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Abstract We perform threshold resummation of soft gluon
corrections to the total cross sections and the invariant mass
distributions for production of a top-antitop quark pair asso-
ciated with a heavy electroweak boson V = W+, W− or Z in
pp collisions at the Large Hadron Collider. The resummation
is carried out at next-to-next-to-leading-logarithmic (NNLL)
accuracy using the direct QCD Mellin space technique in the
three-particle invariant mass kinematics. It is found that for
the t t̄ Z process the soft gluon resummation introduces signif-
icant corrections to the next-to-leading order (NLO) results.
For the central scale equal to the t t̄ Z invariant mass the cor-
rections reach nearly 30%. For this process, the dominant
theoretical uncertainty of the cross section due to the scale
choice is significantly reduced at the NLO+NNLL level with
respect to the NLO results. The effects of resummation are
found to be less pronounced in the t t̄W± case. The obtained
results are compared to recent measurements performed by
CMS and ATLAS collaborations at the LHC.
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1 Introduction

The measurements of associated production of a massive vec-
tor boson with a top-antitop quark pair at the LHC [1–7] pro-
vide an important test of the Standard Model (SM). Together
with the associated Higgs boson production with a top-quark
pair, they belong to a class of processes with the heaviest final
states which can be precisely studied at the LHC. Such stud-
ies command particular attention as a means to indirectly
search for signals of physics Beyond the Standard Model
(BSM). Additional, they form dominant background in direct
BSM searches, as well as to SM measurements, especially
the associated Higgs boson production process. It is therefore
necessary to know the theoretical predictions for pp → t t̄V ,
V = W+,W−, Z with high accuracy.

Over the years, there has been a great effort to improve the
theoretical description of the pp → t t̄V process. Next-to-
leading-order (NLO) QCD corrections were calculated [8–
17] and matched to partons showers [13,18,19]. The elec-
troweak corrections and the combined electroweak correc-
tions with the QCD corrections are also known [20–22]. In
the light of the full next-to-next-to-leading order (NNLO)
QCD calculations being currently out of reach, it is useful to
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systematically consider at least some part of the higher order
corrections to improve the theoretical precision. This can be
achieved using resummation techniques for corrections orig-
inating from emission of soft gluons. This type of emission
happens in the presence of kinematical constraints, where the
phase space available for emission of real gluons is restricted.
As the kinematical limit is approached, the corrections are
dominated by large logarithmic contributions with an argu-
ment of the logarithms directly related to the distance to the
limit. The observable in question for which the predictions
are obtained and the kinematics in which it is considered
determines then the exact form of the logarithms.

Two popular approaches to perform soft gluon resumma-
tion are either direct calculations in QCD or an application
of an effective field theory, in this case soft-collinear effec-
tive theory (SCET). Although the physics that is described is
obviously the same, and the perturbative accuracy which can
be reached is also formally the same, the two approaches
differ at the technical level resulting in different treat-
ment of subleading corrections beyond the formal accuracy.
However, in practice these corrections can introduce non-
negligible effects. Therefore it is valuable to perform calcu-
lations using both techniques, firstly as a completely indepen-
dent check of the calculations and secondly as an indication
of the size of subleading effects.

As for any process for which production rates are small,
also for the associated top-pair production with a heavy boson
the first quantity which can be studied with higher preci-
sion is the total cross section. The higher order corrections
receive then potentially large contributions from soft gluon
emission in the threshold limit, i.e. the partonic center of
mass energy ŝ approaches the energy needed to produce
the final state with a given characteristics. For the process
pp → t t̄ H soft gluon resummation has been performed
both using direct QCD [23–26] and SCET [28,29] meth-
ods. While the next-to-leading-logarithmic (NLL) calcula-
tions [23] were carried out in the absolute threshold limit,
ŝ → M2 = (2mt + mH )2, the later calculations [24–
26,28,29] opted for the invariant mass threshold limit, i.e.
ŝ → Q2 with Q2 = (pt + pt̄ + pH )2. The resummed predic-
tions are now known at the next-to-next-to-leading logarith-
mic (NNLL) accuracy in both approaches and are matched
to the full NLO results to include all available information
on the process. In the case of associated top-pair produc-
tion with a heavy gauge boson, W+,W− or Z , NLO+NNLL
predictions obtained within the SCET framework are already
available [30–32], whereas for calculations in the direct QCD
approach only NLO+NLL results have been communicated
so far [27]. Here we close this gap and report on soft gluon
resummation in this approach at the NLO+NNLL accuracy
for the process pp → t t̄V . Our calculations rely on the tech-
niques described in [25]. We present numerical results for
the total cross sections and the invariant mass distributions

as well as comment on the comparison between our results
and those of [30–32].

