further using this metric and applying Schwarz—Pick the-
orem one can write:

Schwarz-Pick inequality:
d 2|d
gl _ g M
(1-1g@1?) (1—1z1?)

(4.8)

6. Further applying the fact that the function g(7) is real at
T = 0and using Eq. (4.8) we get the following simplified

result:
1 dg(t) _ 1 dz
1—g%(x) | dr |~ [1—lzI? |d7 |7
2
=7 coth (ﬂ) . (4.9)
p p
7. Further, rearranging Eq. (4.9) we get the following final
result:
1 ‘dg(r)
(I—-g(®) | dt
1 2 2nt
< =(1+4g(r))— coth (—) , (4.10)
2 p B

which is the outcome of Schwarz-Pick inequality and
very very useful to prove the universal chaos bound in
OEQFT.

1.0 - 1

Time dependence of z at different temperatures (with T=0)

F——— T T — T — T

() zwith=1and T = 0.

Now it is important to note that in this context,

1 ! th 2T
E( +g(1))co <7>

4
51+%0 <exp (—%» @.11)

This further implies that:

=5 ro((F))

4.12)

1 ‘dg(r)
(I—g(m)| dr

Now at very large time scale (t — o) or at very high
temperature (8 = 1/7T — 0) one can neglect the contri-
bution from the second sub-leading term. As a result we
get the following inequality:

dg(t)

1 ‘ 2
<
(1I—-g()| dr

_F7

(4.13)

. Further, we take the following phenomenological func-

tion:
g(r) =1 — kexplhrt], (4.14)

where k is constant and X is the Lyapunov exponent. This
function satisfy all the requirements that we have men-
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tioned earlier explicitly. Further substituting this function
in the result obtained in Eq. (4.10) we get the following
simplified result!®:

sy < 2t (4.15)

which proves the Universal chaos bound in OEQFT.

. This bound on the Lyapunov exponent is an unique fea-
ture of all classes of OEQFT set up. It has a very strong
impact in the context of early universe cosmology, specif-
ically during reheating epoch. By knowing specific time
dependent couplings in the context of effective field the-
ory (EFT) it is possible to give an estimate of Lyapunov
exponent in such OEQFT set up. We will show this fea-
ture in the next section for three known model of interac-
tions appearing in EFT. In such a situation one can give
an estimate of the upper bound on reheating temperature
using this bound, which is again obviously an universal
bound itself. The earlier study in the context of reheat-
ing actually predicts a very crude estimate of reheating
temperature which is based on the assumption that reheat-
ing is extremely model dependent. It actually means that
to write an EFT of reheating we need to know the all
interacting relativistic degrees of freedom in a specific
model. In this framework the total energy density during
reheating can be expressed in terms of total number of
relativistic degrees of freedom by the following expres-
sion:

2

T
Preh = %g*(Treh)Téh (4.16)

Using this expression of energy density during reheating
epoch one can able to express the reheating temperature
as:

Treh = <730 )1/4/)1/4 ~ ( E )1/4 yl/4
re ﬂzg*(Treh) reh ﬂzg*(Treh) reh ”

4.17)

where g, (Tren) is the effective number of total relativistic
degrees of freedom present in the thermal bath at temper-
ature T = Tyep and V., is the scale of reheating which
can be obtained by fixing the field value at ¢ = ¢ for
a specific model. Counting all the degrees of freedom
in the particle physics model one can fix g4 (7teh) in the
present context. To find the reheating constraint from the
prescribed set up let us further introduce the number of
e-foldings at the epoch of reheating, which is defined as:

te
-/\[reh = H dt

Ireh

—_~— ¢€
:-N’total_AN%_L/ M

do, 4.18
M[27 Preh V/(d)) ¢ ( )

where Nop 18 the total number of e-foldings which is
defined as:

te 1 de V()
Nootal = Hdt_i/dh‘ V()

dep ~ O(60 — 70)
. e ¢ (

From Planck observation

(4.19)

Here ¢, t; and tp, are the representative time to specify
end of inflation, starting of inflation and time scale at
the end of reheating respectively. Similarly ¢, and ¢rep
are the field values at the end of inflation and reheating
respectively, which can be computed for a given known
model of inflation. Also it is important to note that in this
context, /A\J\_? is defined as:

AN = Nigtal — Nieh = AN — (Nieh — Nemb)
= AN = AN = WNieh — Nemp) . (4.20)

Here AN is defined as:
AN = -/vtotal - Afcmb' 4.21)
From different models of inflation one can explicitly

compute e-foldings at horizon exit, which is given by
the following expression:

te 1 be V()
Nemp = Hdt ~ —— / d
’ femb M127 Pemb V/(¢) ¢
~ O@ - 10) . (4.22)
N ——

From Planck observation

Consequently, the value of AN from observation can be
estimated as:

AN ~ O(52—60). (4.23)

Now, to give a numerical estimate of the reheating tem-
perature let us consider the following simplest monomial
model:

p
eV(p) =W (Mi> , (4.24)
p

where V) fix the overall scale of the potential and p is the
degree of the monomial which depends on the character-

16 Henceforth we set i = 1 for which the bound is translated to A < %T, istic of the model. For this model the field value during

which we will use for the further application purposes. reheating can be expressed as:
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2
Gren = \/ZPMeh + (%) M,. (4.25)

p

The reheating scale is quantified in terms of the number
of e-foldings as:

P \2 p/2
V(¢ren) = Vo (?;j) =W [szeh + (%) :| .

(4.26)

Consequently, for the monomial model the reheating tem-
perature can be quantified as:

Reheating bound from model:

8
30 V4 e\ !

Tteh=|—5—— V 2 —

reh (nzg*(Treh)) 0 PNeeh + (Mp>

< vl 4.27)

inf

Here Vjyr is the scale of inflation which is quantified by
the following expression:

Upper bound on inflationary scale:

14 16 rlke) \
Vi < 1.67x101°GeV (oo ) (4.28)

As a result, we get the following bound on the reheating
temperature:

Upper-bound on reheating temperature from inflation:

rlke) \ M4
0.064 ’

Toep < 1.67 x 101° GeV( (4.29)

which is true for any models of inflation. From the
Planck 2018+BICEP2/Keck Array BK14 data the upper
bound on the tensor-to-scalar ratio (primordial gravita-
tional waves) is restricted to:

r(ky) < 0.064, (4.30)

where k, ~ 0.05Mpc~! is the pivot scale of momentum.
This implies that the upper bound of reheating temper-
ature from the Planck 2018+BICEP2/Keck Array BK14
data is given by:

Tren < 1.67 x 100 GeV. 4.31)
Here to writing down this expression for reheating tem-

perature it is important to consider the following assump-
tion:

(a) Contribution from the kinetic term of the field which
is mainly responsible for reheating is neglected.

(b) We also assume that reheating is described by scalar
field.

This further implies that depending on the background
particle physics model reheating temperature actually
varies in a wide range and one cannot able to determine
exactly its value as there is no such universal bound avail-
able earlier in this context. This is the main shortcoming
of the phenomenological prediction of reheating temper-
ature in the context of early universe cosmology.

On the other hand, just only considering the dynamical
details of quantum chaos one can express the reheating
temperature in terms of the Lyapunov exponent:

Universal lower-bound‘on reheating temperature:

Ten = =, (432)
21

which is an universal lower bound on reheating tempera-
ture in the present context of discussion as itis not involve
any model dependence from the background theory. This
implies that the universal bound on quantum chaos in
OEQFT restrict us to fix an universal model indepen-
dent lower bound on reheating temperature. Combing
the obtained bound in this paper and the upper bound
obtained from inflation one can restrict the reheating
temperature within a specified range. Additionally, the
present analysis helps us put an unique upper bound on
the Lyapunov exponent in terms of the scale of inflation
(or tensor-to-scalar ratio) as:

k 1/4
< VY =167 x 10 Gev (8(0;)1) . @33

4.2 Out of time ordered correlators (OTOC) in OEQFT
4.2.1 What is OTOC?

Now it is important to note that the universal bound on
quantum chaos can be achieved by computing the out of
time ordered correlators (OTOC), which in general can be
expressed in terms of commutators. In the study of quan-
tum chaos, specifically in the context of Butterfly effect one
can introduce two time dependent operators W () and V (z’)
from which one can define a commutator, [W(7), V(0)],
where the operators are in general Hermitian in nature and
they have introduced with time separation At =7 —1' =1
with 7/ = 0. This commutator actually captures the effect
of perturbation by the operator V(0) on the later time mea-
surement on the operator W (7) and the converse statement is
also true. The time dependence of the operator W () in this
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context of discussion can be expressed in the Heisenberg

representation as:
W(r) =exp[iHt] W) exp[—iHT]. (4.34)

The strength of such chaotic effect is characterised by the
following measure:

Quantum OTOC:

Cr)i=—( [W@®,VOIP ),

Four point quantum operator

(4.35)

where the expectation value is in general the thermal aver-
aged,'” which is defined as:

C(r) = —([W(r), V(0)]?)

1
=-5Tr {exp(=BH) [W(7), V(O)1} . (4.36)
Here Z is the partition function which is defined as:
Z = Tr{exp[—BH]}, (4.37)

and H is the Hamiltonian of the chaotic system under con-
sideration. Here it is important to note that to construct the
chaotic OTOC measure instead of using the two point opera-
tor, [W (1), V(0)] (commutator), here we have actually used
the four point quantum operator, [W (), V(O)]2 (square of
the commutator). The specific reason for such choice is fol-
lowing. To describe this let us first assume that we replace
the commutator bracket by the Poisson bracket by consid-
ering the semi-classical limiting situation. In such a case
the Poisson bracket shows typically an exponential growth,
exp[At], where X is the Lyapunov exponent. But the signa-
ture of its coefficient can be anything, either positive or neg-
ative. Now further if we take the thermal averaging over this
two point operator then both the contributions are cancelled
each other in the semi-classical limit and will not contribute
to describe chaos. From the quantum mechanical perspec-
tive, the two point thermal averaged operator, ([W (t), V (0)])
actually captures the description of correlation between the
quantum Hermitian operators W (7) and V (0), which decays
in the large time limit (t — o0) and cannot describe the
chaotic behaviour. On the other hand, the four point quan-
tum operator after transforming it to the Poisson bracket in
the semi-classical picture don’t show any ambiguity in the
signature of the co-efficient as it takes only positive value.
After taking thermal average we get non vanishing result
using which one can describe quantum chaos. In the quan-
tum mechanical picture the four point thermal averaged oper-
ator, ((W(7), V(0)]%) not decays exponentially at the leading
order in the large time limit (z — ©0).

17 Thermal averaging is a very important concept in the context of
AdS/CFT correspondence as the dual description of the quantum field
theory of black holes can be treated as a thermal bath which have Hawk-
ing temperature.

@ Springer

Now, in the quantum mechanical description of the But-
terfly effect predicts the following result:

C@) ~2(VOOVOW ()W (D))

= 2(V(0)V(0))(W ()W (7)) for T — 00, (4.38)

for any mathematical structure of the operators V (0) and
W (). Here it is important to note that, V (0) W (z) W (7)V (0)
contribution is not directly effected by the quantum chaos.

Also it is important to note that, in the present context for
the sake of simplicity we additionally assume that:

(V(©) =0,
(W(D) =0,

(4.39)
(4.40)

i.e. both the one point function or the thermal averaged expec-
tation values of these operators vanishes.