The paper is structured as follows: in Sect. 2 we review the
direct QCD approach applied before in the calculations for
the process pp → t t̄ H and now adapted to the pp → t t̄V
case. The numerical results are presented and discussed in
Sect. 3. The conclusions and the summary of our work can
be found in Sect. 4.

2 NNLL resummation in the triple invariant mass
kinematics for 2 → 3 processes with two massive
coloured particles in the final state

In the following, we use the direct QCD approach to resum-
mation of soft gluon corrections at threshold in Mellin space.
In particular, we consider the threshold limit in the three par-
ticle invariant mass kinematics. The Mellin transformation
of the differential cross section dσpp→t t̄V /dQ2 is then per-
formed w.r.t. the variable ρ = Q2/S, where Q2 = (pt + pt̄ +
pH )2. Resummation provides a systematic treatment of log-
arithmic terms of the form αn

s

[
logm(1 − z)/(1 − z)

]
+, with

m ≤ 2n − 1 and z = Q2/ŝ which appear at all orders of the
perturbative expansion in αs. These logarithms then turn into
logarithms of the Mellin moment N in Mellin space, where
the threshold limit z → 1 corresponds to the limit N → ∞.

We use the same framework as developed in [25] and
in the following we consider a process i j → klV , where
i, j are massless coloured partons, k, l two massive quarks
and V a massive colour-singlet particle. The collective argu-
ment {m2} denotes all masses entering the calculations. The
resummed partonic cross section up to NNLL accuracy can
be written as:

d ˜̂σ (NNLL)

i j→klV

dQ2

(
N , Q2, {m2}, μ2

R

)

= Tr
[
HR(Q2, {m2}, μ2

F, μ2
R)ŪR

(
N + 1, Q2, {m2}, Q2

)

× S̃R(N + 1, Q2, {m2}) UR

(
N + 1, Q2, {m2}, Q2

)]

×�i
(
N + 1, Q2, μ2

F, μ2
R

)
� j

(
N + 1, Q2, μ2

F, μ2
R

)
,

(1)

where HR , ŪR , UR and S̃R are colour matrices and the trace
is taken over colour space. �i and � j represent the logarith-
mic contributions from the (soft-)collinear gluon emission
from the initial state partons. They are universal functions,
depending only on the emitting parton, and can be found for
example in [33,34] up to NLL and in [35] up to NNLL level.

The term ŪR S̃RUR originates from a solution of the
renormalization group equation of the soft function, which
describes the soft wide angle emission. It consists of the soft
function evolution matrices ŪR and UR , as well as S̃R which
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plays the role of a boundary condition of the renormalization
group equation. In general the evolution matrices are given
by path-ordered exponentials of a soft anomalous dimension
matrix in the colour space. If the matrix in the argument of
the path ordered exponential is diagonal, it reduces to a sum
over simple exponentials. All colour matrices in Eq. (1) are
expressed in the basis in which the one loop soft-anomalous
dimension �

(1)
i j→klV , i.e. O(αs) coefficient in the perturbative

expansion the soft anomalous dimension �i j→klV

�i j→klV (αs)

=
[(αs

π

)
�

(1)
i j→klV +

(αs

π

)2
�

(2)
i j→klV + . . .

]
(2)

is diagonal. The diagonalization is achieved by a colour basis
transformation

�
(1)
R = R−1�

(1)
i j→klV R, (3)

�
(1)
R,I J = λ

(1)
I δI J , (4)

where R is the diagonalization matrix and λ
(1)
I are the eigen-

values of �
(1)
i j→klV . Correspondingly, all colour matrices in

Eq. (1) carry a subscript R. �i j→klV has to be known up to

�
(1)
i j→klV to perform resummation with NLL accuracy and up

to �
(2)
i j→klV for NNLL. The one-loop soft anomalous dimen-

sion can be found in [23] while the two loop soft anomalous
dimension was derived in [36,37].

In practice, we start with a description of the colour struc-
ture of the t t̄W and t t̄ Z processes in the s-channel colour
basis, {cqI } and {cgI } given by their basis vectors:

cq1 = δαiα j δαkαl , cq8 = T a
αiα j

T a
αkαl

,

cg1 = δai a j δαkαl , cg8S = T b
αlαk

dbai a j , cg8A = iT b
αlαk

f bai a j .

Since at leading order t t̄W state is produced via qq̄ ′ channel
we only need the {cqI } basis for its description, whereas both
{cqI } and {cgI } basis are needed to describe the t t̄ Z production
via the qq̄ and the gg channels.

The function S̃R is obtained by transforming the purely
eikonal function S̃i j→klV ,

S̃R = R†S̃i j→klV R (5)

with

S̃i j→klV = S̃
(0)

i j→klV + αs

π
S̃

(1)

i j→klV + . . . (6)

calculated in the s-channel colour basis and
(

S̃
(0)

i j→klV

)

I J
= Tr

[
c†
I cJ

]
. (7)

NLL accuracy requires knowledge of S̃
(0)

i j→klV while NNLL

accuracy requires S̃
(1)

i j→klV .

Since the one-loop soft anomalous dimension is in gen-
eral non diagonal in the triple invariant mass kinematics, in
order to calculate the soft function evolution matrices up to
NLL we use the diagonalization method of [38]. In this way
the path ordered exponentials reduce to a sum over simple
exponentials and ŪR S̃RUR at NLL is given by

ŪR,I J S̃R,J KUR,K L

= S̃
(0)

R,I L exp

[
log(1 − 2λ)

2πb0

((
λ

(1)
I

)∗ + λ
(1)
L

)]
(8)

where λ is defined as

λ = αs(μ
2
R)b0 log N (9)

and

b0 = 11CA − 4nfTR

12π
.

Resummation up to NNLL encounters additional com-
plexity due to the non-commutativity of �

(1)
i j→klV and

�
(2)
i j→klV . Therefore we employ the method detailed in

[39,40] to recast the soft function evolution matrices into
simple exponentials. This results in

UR(N , Q2, {m2}, Q2)

=
(

1 + αs(μ
2
R)

π(1 − 2λ)
K

) [
e gs (N )

−→
λ (1)

]

D

×
(

1 − αs(μ
2
R)

π
K

)

, (10)

ŪR(N , Q2, {m2}, Q2)

=
(

1 − αs(μ
2
R)

π
K†

) [
e
gs (N )

(−→
λ (1)

)∗]

D

×
(

1 + αs(μ
2
R)

π(1 − 2λ)
K†

)

,

(11)

with

KI J = δI Jλ
(1)
I

b1

2b2
0

−
(
�

(2)
R

)

I J

2πb0 + λ
(1)
I − λ

(1)
J

, (12)

gs(N ) = 1

2πb0

{

log(1 − 2λ) + αs(μ
2
R)

[
b1

b0

log(1 − 2λ)

1 − 2λ
− 2γEb0

2λ

1 − 2λ

+ b0 log

(
Q2

μ2
R

)
2λ

1 − 2λ

]}

(13)

and

b1 = 17C2
A − nfTR (10CA + 6CF)

24π2 .
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The hard function HR describes the hard scattering con-
tributions and absorbs off-shell effects. It is independent of
N and given by a matrix in colour space, which is then also
transformed into the R colour space

HR = R−1 Hi j→klV

(
R−1

)†
. (14)

The hard function matrix can be calculated perturbatively:

Hi j→klV = H(0)
i j→klV + αs

π
H(1)

i j→klV + . . . (15)

In order to perform resummation up to NNLL knowledge of
H(0)

i j→klV and as well as H(1)
i j→klV is required. While the lead-

ing contribution H(0)
i j→klV can be calculated from the LO cross

section of the process, the next order includes N -independent
non-logarithmic contributions originating from virtual loops,
real collinear terms and the evolution matrices UR and ŪR .
The virtual contributions are extracted from the PowHel
code [11,18,41] and projected on the colour basis. Follow-
ing the method proposed in [42,43] the real terms are derived
from the infrared limit of the real corrections.

The resummed cross sections of different accuracy denoted
by “res” in the following are matched with the full NLO cross
section according to

dσ
(matched)
h1h2→klV

dQ2 (Q2, {m2}, μ2
F, μ2

R)

= dσ
(NLO)
h1h2→klV

dQ2 (Q2, {m2}, μ2
F, μ2

R)

+dσ
(res−exp)

h1h2→klV

dQ2 (Q2, {m2}, μ2
F, μ2

R) (16)

with

dσ
(res−exp)

h1h2→klV

dQ2 (Q2, {m2}, μ2
F, μ2

R)

=
∑

i, j

∫

C

dN

2π i
ρ−N f (N+1)

i/h1
(μ2

F) f (N+1)
j/h2

(μ2
F)

×
⎡

⎣
d ˜̂σ (res)

i j→klV

dQ2 (N , Q2, {m2}, μ2
F, μ2

R)

−d ˜̂σ (res)
i j→klV

dQ2 (N , Q2, {m2}, μ2
F, μ2

R) |(NLO)

⎤

⎦ , (17)

where “res” = N(N)LL and “matched” = NLO + N(N)LL
for the N(N)LL resummed results matched to NLO. The
moments of the parton distribution functions fi/h(x, μ2

F) are
defined in the standard way

f (N )
i/h (μ2

F) ≡
∫ 1

0
dx xN−1 fi/h(x, μ

2
F) ,

and dσ̂
(res)
i j→klV /dQ2 |(NLO) represents the perturbative expan-

sion of the resummed cross section truncated at NLO. The
inverse Mellin transform (17) is evaluated numerically using
a contour C in the complex-N space according to the “Min-
imal Prescription” method proposed in Ref. [33].