4.2.2 Estimation of scrambling and dissipation time scales

from OTOC

In the context of quantum chaos two important time scales
are associated:

1. Scrambling time:
Here the associated time scale where the operator C(7) is
relevant is known as the scrambling time scale t,.. Some-
times in literature this is known as the Ehrenfest time
scale. A possible distinction between the classical and
quantum description of chaos can be described by the
Ehrenfest time scale in which the previously mentioned
OTOC don’t grow with respect to the associated time
scale and saturates at the same scale. In the next section
we have provided a alternative chaos bound on OTOC
(i.e. SFF in our case) from which we have further give an
estimate of the bound on the Ehrenfest time scale.
2. Dissipation time:

Another time scale for chaos is the exponential decay
time scale 74 in which the two point thermal correlation
function behaves like (V (0) V (7)). Sometimes in this lit-
erature it is known as the dissipation time scale or the
collision time scale. In the context of strongly coupled
quantum field theories at finite temperature it is expected
that the dissipation time scale Ty ~ B. It is also expected
that for large time limit the more general form of the
OTOC during this time scaled as:

(VOVOYW(E@W (D) ~ (VO VO W ()W ()
+ Oexpl—1/tq]) + - -+, 4.41)

where - - - represent higher order terms which are more
suppressed by the dissipation time scale t.
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In the present context, additionally one can predict the con-
nection between the quantum mechanical operator C(7) and
quantum chaos by considering the semi-classical limit of a
chaotic system which involves a single particle. To demon-
strate this argument one can consider semi-classical billiards
as a toy example. In the semi-classical limit one can take,
V() = p(0), W(r) = g(r), where p and g is the gen-
eralized momentum and coordinate respectively. As a result
in the semi-classical limiting approximation one can map
the previously defined commutator bracket to the Poisson
bracket, as given by:

dq(7)
9g(0)’

which can be treated as the classical analogous version of the
quantum mechanical Butterfly effect. It is also expected that
for such a system the nearby dynamical trajectories scale as,
q(t) ~ q(0)exp[rt], where A is the Lyapunov exponent. It
is in principle divergent in nature for large time limiting situ-
ation. Now at the dissipation time scale 1, it is also expected
that, t; ~ 1/A, for which the nearby trajectory is convergent
and is of the order of e. On the other hand, the prescribed
OTOC can approximately expressed in semi-classical limit
as!8:

[q(7), p(0)] = ih{q(7), p(0)}pg = ih (4.42)

Semi-classical OTOC:

dq(7)
9q(0)

In Fig. 21a, b, we have shown the variation of the time
dependent behaviour of semi-classical and classical OTOC
for billiards, which show they are different in both the cases.

Now at the scrambling time scale, T, and dissipation time
scale, 5 the OTOC approximately in the semi-classical limit
scaled as:

2
C(t) ~ h? < ) = h?exp[2A1]. (4.47)

C(r) ~ 1, C(ra) ~h*e, (4.48)

18 Classical result: Here one can perform the exact classical computa-
tion of OTOC to check whether the quantum and classical descriptions
give the same result or not. In the case of billiards, the Poisson bracket is

givenby, {g(t), p(0)}pg ~ exp[At]. One canexplicitly show thatin this
I ()
VAT VA
where A = 7 R% 4 4aR is the area of the stadium and v is the velocity
of the particle. Then the classical OTOC can be expressed as:

2p(0
1 * dp

T 2 ‘[2
Za b zn”“"[‘ﬂ(”(‘”‘m> */m}

1+ Zer[am] (o () )}

where Z is the classical partition function defined as:

context the Lyapunov exponent can be expressed as, A ~

1 d*q d*p(0
cy= L [44 r0)
Zcl 2r 2w

(4.43)

from which the scrambling time scale, T, can be estimated
as:

1. 1
Ty ™~ X In E
This further implies that, in the semi-classical limit the
scrambling time scale, T, and dissipation time scale, t; are

related by the following expression:

(4.49)

T~ 141n 4, (4.50)

which explicitly shows that both the time scales for quantum
chaos is different from each other and the fractional differ-
ence is given by the following expression:

Ty — T

1
=1 —lng =Inh, 4.51)

Td
which is actually a large amount of hierarchy at the semi-
classical limit as i — 0.

Now, the OTOC in the present context actually quantify
the temporal growth of the Hermitian quantum mechanical
operator W(t) is introduced earlier in this section. In the
general prescriptions of quantum field theory (QFT) such
OTOC can be expressed in terms of the addition of simple
type of operators, which span the quantum basis. Now, if
the OTOC is large!® then in such a situation with non-local
interactions the scrambling time scale, T, can be estimated
as:

te ~ In Ny for C(t) — oo, (4.52)
Footnote 18 continued
d*q d’p(0
za= [ L4 r(0) PO (4.44)
2r 2w
® dp 2 1
[T o[- 007] =
|52 w007 =
Further taking A = 1 for simplicity we get:
Classical OTOC: (4.45)

com [ ] () )

Further taking the limit # > /B we get the following simplified answer
for classical OTOC for billiards:

Classical OTOC: (4.46)
2
C(r) = %exp [:—’32} for t>>\//§4

This result implies that in classical OTOC and in semi-classical (or
quantum) OTOC the time dependence is completely different. In the
case of classical OTOC it shows faster growth with respect to the result
obtained for quantum OTOC.

19 In the present context large OTOC (C(t) implies that the quantum
operator for chaos W () completely destroy the effect of the initial fac-
tor exp[i H ] and the final factor exp[—i H 7] to cancel their contribution
in the definition of the operator W (7).
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Time dependence of semi- classical OTOC (for billiards)

C(7)

(a) Semi-classical OTOC

Time dependence of classical OTOC (for billiards)

C(7)

(b) Classical OTOC

Fig. 21 Time dependent behaviour of semi-classical and classical OTOC for billiards

where MV is the number of qubits. Similarly for local inter-
actions he scrambling time scale, T, can be estimated by
computing the separation between the quantum operators W
and V. Additionally it is important to note that, quantiza-
tion of a classical chaotic system may accommodate positive
Lyapunov exponent from the OTOC mentioned earlier. To
quantify quantum chaos also the nearest neighbour distribu-
tion (NDD) for the spectrum of the energy is alternatively
used.? Except Lyapunov exponent, in the present context of
discussion OTOC (in our discussion it is SFF) play crucial
role to quantify quantum chaos to explain dynamical features
in the early epoch of universe.

5 Quantum chaos from RMT: an alternative treatment
in cosmology

In this section, we will try to generalize spectral form factor
(SFF) for any order of even polynomial potential. To serve
this purpose, one can create such ensemble, such that all pos-
sible interaction between energy levels of many-body Hamil-
tonian would be accounted for by various matrices in the
ensemble. If the Hamiltonian is time-reversal symmetric the
required distribution will be invariant under orthogonal trans-
formation. Else, it is invariant under unitary transformation.

20 Tn the context of integrable and non-integrable quantum mechanical
system nearest neighbour distribution (NDD) is described by Poisson
and Wigner functional.

@ Springer

In the thermodynamic limit (N — o0) eigen value of den-
sity of random matrices showed a universal behaviour char-
acterised by Wigner’s Semicircle law. The results seemed
to be applicable to a varied class of quantum system dis-
playing chaotic behaviour. Chaos was also a hallmark of a
few-body Hamiltonian (N finite), but better diagnostic for
quantum systems was devised in which nearest neighbour
spacing distribution (NNSD) of eigenvalues of the system
will be chaotic if distribution is Wigner Dyson type:

P(w = Epp1 — Ep) = AgoPe =P, (5.1

Here it is important to note that, here g is fixed at, 8 = 1 for
Gaussian orthogonal ensemble and 8 = 2 for Gaussian uni-
tary ensemble. In the present context of discussion Spectral
Form Factor (SFF) is a tool for characterising spectrum ( i.e.
discreteness of energy spectrum) of quantum system under
consideration and defined by the following expression:

SFF = |Z(:3 + i‘[)|2 — Zef/B(Em‘i’En)e*il(Em*En). (52)

m,n

Here Z () is the partition function of the quantum system and
B = 1/T. For B = 0, the expression pick out contribution
only form the difference between nearest neighbour energy
eigenvalues at very late times. SFF when averaged over Gaus-
sian random matrices, has very particular behaviour at large
N with initial decay followed by a linear rise and then after a
critical point saturation.This approach can relate a saturation
limit for large N which can be treated as bound on chaos.
Additionally, it is important to note that quantifying chaos
through finding SFF is very useful when one cannot have



Eur. Phys. J. C (2019) 79:320

Page 31 of 107 320

Table 2 Properties of Gaussian matrix ensemble in random matrix theory (RMT)

Element of matrix Type of ensemble

Relation

Elements are real
Elements are complex

Elements are quaternion

Gaussian orthogonal ensemble

Gaussian unitary ensemble

Time reversal symmetric Hamiltonian

Broken time reversal symmetric Hamiltonian

Gaussian symplectic ensemble -

a specific time dependent mass profile during cosmological
particle production. In terms of scattering problem in the
conduction wire if we don’t know precisely the structure of
interaction potential, then one can quantify chaos in terms of
SFF rather than using Lyapunov exponent, as we have used in
the previous section. Here we will discuss general approach
to find SFF to quantify chaos for various even polynomial
potential.

5.1 Quantifying chaos using RMT

Gaussian matrix ensemble is a collection of large number
of matrices which are filled with random numbers picked
arbitrarily from a Gaussian probability distribution. See refs.
[93,94] for more details.

In Table 2, we have explicitly mentioned the properties of
the each elements of the Gaussian matrix ensemble in random
matrix theory (RMT).

Further, the joint probability distribution of such random
matrix, which is characterized by the Gaussian potential is
given by the following expression:

1
P(M)dM = exp <—5er2) dM

1 N N N
= exp _szizi exp —inzi 1_[ dx;j, (5.3)

i=1 i#] iZj=1

where N represents the rank of the matrix M. If we consider
any ensemble of matrices to keep this measure invariant under
similarity transformation:

M— U'MU, (5.4)
such that it satisfies the following constraint:
P(U'MU) = P(M). (5.5)

Here U being an orthogonal or unitary matrix. Then for most
generalized ensemble one can implement the concepts of
time independent random matrix theory [95] in the present
context of discussion. Now here integrating over the random
matrix measure one can construct the following expression
for the partition function for the Gaussian matrix ensemble,
as given by:

Z= / dM TV, (5.6)

Further, using similarity transformation one can diagonalize
the random matrix M as:
M=U"'DuU. (5.7)

On the other hand, ensemble in basis of eigenvalues of the
matrix the partition function can be written as:

N
Z— H/dli V2S5 Chin)

i=1

(5.8)
where the action S(};) is defined as?!:

N N
Shiy ..oy hy) = % D V) +BY loglhi — il (5.9)
i=1 i<j
Here we fix 8 = 1 for GOE and 8 = 2 for GUE. The overall
1/N come from scaling of eigenvalues by factor /N . To find
a solution we need to extremize the action w.r.t A;, such that
we get:

ds 2 1
— =0 = V)==) ——.
dhi (A1) N%Ai—,\j

Now we need the method of resolvents to derive the expres-
sion for the partition function (Z(8)) in the present context.
In continuum limit of eigenvalues we can use density of states
(eigen values) p (1), which gives the number of eigen values
lying in between A and A + dA. Therefore, saddle point of
V’(%;) is given by the following expression:

V/(A;) = 2Pr (/du p(”)).
A—u

21 This formalism is very useful when we can’t able specify the particle
interaction in the effective action. More precisely, in this situation when
we really don’t have any information about the particle interaction one
can’t able to define the action in terms of the usual language. Addi-
tionally it is important to note that, in our computation we consider
that gravitational background is classical and non dynamical. How-
ever it will not explicitly appearing in the action for the distribution
of eigen values of random matrices. Also during reheating since one
can neglect the contribution from the expansion of our universe, then
considering only the representative action for random distribution is suf-
ficient enough for our discussion when we don’t have any knowledge
about the particle interactions at the level of action. In such a situation
gravitational background is treated to be not evolving with time during
reheating.

(5.10)

.11
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Here Pr represents the principal part of the integral. Solution
of the principal part of the integral Eq. (5.11) gives the eigen
value density p(u) at large N limit.

Now, we can define resolvent as given by:

N

1 1
w(x)zﬁzx—)»i

i=1

(5.12)

further, using Eq. (5.12) we compute the following function:
N
1 1 1
2 P/ -
() + o/ () = 1 [Zx—x,}

AR
TN

1 % [ Aj— i
= N2 — . (e — .
N = X —A; il (x = 2)(x —2j)
Y N
1 1 1
== Z — — (5.13)
N S G2, (= h))

Next, we use the following resolvent identities for our com-
putation performed in this paper:

R(Z; A) — R(w; A) = (Z — w)R(Z; A)R(w; A),
R(Z; A) — R(Z; B) = R(Z; A)(B — A)R(Z: B).