Apart from the NLO+NLL and NLO+NNLL results we
also calculate the NLL result improved by including contri-
butions of order O(αs) terms in HR and S̃R and matched
to NLO which we refer to as NLO+NLL′.1 The resummed
partonic cross section at this accuracy is given by:

d ˜̂σ (NLL′)
i j→klV

dQ2 (N , Q2, {m2}, μ2
F, μ2

R)

= HR,I J (Q
2, {m2}, μ2

F, μ2
R) S̃R,J I (Q

2, {m2})
×�i (N + 1, Q2, μ2

F, μ2
R)� j (N + 1, Q2, μ2

F, μ2
R)

× exp

[
log(1 − 2λ)

2πb0

((
λ

(1)
J

)∗ + λ
(1)
I

)]
, (18)

where

HR S̃R = H(0)
R S̃

(0)

R + αs

π

[
H(1)

R S̃
(0)

R + H(0)
R S̃

(1)

R

]
.

3 Numerical results for the pp → t t̄V processes at
NLO+NNLL accuracy

In this section we present our resummed results with differ-
ent levels of precision e.g. NLL, NLL′ and NNLL matched
to NLO. They include distributions differential in Q as well
as total cross sections which were calculated by integrating
over Q. The resummed results were obtained with two inde-
pendently developed in-house codes, while the NLO cross
sections were calculated with MadGraph5_aMC@NLO [19]
for differential distributions and total cross sections, and with
PowHel [11,18,41] for NLO total cross sections without the
contributions from qg channels. In the calculations we use
the PDF4LHC15_30 parton distribution function (pdf) set
[44–49] and input parameters according to the Higgs Cross
Section Working Group (HXSWG) recommendations [50],
i.e. mH = 125 GeV, mt = 172.5 GeV, mW = 80.385 GeV,
mZ = 91.188 GeV, GF = 1.1663787 · 10−5 GeV−2. This
is the same choice as the one made in the HXSWG Yellow
Report 4 [51], so that we can reproduce the NLO values
of the t t̄V cross sections listed there and compare our new
resummed predictions to them. In accordance with the Yel-
low Report setup, in the calculations of the t t̄W cross sections
the CKM matrix is taken diagonal. NLO pdf sets are used for

1 Note that in our previous papers Refs. [23] and [24–26] we used
the notation “NLO+NLL w C” for this quantity. Here we simplify the
notation by borrowing the symbol “NLO+NLL′” from the SCET liter-
ature, as NLO+NLL w C in our approach and NLO+NLL′ in the SCET
framework are equivalent up to corrections beyond the formal accuracy.
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Fig. 1 Comparison between
the resummed expression
expanded up to NLO accuracy
in αs, the full NLO result and
the NLO result without the qg
channel for the t t̄W production

Fig. 2 Comparison between
the resummed expression
expanded up to NLO accuracy
in αs, the full NLO result and
the NLO result without the qg
channel for the t t̄ Z production

NLO, NLL matched to NLO and NLL′ matched to NLO
results, while NNLO pdf sets for NNLL matched to NLO.
The pdf error is only calculated for the NLO cross sections
for technical simplicity, since resummation will influence the
pdf error only minimally. Two different choices for the cen-
tral factorisation and renormalisation scales are used for most
of the results throughout the section. The first choice is μ0 =
μF,0 = μR,0 = Q which is the natural scale for the threshold
and kinematics in the resummation, while the second scale is
μ0 = μF,0 = μR,0 = M/2 with M = 2mt + mH , which is
often used in fixed order calculations. The scale error is calcu-
lated using the seven point method by taking the maximum
and minimum of the scale variations (μF/μ0, μR/μ0) =
(0.5, 0.5), (0.5, 1), (1, 0.5), (1, 1), (1, 2), (2, 1), (2, 2).

As mentioned in the previous section the hard func-
tion includes virtual loop corrections which were extracted
from PowHel [11,18,41]. Analytical relations between the
basis colour configurations of the colour flow basis used
in PowHel and the basis vectors of the s-channel colour
basis allow us to extract the full matrix HR,I J . The colour
summed results were then compared to the standalone Mad-
Loop implementation from MadGraph5_aMC@NLO [19].

3.1 Total cross sections

At first we compare the total cross section of the full NLO
calculation with our resummed result expanded in αs up to
NLO to analyse how well the full NLO cross section can be
reproduced. The relatively large significance of the qg chan-
nel especially for the scale uncertainties was shown first in
[30] for t t̄W and later in [31,32] for t t̄W and t t̄ Z . Since
the qg channel first appears at NLO, no resummation is per-
formed for this channel. Therefore one has to compare the
NLO cross section without theqg channel with the resummed
result expanded in αs to judge the quality of the approxima-
tion provided by the expansion. The resummed cross sections
matched to NLO include the qg channel through the match-
ing to the full NLO calculations. In Fig. 1 we compare of the
full NLO cross section, the NLO cross section without the
qg channel and the expansion of the resummed cross section
as a function of μ/μ0 = μF/μF,0 = μR/μR,0 for t t̄W at√
S = 13 TeV for the two different scale choices μ0 = Q

and μ0 = M/2. The corresponding comparison for t t̄ Z is
shown in Fig. 2.
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Table 1 Total cross section predictions for pp → t t̄W+/W−/Z at
√
S = 13 TeV and different central scale choices

process μ0 NLO [fb] NLO+NLL [fb] NLO+NLL′ [fb] NLO+NNLL [fb] KNNLL

t t̄W+ Q 323+12.2%
−10.8% 325+11.8%

−10.4% 336+9.8%
−9.2% 342+8.9%

−8.6% 1.06

Q/2 363+12.1%
−10.9% 364+11.9%

−10.6% 368+10.4%
−9.1% 371+9.7%

−8.7% 1.02

M/2 413+12.7%
−11.4% 414+13.1%

−11.3% 413+13.0%
−10.0% 415+12.9%

−9.6% 1.01

t t̄W− Q 163+12.5%
−10.9% 165+12%

−10.4% 171+9.9%
−9.2% 176+8.8%

−8.6% 1.08

Q/2 184+12.4%
−11.1% 185+12.1%

−10.7% 187+10.4%
−9.1% 191+9.6%

−8.7% 1.04

M/2 208+13.4%
−11.6% 209+13.8%

−11.4% 209+13.5%
−9.9% 212+13.2%

−9.5% 1.02

t t̄ Z Q 659+14.1%
−12.7% 696+11.7%

−10.2% 795+10.8%
−9.8% 848+8.3%

−8.3% 1.29

Q/2 752+12.7%
−12.4% 770+10.8%

−9.6% 825+8.9%
−8.9% 856+7.2%

−7.9% 1.14

M/2 843+9.7%
−11.3% 850+11.5%

−9.8% 861+7.3%
−7.9% 875+7.0%

−7.7% 1.04

The listed error is the theoretical error due to scale variation calculated using the seven point method

Table 2 Total cross section predictions for pp → t t̄W+/W−/Z at
√
S = 14 TeV and different central scale choices

process μ0 NLO [fb] NLO+NLL [fb] NLO+NLL′ [fb] NLO+NNLL [fb] KNNLL

t t̄W+ Q 370+12.2%
−10.8% 372+11.9%

−10.4% 384+10.0%
−9.2% 391+9.0%

−8.7% 1.06

Q/2 415+12.2%
−10.9% 416+12.1%

−10.6% 421+10.6%
−9.2% 425+10.0%

−8.9% 1.02

M/2 474+13.1%
−11.5% 476+13.6%

−11.5% 475+13.5%
−10.2% 478+13.4%

−9.8% 1.01

t t̄W− Q 191+12.6%
−10.9% 192+12.1%

−10.4% 199+10.1%
−9.2% 205+9.0%

−8.6% 1.07

Q/2 215+12.6%
−11.2% 216+12.4%

−10.8% 219+10.7%
−9.3% 222+9.9%

−8.9% 1.04

M/2 245+14.2%
−11.7% 245+14.5%

−11.5% 245+14.3%
−10.1% 249+13.7%

−9.8% 1.02

t t̄ Z Q 799+13.9%
−12.6% 843+11.6%

−10.2% 963+10.7%
−9.9% 1028+8.3%

−8.4% 1.29

Q/2 910+12.6%
−12.2% 931+10.8%

−9.5% 998+9.0%
−8.9% 1036+7.3%

−8.0% 1.14

M/2 1023+9.7%
−11.3% 1031+11.6%

−9.9% 1042+7.4%
−8.1% 1062+7.0%

−7.9% 1.04

The listed error is the theoretical error due to scale variation calculated using the seven point method

In all cases the NLO cross section without the qg chan-
nel is much better approximated by the expansion of the
resummed cross section than the full NLO result. Because
of the good agreement between NLO without the qg channel
and the expanded result we conclude that the resummation
includes a big part of the higher order corrections for the
production channels present at LO.