(5.14)
(5.15)

Here R denotes the resolvent and A, B both defined over
same linear space. Consequently, Eq. (5.13) can be recast
into the following simplified form:

N

1 1 V()
2 P - i
w(x) +Nw(x) Nigl:—x—ki
1 V/(x) — V' (A) ,
+ Z} T = V0o —pw). (.16)
Here we define:
N
Vi(x) = V()
px) = ; T,
N
1 1 19
=N =9 5.17
Y ; x—M NW (.17)
which implies that, here @’ can be expressed as:
1 lI/// \IJ/
=yl ) 5.18
Y ( v \1/2) (5.18)

Finally, in terms of newly defined function ¥ as stated in
Eq. (5.17), one can further recast Eq. (5.16) as:

@ Springer

1?1 e 1w
ety v w)=VOyy —rw
(5.19)

Further, comparing the two equivalent definition of w (x) we
get the following differential equation for W in terms of the
eigen values of the random matrix, as given by:

1

\.IJ/
— = . (5.20)
vy ; X — A;

Therefore, the solution for W(x) is given by the following
characteristic polynomial :

N
U(x) = l—[(x — ;) = det(x I — M).

i=1

(5.21)

Here it is important to note that, the solution obtained in large
N limit can be compared with the solution obtained using
WKB approximation in Schrédinger equation. Then we can
neglect the term %a/ (x) in Eq. 5.16 and write down the
following approximated algebraic equation of w(x), given
by:

@ (x) — V' (®0)@(x) +p(x) =0 (5.22)

where we have introduced two new quantities w(x) and p(x),
which are defined as:

w(x) = Nlim w(x), (5.23)
ox) = Nlim o(x). (5.24)

Then solution of w(x) is given by the following expression:

1
B =BL(@) = 5 [V £V V) =450
(5.25)
Here for our discussion w_ (x) is redundant and only accept-

able solution for our purpose is given by the following
expression:

— — 1 / —
B0 =B-(1) = 5 [V/() = V() =450
(5.26)

Additionally, it important to mention that in large N limit
we can write, p(x) = p(x) = V”(x), where p(x) is the
density of eigen values from Wigner’s semi-circle law. Con-
sequently, the solution obtained in Eq. (5.26) can be recast
in the following simplified form in the large N limit as:

o) = fim ) = fim 52
1
T2

This implies that, just by knowing the even polynomial struc-
ture of the potential V (x) one can able to find out the solution

[V’(x) —JV'@0))? = 4V”(x)] . (5.27)
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Fig. 22 Schematic
representation of Wigner

277p(A)

semicircle law for Gaussian 1.0

random matrices

0.8

0.6

0.4

0.2

0.0

for the distribution of w(x) in terms of the random variable
x. In this context, which further implies that the Wigner’s
semicircle law is defined as the probability density function
of eigen values of many random matrices is a semi-circle
as N — o00. On the other hand, for finite N, Schrodinger
equation gives the corrections comparing with calculated
result obtained in Eq. (5.27), which is given by the following
expression:

okx)=w_(x) = %\/46)()6) +1

o l1- 16((@(x))? + V" (x))
(do@x)+1)

4p(x)

A [16((@(x))2+V" (x))

(5.28)

x|1— |1-—

In Fig. 22 density function p(A) for quadratic or Gaus-
sian potential is plotted against A with scaling factor ﬁ The

semicircle nature predicted from Eq. (5.146).
Consequently, one can write:

S[pl = / dx PV (x) — / dx dx' 5(x) p(x’) log Jx — x|
R R2

+L<1—/ dxﬁ(x)),
R

where, L is the Lagrange multiplier and 1 denotes the total
density.

Now, we can generalize it to normal matrix model whose
eigen value belongs to V; (union of contours). To characterize
this here we introduce filling functions, which are described
by the symbol ¢; and consider the contours as:

(5.29)

0.0 0.5 1.

o

(5.30)
Here

(5.31)

d
S
i=1

where d = dimension and n; eigen values are integrated over
Vi
Further, we define

€ = (5.32)

ni
N
Consequently, from Eq. (5.30) one can write:

Vi ZZC,',/')//' < ¢ = ZCUE/'
ij i,j

(5.33)

Z (Z Cnynl) — chz(y”’l) where C, € C,
n n

(5.34)
which will be helpful for further computation.
Now, for a contour, which is represented by:
d
y =Y Ciyie He " Pdn (5.35)
i=1
one can write:
1 N l_[ld=1 Cini —n~!
20N =) ST, (5.36)

n Hi:l nj:
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Consequently, Eq. (5.29) can be recast into the following
simplified form:

S[pl = f dx p(x) V(x) —/zdx dx' p(x) p(x) log|x — x|
¥ ¥

+> G (ei - / dxﬁ(x)).
i Vi

(5.37)

Now the Fourier transform of the density function p(x) can
be written as:

D(k) = / dx ¢ B(x), (5.38)
R

using which the second term of Eq. (5.37) can be written in
Fourier space as:

—/ dx dx" p(x) p(x") log|x — x'|
RxR

dk 1 [ dk
— | 2500 5(=k) = — 50012, 5.39
/lel pk) p(—=k) 2/0 T oK) (5.39)

Now we know that the saddle points can be computed by
imposing the following condition:

88

BLLEN 5.40
dp(x) 440

During this computation one can further define the effective
random potential, which is given by the following expression:

Ver(x) = L = V(x) — 2/ dx' p(x)) log|x —x'|. (5.41)
R

Then one can recast Eq. (5.37) in terms of the effective poten-
tial as:

Slp] = /Rdx P(x) Vesr (x)

+> G (g,- - f dxﬁ(x)) . (5.42)
1
Further imposing the saddle point condition we get:
/ dx' —
Vix)=2 S p(x), (5.43)
RX —X

which can be further written in terms of the eigen values of
the random matrices as:

1
V() = : 5.44
(i) =2 Ry (5.44)
J
Therefore within supp of pp one can write:
_ dx' _
w(x) = / S p(x) (5.45)
supp p + — X
V'(x) = @(x +i0) + @(x — i0). (5.46)
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On the other hand outside the supp of p since p(x) — O,
then in the large N limit one can write:

o) = lim w(x) = % +0 (%) . (5.47)

Therefore jump (discontinuity) on real line along the support
p(x) is given by the following expression:

Aw(x) = w(x) —o(x) = % + 0 (%)

dx’
—/ -p(x').
suppp X — X

Then using Eq. (5.48), we get the following simplified
expression for the jump (discontinuity)
0 1
(x +10)2

dx’ _ ., . .
[ i Pt =2mi Bt -0,
supp p

(5.48)

wx +i0) —wx —i0) =

(x+i0)jL

(5.49)

Now one can introduce a new function P (x) of random vari-
able x as:

P(x) = V' (0)a(x) — o(x)* (5.50)

which is analytic on C as it gives zero value of the jump. This
is explicitly shown in the following:

P(x +i0) — P(x —i0) = V'(x +i0)w(x +i0)
—o(x +i0)*> = V/'(x —i0)@(x — i0) + @(x — i0)?
= V'()[@(x +i0) — @(x —i0)]
—[@(x 4+ i0) — B(x — i0)]|[@(x + i0) + @(x — i0)]

=0 on support of p. (5.51)

Additionally, it is important to note that, using the previous
results we get:

oA +i0) = %V’(A) —imp(A), (5.52)

w(h —i0) = %v/(/\) +iinp(h). (5.53)

Here the most general solution for the density function is

given by the following expression®2:

1
pR) = MRy =0 (),

v

(5.55)

22 Additionally, it is important to note that the density function satisfy
the following normalization condition:

/ du p(u) = 1. (5.54)
supp 1t
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where both M (A) and o (1) are polynomial in XA are defined
as:

o]

M) = a2 2070,
k=1

o) =[] — au-1)(x — ax). (5.56)

i=1

Here we consider n number of intervals on which p(4) is
supported and a»;—1 and ap; are the end point.

Further we consider a general case where instead of the
specific form of the mass profile we only know the polyno-
mial structure of interaction random potential V (M) which
is characterized in terms of the random matrix M. For our
purpose we take it to be even polynomial potential written in
the following general form:

o0
V(M) =Y CoyiM* = CM? + CuM* + CeM® + - -
i=1

(5.57)

Here after diagonalizing the random matrix M we get its
eigen values A1, A2, ..., Ay, from which we can compute
the distribution of this eigen values for large N limit and
it turns out to be w be the density function p(A), which is
already introduced earlier.

Now let us consider that the degree of the polynomial P,
o and M are:

deg(P) =2k, deg(o) =2n, deg(M)=2k—n—1.

(5.58)
Now considering n = 1 and n = 2 we get:
Forn=1: deg(P) =2k, deg(o) =2,
deg(M) =2k — 2, (5.59)
Forn =2: deg(P) =2k, deg(o) =4,
deg(M) = 2k — 3. (5.60)

For n = 1 we also get the following simplified expressions
for the polynomial M (1) and o (1):

o0
M) = Zal,kxz<1—k>, (5.61)
k=1

o(A) =A% — 44’ (5.62)

Consequently, for n = 1 we get the following expression for
the density function on semi-circle:

(5.63)

1 o0
o(A) = —v4a? — 22 Zal_kkz(lfk).
T
k=1

Now we use this p(A) in @ (A 4 i0) and Taylor expand in the
limit A — oo we get:

1
w0 = 00) = =+ 0 <k2> , (5.64)
which implies that all coefficients of A" for » > 0 is zero and
this gives n number of equations. This finally gives the full
equation of M(A) in terms of the coefficients Cy;. Solving
these equations we get:

1 40> 4a*  8a® 1\%) & 2
L B P I L. ! (n—k)
2( 2t r 3 +0<A> k§_1an_kx

+Y 2 Gy 2P = -

i=1

(5.65)

Further equating the coefficients on both sides of the
Eq. (5.65) we get:

2nCoy — 2a,_1 =0, (5.66)

4a’ay_1 —2ay_2+2(n — 1)Cap_n =0 (5.67)

da*a,_| + 4a’ay_> — 2a,_3 + 2(n — 2)Cap_s = 0,
(5.68)

and it will continue upto term by term giving all a,, and we
get the unique polynomial M (). We will verify this general-
ization forn = 1, 2, 3, 4, 5 and check their SFF in this work
accordingly. For more general discussions see Refs. [96,97]
also.

5.2 OTOC in random matrix theory (RMT)

In earlier section we have introduced OTOC and its applica-
tion to cosmology. In this subsection, we will discuss about
OTOC appearing in the context of RMT.

5.2.1 Two point OTOC

For this purpose, we start with two point correlation functions
for the GUE which is described by the following equation:

(01002 (1))GUE = /dH (0100 (1)), (5.69)
where the operator O,(t) in Heisenberg picture can be
expressed as:

Os(t) = exp[—i Ht]O2(0) expli Ht]. (5.70)
Here it is important to note that the GUE measure d H is rep-
resented by the Hamiltonian H ., which is invariant under the

following unitary conjugation operation, which is described
by:
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dH =d(UHU") VU. (5.71)

Here U is the unitary matrix. Consequently, the GUE two
point correlation function can be further expressed as:

(01(0)O2(7))GUE
= //dH dU (01U exp[—i HT1U T O, U expli H1U ™),
(5.72)
where dU is the Haar measure appearing in this context.

After integrating over the Haar measure we get the following
expression for the GUE two point correlation function:

(O1(0)O2(1))guE = (O1){O02)

SFF —1
+I2(;—)1<(0102>>C’

where the connected two point correlation function ((O; O;))
is defined as:

(5.73)

((0102))c = (0102) — (01)(Os). (5.74)
Now we consider a special case where O; and O, are
described Pauli operators. In such a situation, the GUE two
point correlation function can be expressed as:

SFF(r)—1
-l 01=0,

, 5.75
0, 01 £ 0 ©.75)

(010)02(1))cuE =
where SFF(7) is the two point Spectral Form Factor (SFF)
which we have defined explicitly earlier. Further, one can
consider the situation where SFF(r) > 1 and Oy(t) =
OT(I). For this case the GUE two point correlation function
is simplified to the following expression:

SFF(7)

(01(0)O02(7))GUE ~ 72

(5.76)

Here 7 represents the 2" dimensional Hilbert space in
the present computation. To derive this above mentioned
expression we have not assumed any additional assump-
tion expect the fact that the Haar measure of GUE dH is
invariant. This is a very useful information to study the phys-
ical characteristics of chaotic Hamiltonian at macroscopic
scales.

5.2.2 Four point OTOC

Now we discuss about the four point OTOC for the GUE
prescription. Here the fourth point OTOC can be expressed
in terms of fourth Haar moment:

(O1(0)O2(1)O3(0)O4 (7)) GUE
=/de dU (O\U exp[—i HT U O2U
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x expli HT\UTO3U exp[—i HT\UTO4U
x expli HTlU"), (5.77)
where we consider (4!)2 = 576 terms in this expression for
four point OTOC. Now we consider a special situation, where
all these operators appearing in the expression for the four
point OTOC for GUE are described by Pauli operators. In
such a case, the four point OTOC for GUE can be simplified
as:

(O1(0)02(1)O3(0)O4 (7)) gUE = (0102,0504)
y SFF4(1)

T+ (5.78)

where SFF4(7) is the four point SFF for GUE, which is
defined by the following expression:

SFF4(7) = (Z(1)Z(1)Z* (1) Z* (1)) GuE
=fm > explihi + Aj + Ak + Am)T]

i,j.k,l
JH2r)
_
=7 = + E(T -2)
6 T
~ 2.6 + E(T —2), (5.79)

and this is derived only by considering the leading order
behaviour of four point SFF. Here additionally it is important
to note that if we fix:

(010,0304) = 1. (5.80)

This will give rise to non-zero expression for the four point
OTOC for GUE. For other situations, where

(010,0304) =0, (5.81)

we get zero contribution to the four point OTOC for GUE.