Predictions for the total cross section for
√
S = 13 TeV

and
√
S = 14 TeV are shown in Tables 1 and 2 . These

results are visualised in Figs. 3 and 4 . They show the predic-
tions with their scale uncertainties for the three central scales
μ0 = M/2, μ0 = Q and μ0 = Q/2 as an ‘in-between scale
choice’. The NLO values listed here fully agree with the NLO
QCD cross sections published in the HXSWG Yellow Report
4 [51] within statistical Monte Carlo errors. Although the
NLO results for various scale choices span quite a large range
of values, the NLO+NNLL results are considerably closer,
indicating the importance of resummed calculations. In gen-
eral, the range of values spanned by the results decreases
as the precision of the calculations increases. Another man-
ifestation of the same effect originating from soft gluon

corrections is the decrease in the scale uncertainties calcu-
lated for each specific scale choice which is also progressing
with increasing precision of the theoretical predictions. This
trend is much stronger for t t̄ Z production than for t t̄W due
to the gg channel contributing to the LO and, correspond-
ingly, to the resummed cross section. As the gluon radiate
more than quarks, resummation has more relevance for the
gg production channel than for qq̄ or qq̄

′
channels. Corre-

spondingly, we see a decrease in the t t̄ Z scale uncertainty
of about 30–40% when increasing the precision from NLO
to NLO+NNLL. The t t̄W cross section scale uncertainty is
reduced by 20–30% with the exception of the upwards uncer-
tainty for μ = M/2 which does not receive any significant
improvement.

As already noted, the NLO+NNLL predictions with the
central scale varied between M/2, Q/2 and Q are closer
in value than the corresponding NLO predictions. The
NLO+NNLL t t̄ Z results are particularly stable w.r.t. scale
variation. Correspondingly, the NNLL K -factors, ranging
from 1.04 to 1.29, cf. Tables 1 and 2, have to compen-
sate for the scale dependence of the NLO results. Due
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Fig. 3 Graphical illustration of
results presented in Table 1

Fig. 4 Graphical illustration of
results presented in Table 2

to limited corrections from resummation for the quark-
initiated t t̄W process the NNLL K -factors are smaller, rang-
ing from 1.01 to 1.07. The scale dependence of the NLO
is strongly influenced by the scale dependence of the qg
channel (see e.g. [15]) which is formally subleading and
not resummed here. Therefore resummation for the qq̄ ′
channel does not fully compensate the scale dependence
of the NLO and leads only to moderate improvements at
NLO+NNLL.

Note that it is also possible to obtain soft gluon approxi-
mation of the NNLO corrections by expanding the resummed
cross section. We performed such studies for the t t̄ H produc-
tion at the LHC [25], where we added this approximation to
the full NLO result, resulting in the NNLOApprox. predictions.
We found them to be fully consistent with the resummed
NLO+NNLL cross sections. For the t t̄V processes, the
approximate NNLO predictions were already presented in
[31,32]. Since here we are interested in the resummed results,
we refer the readers interested in NNLOApprox. predictions
to these publications.

The observed improvement in the stability of the predic-
tions w.r.t. scale variation at NLO+NNLL for the t t̄ Z pro-
cess is akin to the improvement for the t t̄ H process [25].
Similarly, we are encouraged to combine the predictions for

our three representative scale choices according to the enve-
lope method proposed by the HXSWG [52]. This way we
can obtain theoretical predictions with the most conservative
estimate of the scale error. The corresponding result for the
t t̄ Z production at 13 TeV is:

σ t t̄ Z
NLO+NNLL = 863+8.5%+3.2%

−9.9%−3.2% fb, (19)

and at 14 TeV

σ t t̄ Z
NLO+NNLL = 1045+8.8%+3.1%

−9.9%−3.1% fb.

The first uncertainty originates from the scale variation and
is calculated using the envelope method, whereas the second
one is the pdf+αs uncertainty. These values are in a very good
agreement with the NLO results obtained for the scale choice
μ0 = μF,0 = μR,0 = M/2, justifying this common choice
to obtain theory predictions for this process.

The same treatment can be applied to the t t̄W+ and t t̄W−
production resulting in

σ t t̄W+
NLO+NNLL = 374+25.3%+3.2%

−16.4%−3.2% fb, (20)

σ t t̄W−
NLO+NNLL = 192+25.2%+3.7%

−16.1%−3.7% fb, (21)
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Fig. 5 Scale dependence of the
total cross section for the
process pp → t t̄W at the LHC
with

√
S = 13 TeV. Results are

shown for the choice
μ = μF = μR and two central
scale values μ0 = Q (left plot)
and μ0 = M/2 (right plot)

Fig. 6 Scale dependence of the
total cross section for the
process pp → t t̄ Z at the LHC
with

√
S = 13 TeV. Results are

shown for the choice
μ = μF = μR and two central
scale values μ0 = Q (left plot)
and μ0 = M/2 (right plot)

for
√
S = 13 TeV, and at

√
S = 14 TeV

σ t t̄W+
NLO+NNLL = 429+26.4%+3.2%

−16.7%−3.2% fb,

σ t t̄W−
NLO+NNLL = 224+26.4%+3.6%

−16.4%−3.6% fb,

where again the first uncertainty originates from the scale
variation and the second is the pdf+αs uncertainty. Due to a
worse agreement between cross section predictions for the
different central scale choices this treatment leads to a larger
uncertainty than the uncertainty for the common choice of
μ = M/2.

To further study the scale uncertainty of the total cross
sections we show the dependence of the t t̄W and t t̄ Z cross
sections on the choice μ = μF = μR in Figs. 5 and 6 . For the
associated production of the top quark pair with a W boson,
the sum of the t t̄W+ and t t̄W− production is presented, since
the two processes possess a very similar scale dependence.
In Fig. 5, a slight reduction in the scale dependence can be
seen with the dominant contribution brought by NLO+NLL′
result, indicating the importance of contributions of hard ori-
gin. In addition, a mild increase of the dependence can be
seen for the significantly small scales μ � 0.3M/2, which

can potentially be attributed to the missing quark emission
contribution. However, the scale at which this increase hap-
pens is not physically motivated and therefore of no rele-
vance in practical studies. Separating the μF and μR depen-
dence, i.e. varying the μF and μR while keeping μR and μF

fixed respectively, leads to the conclusion that the t t̄W scale
dependence is almost solely driven by the μR dependence,
cf. Figs. 7 and 8 .

For the t t̄ Z production process a more significant reduc-
tion in the dependence on μ = μF = μR can be seen in
Fig. 6. Similarly to the t t̄W process, the dominant reduc-
tion in the uncertainty can also be attributed to the inclusion
of constant contributions in N from the hard and soft func-
tions contained in the difference between the NLO+NLL and
NLO+NLL′ results. However, a significant further reduction
in the scale dependence originates from the resummation at
NLL level and beyond. Additionally, the same increase of the
dependence can be seen for the t t̄ Z process at low scales, but
again this effect concerns scales which choice is not phys-
ically motivated. The figures also illustrate that if we had
attributed the uncertainty of the cross section to the scale
variation for μF = μR, the scale uncertainty would have
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Fig. 7 Factorisation scale
dependence of the total cross
section for the process
pp → t t̄W at the LHC with√
S = 13 TeV and μR = μR,0

kept fixed. Results are shown for
two central scale values
μ0 = μF,0 = μR,0 = Q (left
plot) and
μ0 = μF,0 = μR,0 = M/2
(right plot)

Fig. 8 Renormalisation scale
dependence of the total cross
section for the process
pp → t t̄W at the LHC with√
S = 13 TeV and μF = μF,0

kept fixed. Results are shown for
two central scale values
μ0 = μF,0 = μR,0 = Q (left
plot) and
μ0 = μF,0 = μR,0 = M/2
(right plot)

been drastically reduced, even as low as to approximately
1% for the μ = Q choice. In contrast to the t t̄W process,
the t t̄ Z dependence on μF = μR appears to be an effect of
cancellations between dependencies on μF and μR. Taken
separately they show an opposite behaviour, see Figs. 9 and
10 . This behaviour is in fact very similar to the one observed
for the process pp → t t̄ H , which also receives significant
contributions from the gg channel at LO.

3.2 Invariant mass distributions

Our total cross section predictions are obtained by inte-
grating over invariant mass distributions dσ/dQ2. Note that
these are the only distributions for which one has got a
full control of the resummed contributions while performing
threshold resummation in the invariant mass limit ŝ → Q2.
The NLO+NNLL distributions in Q for the two scale choices
μ0 = Q, μ0 = M/2 for the t t̄W and t t̄ Z processes are pre-
sented in Figs. 11 and 12 , respectively. Apart from the scale
choice, the size of the NNLL corrections depends now also
on Q. In the t t̄W case, however, this dependence is moderate

and the corrections do not exceed 10%, cf. left plot in Fig. 11.
The corrections to the t t̄ Z invariant mass distribution, on the
other hand, show much stronger Q dependence. Figure 12
illustrates that the NNLL corrections can reach up to 40%
for the μ0 = Q scale choice which is a much higher value
than the 29% reported for the total cross section in Table 1.
Similarly as in the case of total cross sections, also for differ-
ential distributions inclusion of the NNLL corrections results
in a much better agreement between theoretical predictions
obtained with various scale choices, and in consequence leads
to stabilization of the predictions, see Fig. 13.

3.3 Comparison with other NLO+NNLL predictions in the
literature

The NLO+NNLL predictions for the associated t t̄W and t t̄ Z
production calculated in the SCET framework are available
[30–32]. By comparing our results obtained using the direct
QCD approach, we can not only deliver an independent check
of the previously published result but also gain insights on
the size of the subleading i.e. below formal accuracy effects
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Fig. 9 Factorisation scale
dependence of the total cross
section for the process
pp → t t̄ Z at the LHC with√
S = 13 TeV and μR = μR,0

kept fixed. Results are shown for
two central scale values
μ0 = μF,0 = μR,0 = Q (left
plot) and
μ0 = μF,0 = μR,0 = M/2
(right plot)