One can further generalise this statement for any arbitrary
2p point OTOC for GUE, which is given by the following
expression:

(O01Q1(1) - Op(0)Qp(1))GuE = (O1Q1 - OpQp)

SFF;,(7)
Generalizing the previous argument one can conclude that
the final result for the 2 p point OTOC for GUE is non zero
when we have the following constraint:
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(0191---0,9,) =L (5.83)

Here one can further show that for the GUE we get:

(01(0)02(1)03(27)O4(1))GUE
~ (01(0)02(1)03(0)04(1))Gue = (O10,0304)
SFF4(7)
X —7F
which indirectly implies that GUE is not sensitive to the fact
that the operators as appearing in this context are out-of-time
ordered or something else. Additionally, it is important to
note that, if we compute the expression for the OTOC corre-
lation function for a specified class of Hamiltonian operators,
which are in general invariant under the operation of conjuga-
tion on the unitary matrix U. In such a situation from OTOC
one can further express the OTOC in terms of SFF. This is a
very well known technique in the study of many -body QFT
systems, where particularly to study the underlying physics
of thermalization and quantum quench []. In the next subsec-
tion we will provide an analytical proof of the equivalence
of the two point SFF and the two point OTOC, which can
be further generalized to any arbitrary 2p point correlation
functions.

(5.84)

5.3 Spectral form factor (SFF) from OTOC

From the traditional perspective the idea of quantum chaos is
used in the context of study of spectral aspects of statistical
field theory. Recent developments are made in the context
of black hole theory and quantum information theory where
using OTOC one can quantify quantum chaos. However in
this paper our one of the prime objective to apply the con-
cept of quantum chaos to study early universe cosmology,
which is obviously another new direction of future research
area. In this subsection, our air is to give a formal proof which
establish the connection between Spectral Form Factor (SFF)
and OTOC in OEQFT. First of all we consider a limit where
B = 1/T = 0 in which distribution of quantum operator
insertions around a thermal circular path is very straightfor-
ward.

Letus consider a quantum mechanical Hamiltonian opera-
tor H operating on an Z = 2" dimensional Hilbert space and
consists of n number of quantum bits (gbits). Next, we con-
sider the two point correlation function (00O (1)) using
which one define the following averaged two point correla-
tion function:

/d(’) (O0)O (1))

1 £
= f/dO Tr (O expl—i HT]O" expli Hr))
1 Z
=7 > Tr (Ok exp[—HT]O; exp[iHr]) .
k=1

(5.85)

Here we assume that O is the Unitary operator which is inte-
grated over a Haar measure on I/ (2"). Also it is important to
note that the integral over the Haar measure can be translated
in terms of the Pauli operators Oy and 72 = 2%" = 4" rep-
resents the total number of Pauli operators for this quantum
n qubit system.

Further, it is important to note that, to derive the expression
for SFF from the present context additionally we need the first
moment of the Haar ensemble, which is defined as:

1
/ dO ODO" = ZTr(D) 1, (5.86)
which can be equivalently expressed in terms of the language
of Pauli operator as:

1

k Al kgl

/d@ 0,0, = §8n5m.

Next using Eqgs. (5.87) in (5.85), we get the following sim-
plified result:

(5.87)

Quantum averaged OTOC = / do ((’)(O)O%(r))

1
= ﬁ|Tr(e><p[—uL1r1)|2

1
= ﬁSFF(r) o« Two point SFF.,
where the two point SFF at infinite temperature is defined in
terms of the quantum Hamiltonian H as:

(5.88)

SFF = |exp[—i HT]|*. (5.89)
Here the result obtained in Eq. (5.88) implies that the quan-
tum averaged OTOC is proportional to the two point SFF at
infinite temperature of the present context.

This prescription can be further generalised to make the
connection between any arbitrary 2 p point quantum OTOC
and 2 p point SFF in this context. To establish this connection
let us consider a 2 p point quantum OTOC, which is described
by:
(010Q1(7) - Op(MQp(r)  with 01Q1---0pQp =L

(5.90)

Now taking the average over such 2 p point OTOC we get:
[ 01421401140, 01001+ 0,2y 0)

1
- ITP|Tr(exp[—iHr])|2p

1
where Q) is defined as:
Q,=0]-.- Q0] (5.92)
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Here one can consider a special case where

Q,=0} Vp. (5.93)

Consequently, the average over such 2 p point OTOC can be
further simplified to the following form:

/ d01d0; -+ dO_1d0k (O1(0)0] (D) -+ O ()0} (D))

; Tr(exp[—i Ht])? Tr(explipH1]) .

= 2o (5.94)

Here it is important to note that the terms appearing in
the are not symmetric because the operator O(0)

(’)I(‘L’) -0, (0)0;(1’) is an non-Hermitian quantum oper-
ator. This result establishes a direct connection between the
spectral physics in statistical field theory and other physical
observables. Apart from theoretical perspective one can use
two point SFF as a good estimator for experimental measure.
For this purpose one can consider the following standard
deviation (or experimental estimation error) of the unitary
operator O given by:

oo = +/ Var(0)

= \/f dO|0(0)Of(1)|2 — ‘/dOO(O)OT(t)

-o(3)

By choosing the Haar unitary operator O as arandom Clifford
operator one can find a good estimator of two point SFF.

To give the similar proof at finite temperature let us con-
sider the energy eigenvalue representation of OTOC, which
is given by the following expression:

2

(5.95)

1
Cr) =z 55 > cam(@ expl—B(E, + En)l,  (5.96)

n,m

where the time dependent expansion coefficient can be
expressed as:

Cnm(t) = —(n|le” 7 x1*\m) = exp [—i(E, — Ep)t].
(5.97)

Here we have used the fact that, H|n) = E,|n). Conse-
quently we get:
Quantum OTOC

1
C(r) = ZBE ij expl—B(Ey + Em)]

exp [—i(Ey, — Ep)T]
_1z@+inP

ZB)I = Two point SFF.

(5.98)

@ Springer

This establishes the connection between OTOC and two point
SFF at finite temperature

5.4 Two point SFF and thermal Green’s function in RMT

In this subsection our prime objective is to explicitly com-
pute the expression for SFF for different even polynomial
potential of random matrices. This is very useful to quantify
chaos when we have no information about the interaction or
time dependent effective mass profile which will finally give
rise to scattering in conduction wire in presence of impurity
or cosmological particle creation during reheating.

Let us now consider a Thermofield Double State (TDS)
associated with canonical quantum mechanical state at finite
temperature. The time evolution of the TDS can be expressed
as:

[W(B, T))TDS = L ZeXp [—EH} expliHr].
vVZ(B) = 2

(5.99)

Using this information one can define Spectral Form Factor
(SFF) as:

SFF = [rps (¥ (8. 0|W (8. 7)) 1ps|®
1 .
—B(Em+En) ,—it(Em—En)
e e
ZB)P Zm,n

|z +inf?
1Z(B)I*
Here E,, and E,, correspond to the n -th and m -th level of the
quantum system under consideration. Here the Boltzmann
factor B = 1/T, where T is the temperature associated to
the system. Apart from temperature dependent Boltzmann
factor the definition of SFF also involves conformal time 7,
which we have define in earlier section of this paper and
during reheating T o ¢. Here ¢ is the physical time scale and
the proportionality factor is constant in space time.
Now at very high temperature (8 = 1/T — 0) and low
temperature (8 = 1/T — o0o) we get the following limiting
behaviour of SFF, as given by:

Zm,n e_iT(Em_En)’ B=1T—0
0, B=1/T - o0’

(5.100)

SFF = {
(5.101)

Itis also observed that in T — oo limiting situation the near-
est neighbour energy spacings contribute only to the quan-
tification of SFF. This implies that the concept of SFF also
helps in understanding the time dynamics of the quantum sys-
tem under consideration and also very useful tool to analyze
the discreteness in energy spectrum. Chaotic system satisfy
Wigner’s formula which makes SFF a good observable for
quantifying chaos.



Eur. Phys. J. C (2019) 79:320

Page 39 of 107 320

In usual prescriptions, SFF is averaged over an statistical
ensemble of random matrix. This is a very particular feature
of SFF and can be directly linked to the quantification of
quantum chaos. Before going to discuss further here it is
important to note that, all distribution for eigenvalues are
different from each other but quite similar at small scales.
This is a very crucial information for the computation of
SFF to quantify chaos.

Now in the present context we define a new function
G (B, t), which is represented by the following expression:

(1Z(B+i1)*)GUE
(Z(B) e
Joupp 5 @M dp €= FOF =TO=9(D (1) D (1)) guE
T Japp 5 dh A e POF (D)) (D())GUE
(5.102)

GB.1) =

Here, D(A) = p(}) =eigen value density. In the present con-
text, G(B, t) characterize the two point correlation function
which measures SFF.

Now, one can divide the total Green’s function G in two
parts (connected and disconnected part of the Green’s func-
tion), as given by:

G(B. 1) =Gac(B,7) + Ge(B, 1), (5.103)
where disconnected part of the Green’s function G, and

connected part of the Green’s function G, can be expressed
as:

(Z(B+iDNZ(B — z'r))]
Gy (B, =
de(P. ) [ (Z(B))2

_ Jdrdu e PO mIT0 (D)) (D(w)
- Jdrdup e PO+ (D)) (D (1))

(12(B +iT)2)GUEi|

(5.104)

Ge(B.7) = G(B, 7) — Gue(h, 1) =
i O el [ ZBN g

3 [(Z(ﬂ +iD)(Z(B — ir))]
(Z(p))?
_ Jdhdp e POTID mIT0) (DR) D ()

Now, for further analysis we consider the high temperature
limit (8 = 1/T — 0) and also can divide the total Green’s
function G in two parts (connected and disconnected part of
the Green’s function), as given by:
G(B—0,7) =G(1) = Gac(r) + Ge(), (5.106)
where disconnected part of the Green’s function G, and

connected part of the Green’s function G, can be expressed
as:

Guo(r) = |:(Z(/3 +it))(Z(B — if))]
B=0

(Z(p)?
_ [drdp e T (DOY) D)
~ [didp (D)D)
(1Z(B + ir>|2>GUE]
(ZBGue 15
_ [<Z(ﬂ +HIDNZ(B — im}
(Z(p))? p=0
_ [drdp e T (DA D())e
- [dhdu (D)D)

Here we define the connected two-point correlation function,
which is given by the following expression:

(5.107)

Ge(r) =G(1) = Gae(r) = [

(5.108)

(DA D())e = (D) D () — (DM))(D(w))). (5.109)

To quantify this explicitly one can define the eigen value
density function D(}) in the neighbourhood of extremum of
level density (p(1)) as:
D) = D(A) +8D(M), (5.110)
where D (1) is the average of the eigen value density function
over the statistical ensemble of eigen values of the random
matrices and 6 D (A) represents the quantum fluctuation on
D).

Consequently, using this fact the two point correlation
function reduced to the following form:

(D) D(p))e = (8D (1) D(1)) (5.111)

and using this connected part of the Green’s function G, can
be further simplified as:

Ge(r) = G(1) — Gye(T)
_ [drdp e T (D)8 D (1))
Jdrdu (DO (D) '
Additionally, it is important to note that, the mean level den-

sity can be normalised in a semi circle using the following
two conditions:

(5.112)

2a
/ dr D(A) = N, (5.113)
—2a
2a
f dx p(n) = 1. (5.114)
—2a

Here D()) actually represents the number of eigen values
lying between the small interval (A, A+d2A) and in the present
context it is proportional to O (+/N). On the other hand, p (%)
is the density which we get by extremising the action and
treated to be free from all factor of N and all eigen values
which are just O (1). In this context, the two variables A and
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o are related by the following expression:

A =+/No. (5.115)

To compute the G4, and G, part of SFF explicitly let us
first start with the one point function on the semi-circle as
given by:

(Z(B £ iT))uGuE = / D T P (o (W) nGuE

2a
=/ dx eT™ P p(). (5.116)

—2a

At high temperature (8 = 1/T — 0) this result can be
simplified as:

[(Z(B £ iT))nGUE]p=0 = / dx e™™ (p(V))nGuE

2a .
f dxr e p(n). (5.117)
—2a

On the other hand at very low temperature limit (8 = 1/T —
o0) we get: simplified as::
[{(Z(B + iT))nGUElg— o0 — 0. (5.118)

Here it is important to note that, for different polynomial
random potential we will get different expressions for the
integral measure. Now we need to find the specific point after
which properties of SFF drastically changes. We define this
points as critical points. For general even order polynomial
potential one can write down the following expression for the
density function of the eigenvalues of the random matrices:

1 n
(M) = —v4a? — A2 E an_ A" Vevenn. (5.119)
T
k=1

Further substituting Eq. (5.119) in Eq. (5.116) we get the
following simplified expression for the one point function
on the semi-circle:

1 2a .
(Z(B£it)InGUE = */ dr T
T J-2a

n
x e P* \/4q2 — )2 Z ap_ i 22"0) v evenn
k=1

- 2(_ 2\"2K ok [( 2ink | 2inn)  2(k+n)
= Zan_ka (—a ) 4 [(e + e )a
k=1

1
(-« -
X ( —|—n+2>

~ 11
X 1F, (—k+n+§§§7

—k+n+2; az(ﬂ:tir)z)
+a(B+it) <a2k(—a)2" - (—a)2’<a2") T(—k+n+1)
X 11:"2 (—k—|—n + 1; %, —k+n+ g;az(ﬁ :i:ir)2>:|

(5.120)

V even n.
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where | F» (A; B, C; D) is the regularized Hypergeometric
function.

Repeating the same calculation in high temperature (8 =
1/T — 0) limit we get:

1 [2a .
[Z(B it acuelp—o = — /  ar e

n
V4da? — 2 Z ap_ A0 v evenn
k=1
n
= Z an—k

=1 VAl (=k+n+2)C (—k+n+§>

2k 2n 1
x [{(—1) +(=1) }r <—k+n+ 5)

5
r{—k —
X ( +n+2>

11 2 2
x 1 —k+n+§;§,—k+n~|—2;—a T

+diar {(—1)2" + (—1)2"“}
xD(=k+n+ DI(—=k+n+2)
3 5
X 1F (—k+n +1;,—,—k+n+ —; —a212>:|

e—2ink4n—ka—2k+2n+2

2 2
V even n. (5.121)
For different polynomial potentials we can actually calculate
the expansion coefficients a,_; and get the exact form of
Z(Bxir).
At finite temperature the disconnected part of the Green’s
function (G4.(B, t)) can be expressed as:

(Z(B+iD)(Z(B —iT))
(Z(B))?

n
_ izan_q (_az)—zq 44 [(eZinq +ezinn) 2@+
g=1

1
r(- _
X ( q+n+2>

~ 11 2,2
X 1F> —q+n+5;§,—q+n+2;a p

+ap (¥ (=@ ~ (~a2a® ) T(~g +n + 1)

Gac(B, 1) =

)
~ 3 S 2
x 1k —q+n+l;§,—q+n+§;a B

x Ii“"—k (_az)—zk 4k [(ezmk +ezinn> o 2k+m)

~ 11
1> (—k+n+§; 5,—k+n+2;a2(ﬂ+i‘[)2>

+a(B +it) <a2k(—a)2" - (—a)2ka2") T(—k+n+1)
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2 2

n
—2m . .
« {Z - (_az) 4—m [(ezmm +621nn> g 2m+n)
m=1

1
r({— —
X (m+n+2>

- 11
x1F|-m+n+ = =

- 3 5
x 12 (—k+n+1; 7,—k+n+7;a2(l3+ir)2>“

5 2,—m+n+2;a2(ﬁ—ir)2>

+a(B —it) <a2m(—a)2" — (—a)zma2"> M(—m+n+1)

. 3 5 , )
X 1F> —m+n+1;5,—m+n+§;a (B—it)

(5.122)

V even n, m.

Further taking high temperature limit we get the following
simplified expression for SFF as given by:

Gae) = [ (Z)P

e—2ink4n —ka—2k+2n+2

(Z(ﬂ+ir))(z(ﬂ—if)>]
p=0

1 n
= m Zanfk

= JAD(—k +n+2)T (—k+n+§)

2k 2n 1
x [{(—1) +n>hr (—k+n+ 5)

5
r{—« —
X ( +n+2>

1 1 2 n
X 1F> —k+n+§;§,—k+n+2;—a T

diat {(—1)2" + (—1)2"“} T(—k+n+1)
xT(=k+n+2)

3 5
xng(—k—i—n—i—l;5,—k+n+§;—a2rz>:|}

n —2imm gn—m ,—2m+2n+2
e 4" Mg
X E an—k P
P JAD(=m +n+2)0 (—m—i—n—i—j)

x “(—1)2’” + o) <—m - 1)

2
xT ++5
—mAn+ =
2

11
X 1F <—m+n+§; 5,—m+n+2; —a2r2>

Piar |(—1)2'" + (—1)2”+1} T(—m+n+1)
xI'(—m +n + 2)

3
X 1, (—m—i—n—}—l;z,

5
—m+n+§;—a212>:“.

(5.123)

Next, we will consider late time limiting behaviour of the
one point function, which can be expressed as:

Jim (Z(B £ it)ngue =(Z(B£i00)nGuE (5.124)

and at the high temperature (8 = 1/T — 0) limit we get:
Jlim [(Z(B £ it)ncuEelp—o = (Z(0£ic0))nguE. (5.125)

Now, it is important to note from the previous discussion

on SFF that, the connected part of the Green’s function G,

part of SFF depends on the two point correlation function

(§D(A)SD (1)) and from RMT the exact from of this two-

point function near the centre of spectrum (mean) of the eigen

values is known and can be expressed in the following form:
sin? [N(A — p)] 1

+ —8( — )

(8D(M)SD(w)) = NG —w)? 7N
(5.126)

which can be derived using the method of orthogonal poly-
nomials for Gaussian ensembles. This is true for any polyno-
mial potential measure whose matrix (operator) is of single
trace. Various polynomial potentials change only the eigen
value distribution near edges of the distribution. There are
two parts and they give different measures:

1. 1/N? part with sine squared function gives the ramp and
have subdominant contribution.

2. 1/N part with Delta function gives the plateau and dom-
inant.

Next, using Eq. (5.126) in Eq. (5.112) we get the following
simplified expression for the connected part of the Green’s
function G, as given by:

Ge(r) = G(1) = Gac()

1 i
ZW/dkdue ft(—p)
[ sin[N (» — )]

1
TN —E T AN ¢ M)} , (5.127)

where we have used the fact that:

/d,\ dp (D)D) = N2. (5.128)

To perform the integral present in the expression for G, we
further substitute, A +u = E, X — u = w. Consequently,
the measure can be expressed as, dA du = dE dw. Then at
high temperature using this fact Eq. (5.127) can be recast as:

1 00 oo )
Ge(t) = G(1) — Gue(r) = —2/ / dE dw e
N*Jooo -
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[ 1 sin’ [Nw] 1 }
X|——_— . (5.129)

— + —d(w
72 (Nw)? TN @)
Then, at finite temperature the connected part of the Green’s
function can be written as:

Gc(ﬂ7 T) = G(,B, T) — Gdc(,Ba T)

1 o0 oo )
= —/ / dE dw e PE~iTe
N2 —00 J —o0

[_1 sinz[Nw]+ 1 5 )}

| "2 N T an’@
27 o —iTw

= m&(ﬁ) /;oo dw e

1 sin? [Nw] 1 5
X [—;W + ﬁ (w)j| ,

where §(8) is the Dirac Delta Function, which is defined as:

(5.130)

§(B) = i/oo dE e PE. (5.131)

27 J_ oo

Since the integral over E gives trivial Dirac Delta function
we choose our working region for which £ = 0 (at hight
temperature limit). Then the remaining integrand is only over
o and it finally gives:

o0

d(,l) e—i‘L’w

S(t) = N?G.(1) =/
[_ 1 sin?[Nw] N 1 5 ]
| "2 Wz TN @

which gives us finally the following simplified expression:

(5.132)

T <2nN

, 5.133
T>2nN ( )

T 1 1
S(1) = { @R TN TGN
m )

From the obtained result it is clearly observed that we get the
linear growth in the region 7 < 27 N and the constant plateau
type behaviour in the region T > 27 N. Also it is important
to note that change in behaviour from region t < 27 N to
region T > 27 N is abrupt. To show the behaviour of SFF
explicitly we define argument of sin function as:
x = N(A — u) = No = constant (5.134)
as we choose N — oo and @ — 0. In this limiting situation
we get the following results:

1. For large x(>> 1), % — 0 and only the Dirac Delta
function remains intact. So in this specific limit the van-
ishing of sin term implies that the oscillatory fluctuations
don’t contribute in the final expression for SFF. This lim-
iting situation is called spectral rigidity.

2. For small x(< 1), Si;x — 1. In this limiting situation
the integral gets maximum contribution from the w = 0

region. And this part contributes in ramp region.

@ Springer

We can also measure dip-time and it will give the change of
decay behaviour exactly at the critical point. A direct relation
between fall-off behaviour of the SFF and the edge behaviour
of level density, at critical points can be established using
Paley—Wiener Theorem [59].

Now we consider a function g(¢) which is defined on a

compact spatial support and its Fourier transform F (1) has
a lower bound on the rate of decay is given by the following
expression:
IF < A +m Vyw. (5.135)
Here N is arational number and yy is areal constant. A direct
relation between the decay of the SFF and the edge effect of
mean level density is given by the following expression:

(Z(£i1))| <

1 2a d"
4a o) dal. (5.136
) ‘/_2 T (P0) ‘ (5.136)
For the proof of this statement see Ref. [59]. For decay
behaviour of SFF at late time we use asymptotic behaviour
of the solution appearing in the Ref. [98].

Now to compute SFF we need to add both connected and
disconnected part of the Green’s function G(= G, + Gg4.).
Therefore, for different even polynomial potential we get
finally the following expression for SFF at finite temperature:

SFF(B,7) = G(B, 1)

Gac(B, 1) + —(2;]\/)2 — % + —(nlN), T <2aN
Gac(B©) + 7y T >27N
(5.137)

where SFF(7) is defined with proper normalization.
After substituting the expression for G 4. (8, T) we get the
following expression for the SFF at finite temperature:

n -2
SFF(B.7) =1 an—q (—az) T4
g=1
« |:(e2inq + eZinn)GZ(q+n)l—~ (—(1 4 %)
- 11
x1F <—q +n+ 5; E, —q+n+2 ﬂzﬁz)
+ap (a4 ()" — (~a)a® ) (=g +n +1)

-2
B 3 5. 24
x 1k —q+n+1;§,—q+n+5:aﬁ

n 2 72k k
X Zan,k <7a ) 4~

k=1
8 [(ezmk +ezizm) 20 <—k ny l)

2

- 11 2 2
x 15> —k+n+§; E,—k+n+2;a B+irt)
+aB +iv) (¢ (=" = (~a)*a® ) T (—k +n+ 1)
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- 3 5
x 1 (7k+n+ 1; 5 —k+n+ 2;a2(ﬁ+ir)2>:|]
n
—2m . .
x ! Z An—m (_a2) 4—m [(62mm + e2mn>a2(m+n)
m=1

1
r(-— —
X <m+n+2>

> 11 2 . \2
x 1F> —m+n+§;§,—m+n+2;a B—ir)

+a(B —it) (az'”(—aﬁ” - (—a)2ma2"> T(—m+n+1)

- 3 5
X 1 F» <m+n+l;2,m+n+2;a2(ﬁir)2>:|]

T <2nN

5.138
T>2nN. ( )

_ Tt __ 1, 1
_,_[(21711\/)2 Nt &Ny
TN’

Further taking the high temperature limit we get the following
simplified expression for SFF as given by:

1 n
SFF(1) = 5 {Zank

k=1
e*2i7tk4)sza72k+2n+2
X

VAT (—k +n+2)T (—k+n + %)

x [{(—1)” +(=D7T (—k +n+ 1)

2
5
r|—k =
X ( +n+2>

11
x 1 Fy (—k+n+§; 3kt —azrz)

—2iar{(—1)2k+(—1)2"+1}I‘(—k+n+l)
xT(=k +n+2)

E—k+n+1 3 k+ +5 272 Zn:
X —k+n =, —k+n+4+=;—a‘t

112 ’2! 21 =

672inm4n7ma72m+2n+2

VAT (=m +n+2)T (—m+n+%)

X [{(—1)2’” + (=T <—m +n+ %)

5
r(— b
X ( m+n+2>

11
x1F <fm+n+§; 3+ —a2r2>

iat {(—1)2'" + (—1)2"+‘} T(—m+n+1)
x['(—=m +n+2)

3 5 -
x 15 (—m+n+1;§,—m+n+§;—azrz) Z:”

(5.139)

5.5 SFF for even polynomial random potentials
5.5.1 For Gaussian random potential

Let us start our discussion with Gaussian random potential
given by:

1
V(M) = EMZ. (5.140)
Now for a single interval (n = 1) with end points —2a and
2a (semi-circle) we get:

A
o +i0) = > +iagy/4a? — A2,

(5.141)

and we get the following expression for density function for
eigen value of the random matrix M as given by:

! V4a? — 12 ay.

o) = — (5.142)
T

Further, Taylor expanding (A + i0) we get the following
expression:

4apa® n 2apa® n 2apa’ n 1 O 1\° 1
——a - = -.
PE 23 ) 2 Y Y

(5.143)

Then comparing the both the sides of above expression we
get:

ap = 1/2,

a=1.

(5.144)
(5.145)

Then the density function in terms of the eigen value of ran-
dom matrix M is given by the following expression:

(5.146)

1
() = 5—4a> =2,
T

and one point function of the partition function in presence
of the Gaussian random potential can be expressed as:

1 2a .
(Z(B+it)) = 2_/ dh V4a2 — \2 T =P
v 2a

= a?oF (2; (B + ir)z) , (5.147)

where Fj (A; B) is the regularized Hypergeometric func-
tion. Now here substituting 7 = 0 we get:
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2a
) = o [ VAT R e = oy (2 a62).
(5.148)

Further taking high temperature limit we get the following
simplified expression for the one point function:

2a
(2B +iDMpo = 5 / iR

Ji(£2
_ gAN1E2a0) (5.149)
T

which can be further simplified by taking the limit 7 =
VNt — 00 as:

1 1\*?
H 2
(28 +iT g = ——=a <ia_7)

X COS (i(:l:SaT—i— n)) . (5.150)

Now for the quadratic random potential disconnected part of
the Green’s function can be computed at finite temperature
as:

(Z(B+iT))(Z(B —it))
(Z(B))?
o (2; 2B+ ir)z) oFy (2; 2B + ir)2>
_ - ; . (5.151)
(OFl (2: azﬂz))

which can be further simplified in the high temperature lim-
iting situation as:

Gdc(ﬁv T) =

(Z(B+iT)Z(B —it))
Gae(r) =
4e(®) [ (Z(B)? ]H
a® Ji2at)Ji(—2at)
=-5 i . (5.152)

Further taking the limit 7 = +/Nt — 0o we get the follow-
ing simplified result:

Gue(T) = [(Z(ﬂ +iT))(Z(B — iT))}

¢ (Z(B))? B=0
a1

= (=1 TNZa \oT cos 2(8aT+n) . (5.153)

Now to compute SFF we need to add both connected and
disconnected part of the Green’s function G(= G, + Gy.).
Therefore, for quadratic polynomial potential we get finally
the following expression for SFF at finite temp:
0[‘:1 (2§az(ﬂ+it)2) 01':1 (2;a2(5+ir)2)

(01:“1 (2;(;2/32))2

1 1
¥t @

T
+W - T <2nN
SFF(B, 7) = (5.154)
oF) (2;u2(ﬂ+ir)2) oF (2;(;2(ﬂ+ir)2>

(Oﬁ] (2:a2ﬁ2))2

+ﬁ, T>27N
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where SFF(B, t) is defined with proper normalization and
in our prescription it gives the total Green’s function as men-
tioned above. Further simplifying the result for high temper-
ature limit we get the following expression for SFF, as given
by:

a? J1Qat)Ji(=2at)
TN

SFF(7) = + T <2nN ,

T 1 1
@rN)Z N T @

2 J1Qat)Ji (=2
—611—4—1(“1)1\,12( aT)—%—#, T>2nN

(5.155)

Further taking the limit 7 = v/Nt — 0o we get the follow-
ing simplified result for SFF:

SFF(T)
(—1)3/2 21‘&1” ((%T)3 cos (%(8617— + 7))
|t v taEn T < 27N
DY g ()]
cos (3(8aT +m)) + . T > 27 N3/?
(5.156)

From Fig. 23a—d we see that SFF at finite temperature
decays with increasing T and reach zero. But with changing
B, SFF values remains almost same initially (for higher g or
lower temperature).

For both the plots we have shown that SFF decays to
zero for finite temperature. In Fig. 24a—c it is observed that
SFF with variation in N get saturated at different value of 7.
But with increasing N the value of the saturation point, will
decrease. Subtracting the change of axis[SF F'|;=g] we get
the predicted bound of SFF.

5.5.2 For quartic random potential

Here we consider quartic random potential which can be writ-
ten as:

1
V(M) = EM2 + gM*. (5.157)

For asingle interval (n = 1) with end points -2a and 2a (semi-
circle) we get the following expression for density function
for eigen value of the random matrix M as given by:

1
p(W) = —v4a% — A2 (122 + ap).
T

Now, for the quartic random potential w (X + i0) can be
expressed as:

(5.158)

1
00 +10) = Z(2C2h + 4g23)

+ivda? — 22(a1 )\ + ap).

(5.159)
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SFF at finite temperature for gaussian potential
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(a) SFF for gaussian potential at 3 = 10.
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(b) SFF for gaussian potential at G = 100.
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(d) SFF for gaussian potential at 5 = 1000.

Fig. 23 Spectral Form Factor for Gaussian potential at different finite temperature[ ] with N = 1000 and a = 0.1

Now Taylor expanding w (A + i0) near A — oo gives the

following expression:

1
2 3
<2a1a —a0+§)k+)» 2g —ay) + I

10a;a® + 4aga®

4aa® + 2aoa4 2a1a* + 2apa?
* 23 A

(5.160)
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Spectral Form Factor for Gaussian Potential Spectral Form Factor for Gaussian Potential
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Fig. 24 Time variation of SFF for different N at 8 = 0. Here we used a scale factor SF'F + 0.01137
Therefore equating both sides of the above equation 12ga* +a* = 1. (5.163)
gives:
a) = 2g, (5.161) Then the density function in terms of the eigen value of ran-
1 dom matrix M is given by the following expression:
ap = 4a’g + 5 (5.162)
1 /1
— _ (= 2 2 442 — 32
along with the following constraint condition: p() = T (2 +4ga” +2gh ) 4a% — A%, (5.164)
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Fig. 25 Eigen value distribution curve of density function for quartic potential for different parameter values. Here we fix a = 1

Further solving the constraint we get:

SRR FI—1
a® = %, (5.165)

and here a” has imaginary value for g < — ‘% and the critical
value is given by:

1

——. 5.166
48 ( )

8c =

In Fig. 25a, b density function p (1) for quartic potential
is plotted with a = 1. The curve follows from Eq. (5.164).
When g = 0it matches with Wigner law. For g > 0 the curve
shows a plateau region whereas for g < 0 it preserve the
semicircular nature with minor deviation.The plateau region
denotes the deviation from Wigner law even at very less effect
of quartic term (as g is chosen to be small). The plateau region
though converge with semicircle at end point. At g, = —%
the curve deviates but converge to semicircle at end points
where as for g < g, the curve never converge to semicircle
one supporting its non-existence (see Eq. (5.166) for details).

Now we will calculate the one point function of the parti-
tion function for quartic random potential, which is given by
the following expression:

2a

1
@win»=;/

1 2 2
dxr +4ga” +2gx
2 2

xv/4a? — )2 eFTr p=Br

N (ﬂf—mZ[(z““zé’ +D(B£iv)[2a(B £ i)

—dagl(a(f + it))], (5.167)

where I, (x) is the modified Bessel function of first kind with
order n.

Further taking the high temperature limit we get the fol-
lowing simplified expression for the one point function:

2a
(26 £ im0 =~ | o (% + dga® +2gk2)

xy/4a2? — 12 ¢Fitr

= %[ + (24a’g + Dl (+2a7)
T

—24ag12(:l:2ar):|. (5.168)

Therefore the first term vanishes exactly at the critical point
8 = —% which gives:

2 _ 1 _
a” = =2. (5.169)
24g.

Now taking the limit 7 = /Nt — oo we get finally the
following simplified result for the one point function:
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[(Z(B£iT)) =

= —ﬁ\/g (24a2g + 1) cos (:I:ZaT+ %)

| 24gsin (+247 + %)}
T

+0 ((117)7) . (5.170)
2

Now for the quartic random potential disconnected part of
the Green’s function can be computed at finite temperature
as:

(Z(B+iD)Z(B — iT))
Gac(B, =
de(P. ) (Z(B))2

4 1
vz -ﬂ% 72)? [(24a2g + 1) B11 (2aB) — 24aglr2ap)]”
x [(24a2g + 1) (B +it)[ (2a(B + i)
—2dagh (2a(B + ir))}
x [(24a2g + 1) (B —it)l;2a(B —it))

~24agha(p —iv)],

(5.171)

which can be further simplified in the high temperature lim-
iting situation as:

[(Z(ﬂ+ir)>(Z(ﬂ—if))]
=0

Gaem = Z)?

2
# [(24a2g + 1) () (2a(it))
—24ag12(2a(ir))]
x [(24a2g n 1) (—it) I} Qa(—it))

—24ag12(2a(—ir))] . (5.172)

Further taking the limit 7 = v/Nt — oo we get the follow-
ing simplified result:

(Z(B +iTINZ(P — m)}
(Z(p))? =0

Gyc(T) = |:

- % NZH {|:<24a2g + 1) cos (ZaT + %)

+24gsin(2aT+Z)i|+0( 1 )]
T 7
(7)2

X ! |:<24a2g + 1) cos (ZaT - %) _ Mgsirl(,2ftﬂ'7£)j|

+0< 1 7)] (5.173)
(=72

Now to compute SFF we need to add both connected and
disconnected part of the Green’s function G(= G, 4+ Gg4.).

@ Springer

Therefore, for quartic polynomial potential we get finally the
following expression for SFF at finite temp:
Jin 1
(B*+7) [(24a2g+1)B11 (2ap)—24ag 1> 2ap)]”
x [(24a*g + 1) (B+iT)[|2a(B +iT))
—24agh(2a(B +it))]
x [(24a*g + 1) (B —iT)[}2a(B —iT))
—24agl,(2a(B —i1))]
+

T 1 1
@NE N T aEme T <27N

SFF(B,7) =
.
(B+10)? [(24a2g+1)B1 (2(:ﬁ>—24ag12<2a/s)]2
x [(24a*g + 1) (B+iT)[12a(B +iT))
—24agh(2a(B +it))]
x [(24a%g + 1) (B —iT)[}2a(B —iT))
—24agh(2a(p —it))]
+#, T>2nN

(5.174)

where SFF(B, 7) is defined with proper normalization and
in our prescription it gives the total Green’s function as men-
tioned above. Further simplifying the result for high temper-
ature limit we get the following expression for SFF, as given
by:

Y 4 (2402 + 1) (D)1 2a(iv))

—24ag12(2a(ir))]

x [(24a’g + 1) (—it) 11 (2a(—i7))

—24ag12(2a(—ir))]

R T <27N
SFF(7) =
24 [(24a2g + 1) (D)1 2a(iv))

—24agh(2a(i1))]

x [(24a’g + 1) (—it) ] (2a(—i7))

—24ag12(2a(—ir))]

1

+oN

T>2nN
(5.175)

Further taking the limit 7 = /Nt — oo we get the
following simplified result for SFF:

#ﬁ (24a%g + 1) cos (2aT + %)
+24gsm(3[aT+%)] Lo ( L )}
(T)2

X (24a2g + 1) cos (Za’T - %)

 2dgsin(2aT-% ]+ 0( 1 )}
’ -1)?
T —

1 1 "
+W_W+(nN) T < 27 N3/
SFF(T) =
25 1| (24a%g + 1) cos (2aT + %)
24gsin(2aT+7%) ] 1
t——F | +0
7 (1?
X [(24a2g + 1) cos (Za’T — %)
ReL LUCLE ) 0( 1 )}
7
z (-7)2
+ﬁ’ T > 27 N3/2
(5.176)
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Further simplifying the result for high temperature limit
we get the following expression for SFF, as given by:

N‘fﬁ [(24a%g + 1) (i) 1 (2a(iT))
—24ag12(2a(ir))]
x [(24a%g +1) (—it) 1 2a(—it1))
—24ag12(2a(—ir))]

1 1

+ T <2nN

T
@rN)? N +&me

SFF(7) =
Nz—; [(24a%g + 1) (i) 1 2a(iT))
—24ag12(2a(ir))]
x [(24a%g +1) (—it) 1 2a(—it1))
—24ag12(2a(—ir))]
+#, T>2nN

(5.177)

From Fig. 26a, b, we see that SFF at finite temperature
decays with increasing T and reach zero. But with changing
B SFF values remains almost same initially (for higher 8 or
lower value of temperature).

From both the figures we have shown that SFF decays to
zero for finite temperature. In Fig. 27a—c, it is observed that
SFF with variation in N get saturated at different value of 7.
But with increasing N the value of the saturation point, will
decrease. Subtracting the change of axis[SF F'|;=g] we get
the predicted bound of SFF.

5.5.3 For sextic random potential

In this subsection we consider sextic random potential, as
given by the following expression:

1
V(M) = EM2+gM4+hM6. (5.178)

For a single interval (n = 1) with end points —2a and 2a
(semi-circle) we get the following expression for the density
function in terms of the eigen value of random matrix M:

1
o(A) = — V4a? — 22 (axn* + a1A? + ap). (5.179)
T

plateau region though merge with semicircle at end points.
But choosing ¢ < 0,7 < O0Oand g = 0 and 2 < O show
deviation from semicircle and don’t converge even at end
points.

Further expanding w (A + i0) near A — oo we get:

3 2 4 2 l
A (2a2a a1 +2g )+ | 2a2a” + 2a1a ag + 3 A
4ara® + 2a1a* + 2apa®
A

+2° Bh —ax) + O <<1>3) = 1.
A A

Therefore, equating both the sides of the above equation we
get:

(5.181)

ay = 3h, (5.182)

a) = 2g + 6a’h, (5.183)
1

ap = 18a*h + 4a’g + > (5.184)

along with we get one additional constraint condition, as
given by:

60a°h + 12ga* + a> = 1.

Then, for the sextic random potential we get the following

simplified expression for the density function in terms of the
eigen value of the random matrix M, as given by:

1
p(L) = —V4a? — A2 <18a4h + A2 (6a2h + 2g>
T

1
+4a’g + 3h0* + 5) . (5.185)

Solving the constraint condition we get, a2 in terms of g and

h. The real root for a? is given by the following expression:

2o F(g, h)  180h — 1442 '
30h 1080hF (g, h)  15h°

(5.186)

where we define the function F (g, h) as:

F(g. h) = \3/—8g3 + 5\/—144g3h2 — 3g2h2 4 270gh3 + 2025k + 5h3 + 15gh + 225h2.

(5.187)

Also for sextic potential w (A + i0) can be expressed as:
. 1 3 5
w0 +i0) = (4g)» + 6 +,\)

+iv4a? — 2(@r* + a ) + ap).

In Fig. 28a, b for sextic potential behaviour of density
function p (1) is shown. The curve follows from Eq. (5.185).
Again choosing g = h = 0 will produce the Wigner law.
Deviating g and & by small amount shows deviation from
Wigner semicircle law. For g > 0, h > 0 the curve shows

(5.180)

Here we can check that putting # = 0 the constraint condition
reduces to the following simplified form:

12ga* +a* =1 (5.188)

and the solution of this equation is given by the following
expression:

) A8g+1-1
a-=———.

= 5.189
24¢ ( )
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SFFat finite temperature for quartic potential
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(a) SFF for quartic potential at 8 = 10.

10000

Fig. 26 Spectral Form Factor for quartic potential at different finite temperature[ 8] with N =

Here the critical value with 4 = 0 is given by:

o= — (5.190)

&7

which is exactly same result as obtained for quartic potential
in the previous subsection.

Now the expression for the one point function for partition
function at finite temperature can be computed as:

- / dr V4a? — )2

1
x (18a4h +22 (6a2h + 2g) +4a’g + 3m0* + 5)

e;m —BA

(Z(pxir)) =

(ﬂj: e [ Btit)2a(B +it))

x (360a2h + B2 (180a4h +24a%g + 1)
+2iBt (180a4h +24a%g + 1)

2 (180a4h +24a%g + 1))
“24abQa(B £ it))
x (30h (B tir)> (15a2h + g))] .

Further in the high temperature limit the one point function
for partition function can be simplified as:

2a
[Z(B % i0)gg = %fz /vy

(5.191)
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SFFat finite temperature for quartic potential
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(b) SFF for quartic potential at 8 = 100.

1000 and a = 0.1

1 )
x <18a4h + 22 (6a2h + Zg) +4a’g +3m* + 5) eFiTA
a 3
-4 [(Jl(:I:Zar)((:I:r)‘

x(180a*h + 24a’g + 1) ¥ 360a°hr)

—24Jy (+2a1) (2 (15¢%h + g) — 30h))] . (5.192)

Next, simplifying the result for one point function in the
limit 7 = +/Nt — 00 we get:

1
[(Z(B £iT))]p—0 —\/7
(£7)3

X |: — (l +24a%g + 18Oa4h) cos (% + ZaT)

g+ 154°h

1244 sin (% + 2a’T>
360a%h

. (7))

Now for the quadratic random potential disconnected part of
the Green’s function can be computed at finite temperature
as:

cos (% + 2a’T> o (5.193)

(Z(B +it))(Z(p —iT1))
(Z(B)*

/38
= G [ﬂll (2ap)

Gac(B, 1) =

x (360a2h + B2 (180a4h +24a%g + 1))

—24al,(2ap) (30h + p* (15a2h + g))]_z
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Fig. 27 Time variation of SFF for different N. Here we shift reference axis[SFF] to SF F|;—g

X [(B +it)[1a(B + i) x (30h F(B+in)? (15a2h + g))]

x (360a2h + B (180a4h +24a%g + 1) x [(B —it)[(2a(B — iT))

+2ife (1800 +24a% + 1) x (360a%h + % (180a*h + 24a’g + 1)
g2 (180a4h gt 1)) _2ift (180a4h +24a2g + 1)
—24al,(2a(B +i1)) {2 (180a4h +24a%g + 1))
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p(/\) for different g and h
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Fig. 28 Eigen value distribution curve of density function for sextic potential for different parameter values. Here we fix a = 1

—24al(2a(B — it))

x (30h (B —it)> (15a2h + g))] , (5.194)

which can be further simplified in the high temperature lim-
iting situation as:

Gdc(r) = |:
2

= NZ8

—360a’ht) —24J>(2at)(t*(15a°h + g) — 30h))]

(Z(B+iD))(Z(B —if)>]
(Z(B))* =0

[(Jl (at)(z3(180a*h + 24a2g + 1)

x [(Jl(—2ar)((—t)3(180a4h +24ag + 1)

+360aht) —24J>(—2at)(t>(15a%h + g) — 30h))] .
(5.195)

Further taking the limit 7 = v/Nt — 0o we get the follow-
ing simplified result:

Gae(T) = [ (Z(B))?

[— (1 +24a%g + 180a4h)

(ZB+iT)HZ(P — iT))}
B=0
_ti_a
T T3 N2y
T
X COS (Z + 2aT)
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g + 15a°h
g
T

360a%h T 1
+T cos (Z + ZaT) + O <ﬂ>]

x [— (1 24a%g + 180a4h) cos (% - 2aT)

+24 sin (% + ZaT)

g+ 154*h .
—24a=————sin (Z — ZaT)
360a>h T 1
+=—cos (7 —2aT) + 0 <ﬂ>] . (5.196)

Now to compute SFF we need to add both connected and
disconnected part of the Green’s function G(= G, + Gg4.).
Therefore, for sextic polynomial potential we get finally the
following expression for SFF at finite temp:

SFF(8, 1) = _B [ﬂ[ (2ap) (360a2h
RRNVERR

+87 (1800%h + 24a’ 1 1))
—24al,(2ap) (30h +p° (15“2h + g))]—Z

x [(B+it)1(2a(B +iT))
x (360a2h + 2 (180a4h +24ag + 1)

12ift (180a4h 1 24a%g + 1)

—2 (180a4h +24a2¢ + 1)) —24al,2a(B + i)
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x (30h +(B+in)? (15a2h + g))]
x[(B—it)[1(2a(B —iT))
x (360a2h + B2 (180a4h 42420 + 1)

_2ift (180a4h +24ag + 1)
— (180a4h +24a%g + 1))

—24ala(B —it)) <30h +(B—ir)> (15a2h + g))]

T <2nN

5.197
T>2nN ( )

T 1 1
+{ GiNY TN T any
TN’

where SFF(B, 7) is defined with proper normalization and
in our prescription it gives the total Green’s function as men-
tioned above.

Further simplifying the result for high temperature limit
we get the following expression for SFF, as given by:

SFF(7) = N”Tzrg [(J1 (2at)(x3(180a*h + 24a%g + 1) — 360a2h7)
2405 2at)(t2(15%h + g) — 30h))]
x [(Jl (=2a7)((—1)(180a*h + 24a%g + 1) + 360a%ht)
—24J5(=2at) (x> (15a%h + g) — 30h))]

T <2nN

5.198
T>2nN ( )

N S U N
_,_: (217rN)2 Nt Em
N>

Further taking the limit 7 = v/Nt — oo we get the follow-
ing simplified result for SFF:

_Loa 2 4
SFF(T) = —5~5— [ (1 + 24a%g + 180a h)
T
X COS <Z + Za’T)
15a%h
+24ag++ sin (% i 2aT)

360a%h P 1
+T CcoS <Z + 2aT> + O (ﬁ)]

x [— (1 +24a%g + 180a4h) cos (% . 2a’T>

g+154°h . m
—24a T sin (4 — 2aT>
360a°h w 1

+T cos <Z — 2aT> +0 (774)]

N E—— L 32
+ G TN T M T <27 N3/

nLN ) T > 27 N3/2

(5.199)

From Fig. 29a, b, we see that SFF at finite temperature
decays with increasing T and reach zero. But with changing
B SFF values remains almost same initially (for higher g).

In Fig. 30a—c, it is observed that SFF with variation in N
get saturated at different value of 7. But with increasing N

the value of the saturation point, will decrease. Subtracting
the change of axis[SF F|.—=o] we get the predicted bound of
SFF.

5.5.4 For octa random potential

Here we consider octa random potential, as given by the fol-
lowing expression:

1 2 4 6 8
V(M) = EM +gM™ +hM° +kM®. (5.200)
For a single interval (n = 1) with end points -2a and 2a
(semi-circle) we get the following expression for the density

function in terms of the eigen value of the random matrix M,
as given by:

1
p(A) = —v4a? — )2 (aﬂ»f’ + aprt + a1a? + ao) .

T

(5.201)
Then the function w (A + i0) can be expressed as:
. 1 3 5 7
w0 +i0) = 3 (4gx + 6125 + 8kA7 + A)
tivaa? — )2 (a3k6 Fart +ap?+ ao) . (5.202)

Further Taylor expanding w (A + i0) near A — oo we get:
22 (Zagaz —ay + 3h) + 3 (2a3a4 +2ama* —ay + Zg)
6 4 2 1
+ [ 4aza” + 2ara™ + 2a1a” — ag + 2 A

10a3a8 + 4ara® + 2a1a* + 2a0a2
+ A

()2

Therefore, equating both the sides of the above equation we
get:

+ 17 (4k — az)

(5.203)

a3 = 4k, (5.204)

ar = 3h + 8a’k, (5.205)

ay = 24a*k + 6a*h + 2g, (5.206)
1

a = (160a6k +36a%h + 8ag + 1) , (5.207)

along with an additional constraint condition:

a® + 12a*g + 60a°h + 280a%k = 1 (5.208)

Solution of this constraint equation gives a in terms of g,
h and k. Since the solutions for a? are very complicated, we
have not explicitly mentioned them here. Instead of writing
full solution here we can check that putting # = 0 the con-
straint condition reduces to the following simplified form:
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SFF at finite temperature for Sextic potential

SFF at finite temperature for Sextic potential
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(a) SFF for sextic potential at 3 = 10.

200000 -

100000 [

B T T T T T T T T Y B

0 1000 2000 3000 4000 5000 6000 7000
T(time)

(b) SFF for sextic potential at 3 = 100.

Fig. 29 Spectral Form Factor for sextic potential at different finite temperature[ 8] with N = 1000 and @ = 0.1

12ga* +a®> =1 (5.209)
and the solution of this equation is given by the following
expression:

/48 I-1
p2oyretlio (5.210)
24¢
Here the critical value with # = 0 and k = 0 is given by the
following expression:

g = —— (5.211)

48’
which is exactly same result as obtained for quartic and sextic
(with & = 0) potential in the previous subsections.

Then, the final expression for the density function in terms
of the eigen value of the random matrix M can be written as:

p() = %\/4612 2 (80a6k +6a* (3h + 4kA2)
+a? (4g +6ha2 + Sk)f‘)

+2g2% + 3hA* + 4kA0 + %) ) (5.212)

InFig. 31a, b for octic potential behaviour of density func-
tion p(A) is shown. The curve follows from Eq. (5.212).
Again choosing g = h = k = 0 will produce the Wigner
law. Deviating g, h and k by small amount shows devia-
tion from Wigner semicircle law. For g = 0,h > 0,k > 0

@ Springer

the curve shows plateau region though merge with semi-
circle at end points. But choosing ¢ > 0,7 < 0,k < 0
and g > 0,7 > 0,k < 0 show deviation from semicircle
and don’t converge even at end points. On the other hand,
if we choose ¢ > 0,7 > 0,k > O then we get a val-
ley region lying between two peaks of the maxima of the
density distribution of eigen values of the random matrices
under consideration. The same behaviour can be obtained
by fixing g > 0,h < 0,k > 0, g = h = k = 1 and
g =0,h > 0,k > 0. Only slight difference can be visu-
alised in the peak heights of the maxima and also in the spread
in the valley region. But in all such cases in between it will
not at all match with the Wigner semicircle law, but converge
to the end points of the Wigner semi-circle, which is obtained
by setting g =h =k = 0.

Next, we compute the expression for the one point function
of the partition function at finite temperature, which can be
expressed as:

2a
(Z(B +in) = %/ Wy

)
x (80a6k 1 6a* (;h T 4kA2) +a? (4g +6hA2 + Skx‘)

1 .
+2g2% + 3hA* + 4kAS + 5) eTiTh =P
1

T (BEin)
x (15a2ht* + p* (140a*k + 15a%h + g)

[—24a212(2(,3 +i7)lal)

+4i3t (140a4k +15a%h + g)
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Fig. 30 Time variation of SFF for different N at 8 = 0. Here we shift reference axis[SFF] to SF F|;—o

—6p? <I4Oa4kr2 +5h (3(121’2 - 1) — 140a2k + gt2> e (1120a6k 4 180a*h + 24a%g + 1)

T4ift (140a4kt2 +15h (azrz - 1) — 420a2k + g1:2> +£2ift (1120a6k 1 180a*h + 24a%g + 1) - rz)

1140k (a4‘[4 —6a’c? + 12) T 30h12> 120160k |al® (B + it) [ (2(8 £ iT) Ial)] ) (5.213)

+lal (B +it)* (2B £ iT) |al)

x (—1120a6kr2 +60a* (112k - 3hr2> . . . o
where I, (x) is the modified Bessel function of first kind with

+244> (15h - gf2> n th order.
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p(/\) for Octa potentlal at different g,h &k
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Fig. 31 Eigen value distribution curve of density function for quartic and octa potential for different parameter values. Here we fix a = 1

Further, considering the high temperature limiting situa-
tion we get the following simplified expression for the one
point function of the partition function:

1 2a
[Z(B%it)lp—g = —/ Vi~ 22
T J-2a
x <80a6k + 6a* <3h + 4k,\2)
+a? (4g +6m2 4+ 8kk4)

1 .
+2g22 + 3% + 426 + 5) eFTh

=2 [:t]l(:tZat)(ll2Oa6kt5 + 60a*t3 3ht? — 112k)
+24a% (g7 — 15h7> + 840kT) + 1°)
—24.Jy(+2a7)(—307%(284%k + h)
+74(140a*k + 15a%h + g) + 1680k)] . (5.214)

Next, simplifying the result for one point function in the limit
T =+Nt —> oo we get:

. a 1
HZB£iT))p=0 =,/ P o)l
2

x [(1120a6k +180a*h + 2a%g + 1

6720a*k + 360a%h
_( a’k + a ))cos(%:l:ZaT)

7‘2
140a*k + 15a%h + g 8404k + 30h
F24 —
T 73

X sin (% + ZaT)]

@ Springer

(5.215)

‘0 <_1 )
@D

Now for the octic random potential disconnected part of the
Green’s function can be computed at finite temperature as:

(Z(B+ i) (Z(B —it))
(zp)?

244’128 |a))

Gdc(ﬂ, T) =

,312
(ﬂZ 2)6 [
« (,3 (14Oa4k +1542h + g)
1682 <5h + 140a2k) + 1680k)
+lal 3L 2(B) lal) (6720a4k +360a°h
+p (112Oa6k +180a%h + 24a%g + 1))
+20160k |al® BT, 2(B) |a|)T2
x [72461212(2(;3 +it)lal)
>< (15a2ht4 e (140a4k +1542h + g)
14if3t (140a4k +154%h + g)
—6? <I4Oa4kr2 +5h (3a2r2 - 1) — 140a2k + gtz)
—4iBt (140a4kt 115k (a 2 1) — 420a% + gr2>
1140k (a4t4 —6a*t? + 12) T 30h12)

+lal (B +it)*[2(B +i7) |al)
x (—1120a6k1'2 + 60a* (112/< - 3h1'2>

12442 (15h - g12>
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+82 (1 120a%% + 180a*h + 24ag + 1)

12ift (1 120a%% + 180a*h + 24ag + 1) - r2)
+20160k |af (B + i) 1 2(B + it) Ial)]

x [—24a212(2(,8 —it)a))

x (15a2hr4 + g (140a4k +154%h + g)

_4ig3t <I4Oa4k T 15a%h + g)

—6p> (140a4k12 +5h (3a2r2 - 1) — 1406k + g‘52>
+4ift (14Oa4k12 + 15k (a21'2 - 1) — 420a%k + g‘L'2>
1140k (a4r4 — 6a’7? + 12) tgtt - 3Ohr2)

+lal (B —it) 2B — iT) |al)

x (—1 120a% 72 + 60a* (1 12k — 3h12)

2442 (15h - grz)

+82 (1120a°k 1 180a*h + 24a%g + 1)

2Bt (1120a6k +180a*h + 24a%g + 1) - rz)
120160k |al® (8 — it) [ 2(B — iT) Ial)] (5.216)

which can be further simplified in the high temperature lim-
iting situation as:

(Z(B+iO)(Z(B —iT)
Gae(t) =
@et®) [ (Z(B)? ],H
a2
= NEm

x [11 (2at)(1120a%k > + 60a*t® (3ht? — 112k)
+24a* (g7 — 15ht> + 840kT) + 1°)
—24J5(2at)(—307%(28a%k + h)

+74(140a%k + 15a%h + g) + 1680k)]

x [—Jl(—Zar)(112Oa6kts 1 60a*T3(3h? — 112k)
+24a* (g7 — 15h7> + 840kT) + 7°)
—24J>(—=2at) (=307 (28a’k + h)

+74(140a%k + 15a*h + g) + 1680k)] . (5.217)

Further taking the limit 7 = v/Nt — 0o we get the follow-
ing simplified result:

Guu(T) = [(Z(ﬂ +iT)>(Z(2ﬂ - iT))}
(Z(B)) po
_ i a
T T3Nm

x [(1120a6k + 180a%h + 2a2g+1> cos (%:i:ZaT)

140a*k + 15ah
g (LR F Dath g Gy (E + ZaT)
T 4

6720a*k + 360a>h e
— < 2 ) cos (Z + 2a’T>

840a%k + 30h
124 (%) sin (% + 2&7)i|

X [(1120a6k + 180a*h + 24%g + l) cos (%iZa’T)

140a*k + 15a>h
;24( @kt ba +g>sin(%:|:2a7)

T

6720a*k + 360a%h
— ak+ a cos (z + 2a’]'>
T2 4

840a’k + 30h
+24 (%) sin (% + 2aT)i| . (5.218)
Now to compute SFF we need to add both connected and
disconnected part of the Green’s function G(= G, + Gg.).
Therefore, for octic polynomial potential we get finally the
following expression for SFF at finite temp:
’312 5
SFF(B.0) = (5o [-24a* 1228 JaD
x (8* (140a* + 15%h + g

162 (Sh + 14Oa2k) + 1680k)

T lal B3 L2B) |al) (6720a4k +360a2h

+p (1120a6k + 180a*h + 24a%g + 1))

+20160k lal® B1, (2(B) |€i|)]72

x [ ~24a* (B +i7) la)

x (15a2hr4 + B (14Oa4k +1542h + g)

it (140a4k +15a%h + g)

—6p2 (14Oa4k12+5h <3a2r2 _ 1) — 14Oa2k+g12>
—4iBt (14Oa4kt2+15h <a2t2 ~ 1) - 420a2k+g12)
140k <a4r4 —6a’e? + 12) T 30hr2)

+lal (B +it)* L 2(B +i7) lal)
x (—1120a6kz2 + 60a* (uzk — 3hr2)

244> (15h - gr2>

+52 (1120a6k +180a*h + 24ag + 1)

12iBt (1120a6k + 180a%h + 24d%g + 1) - 12)
120160k [al® (B +it) [, 2(B + it) |a|)]

x [—24a212(2(,3 —it)la))

x (15a2hr4 + g4 (140a4k + 15a%h + g)
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—4if’t (140a4k +150%h + g)

—6p> (140a4kr2+5h <3a2r2 - 1) - 140a2k+gt2>
+4iBt (14Oa4k12~|—15h (a2z2 _ 1) — 420a2k+g12)
140k <a4r4 —6a’e? + 12) T 3Ohr2)
+lal (B —it)* [ 2(B —iT)|al)

x (—1120a6kt2 + 60a* (112k - 3hr2)

244> (15h - g‘r2>

e (1 120a% + 180a*h + 24a’g + 1)

—2ift (1120a6k +180a*h + 24a%g + 1) - r2)
120160k [al® (B — it)[12(B — iT) |a|)]

1 1
(ZJTIN)Z - N + @N) > T <2nN
. (5.219)
#, T>2nN

where SFF(B, t) is defined with proper normalization and
in our prescription it gives the total Green’s function as men-
tioned above.

Further simplifying the result for high temperature limit
we get the following expression for SFF, as given by:

SFF(7) = N;’—ilz [11 (2at)(1120a%7°
+60a*t3(3ht? — 112k)
+24a® (g1 — 15kt + 840kT) 4 1°)
—24J5(2at)(—3072(28a%k + h)

+r4(140a%k + 15a%h + g) + 1680k)]

x [—Jl(—Zat)(l 120a% 75 + 60a*t3 (3ht® — 112k)
+24a’ (g7 — 15h7> + 840kT) + 7°)
—24J5(—2at)(—307%(28ak + h)

+14(140a*k + 15a%h + g) + 1680k)]

B S B O
+{ @rNy? N TN (5.220)

TN’ T>2nN

Further taking the limit 7 = v/Nt — 0o we get the follow-
ing simplified result for SFF:

a

i

[(1120a6k +180a*h + 2a%¢ + 1)

X COS (% + 2aT>

140a*k + 15a*h
pq (1204 K+ Dath + 8 o (Z + 2aT)
T 4
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840a%k
424 LM sin (E 4+ 2aT>
73 4

X [(1120a6k + 180a*h + 24%g + 1) cos (% + ZaT)

140a*k + 15a°h
;24( @kt ba +g)sin<%:|:2a’f>

T

6720a*k + 360a>h T
—( 2 )cos(Z:tZaT)

840a%k + 30h
124 <L> - (% + 2a7>]

T3

T 1 1 3/2

7)2N3T?

#, T > 27 N3/?

(5.221)

From Fig. 32a—c, we see that SFF at finite temperature
decays with increasing t and reach zero. But with changing
B SFF values remains almost same initially (For higher g).

In Fig. 33a—c, it is observed that SFF with variation in N
get saturated at different value of 7. But with increasing N
the value of the saturation point, will decrease.Subtracting
the change of axis[SF F|.—o] we get the predicted bound of
SFF. From these plots we can say that time variation of SFF
follow oscillatory pattern initially but after certain time it has
linear decaying amplitude for dominance of linear part. Then
after r > 2w N region SFF abruptly saturated due to second
part of the connected part of the total Green’s function G..
On the other hand, for t < 27 N region SFF is decaying in
amplitude and increasing with time. After t > 2w N region
the function will be constant thereafter.

Here it is important to note that, depending on the specific
structure of the even polynomial random potential the upper
bound on chaos very slightly changes (i.e. the amplitude for
saturation of SFF is almost at the same order of magnitude
for different even polynomial random potentials). But the
late time behaviour for different random potentials are almost
same as it shows complete saturation with respect to time.
The saturation depends only on value of N. Also it is import
to note from the plots that, for each even polynomial potential
sudden transition from the random oscillatory behaviour to
the perfect saturation of SFF take place at the unique time,
T =2mN.

5.5.5 Estimation of dip-time scale from SFF

Now we introduce the concept of dip-time which denotes the
change in fall-off behaviour of SFF near the critical points. It
is estimated by comparing the initial fall-off behaviour with
late time behaviour of the curve from which