Fig. 10 Renormalisation scale
dependence of the total cross
section for the process
pp → t t̄ Z at the LHC with√
S = 13 TeV and μF = μF,0

kept fixed. Results are shown for
two central scale values
μ0 = μF,0 = μR,0 = Q (left
plot) and
μ0 = μF,0 = μR,0 = M/2
(right plot)

Fig. 11 Comparison of the
NLO+NNLL and NLO invariant
mass distributions for the
process pp → t t̄W at the LHC
with

√
S = 13 TeV. Results are

shown for two central scale
choices μ0 = Q (left plot) and
μ0 = M/2 (right plot). Lower
panels show the ratio of the
distributions w.r.t. the NLO
predictions

which are treated differently by the two methods. In order
to perform the corresponding comparisons we used the same
values of parameters and the same pdf sets as in the above
mentioned papers. It has to be noted though, that the scale
choices made to obtain results reported in this paper and
[30–32] are not equivalent. While our resummed expressions
depend on μF and μR, the formulas obtained in the SCET

formalism contain dependence on the hard and soft scales
μh and μs , as well as μF. In particular, Ref. [30] uses the
choice μF = μh = Q and a minimizing procedure to set μs .
Nevertheless, we find a very good agreement with our results
calculated using the scale choice μF = μR = Q. Specifi-
cally, the authors [30] obtain σNLO+NNLL = 332.99+5%

−4% fb

for the t t̄W+ production and σNLO+NNLL = 169.86+5%
−4% fb
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Fig. 12 Comparison of the
NLO+NNLL and NLO invariant
mass distributions for the
process pp → t t̄ Z at the LHC
with

√
S = 13 TeV. Results are

shown for two central scale
choices μ0 = Q (left plot) and
μ0 = M/2 (right plot). Lower
panels show the ratio of the
distributions w.r.t. the NLO
predictions

Fig. 13 Comparison of the
NLO+NNLL invariant mass
distributions for the process
pp → t t̄W (left plot) and
pp → t t̄ Z (right plot) at the
LHC with

√
S = 13 TeV.

Results are shown for two
central scale choices μ0 = Q
and μ0 = M/2. Lower panels
show ratios of distributions
calculated at either NLO or
NLO+NNLL accuracy for these
two scale choices

for the t t̄W− production at
√
S = 13 TeV, while we have

σNLO+NNLL = 331+8.9%
−8.6% fb and σNLO+NNLL = 170+8.8%

−8.6% fb,
correspondingly.

Reference [31] also reports the NLO+NNLL predictions
for the t t̄W+ and t t̄W− processes at the LHC. Contrary to
[30], the μs scale in [31] is chosen in such a way as to mimic
the scale of soft radiation in the Mellin-space framework,
i.e. μs = Q/N . As pointed out in [25], only one choice
μF = μh = Q and μs = Q/N in the scale setting procedure
of [31] directly corresponds to setting μ = μF = μR = Q
in our results. With this choice, and using the same pdf and
input parameter setup as in [31], we obtain σNLO+NNLL =
328.6+29.2

−28.1 fb for the t t̄W+ and σNLO+NNLL = 171.2+15.0
−14.6 fb

for the t t̄W− process at
√
S=13 TeV, to be compared with

σNLO+NNLL = 333+14.9
−12.4 fb and σNLO+NNLL = 173.1+7.7

−6.6
fb reported in [31]. The differences between the central val-
ues obtained by these two different calculations amount thus
to 1%. Note that, similarly to [30], scale errors cannot be
directly compared due to different methods used for calcu-

lating them. In particular, as explained above, our estimates
of the scale error are calculated using the seven point method.

The NLO+NNLL predictions for the t t̄ Z production pro-
cess reported in Table 2 of [32] use yet another scale setup
with μF = Q/2, μh = Q and μs = Q/N . Therefore these
predictions cannot be directly compared with ours. Never-
theless, in Fig. 14 we present our NLO+NNL, NLO+NLL′,
NLO+NNLL results as well as the NLO cross section for the
t t̄ Z production using the same pdf and input parameter setup
as in [32] and choosing μ0 = μF,0 = μR,0 = Q/2. Notably,
within the range of the scales considered, we do not see the
rising behaviour of the NLO+NNLL cross sections with the
growing scale as in Fig. 1 of [32], instead a relatively flat
one, especially at μ ≤ Q/4. Also, as discussed in Sect. 3.1,
compared to NLO+NLL predictions our NLO+NNLL results
show decreased dependence on the scale variation. Regarding
numerical values for

√
S=13 TeV, we obtain σNLO+NNLL =

819.7+58.6
−65.0 fb at the scale μ = μF = μR = Q/2 whereas

[32] reports σNLO+NNLL = 777.8+61.3
−65.2 fb. For comparison,
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Fig. 14 Scale dependence of the total cross section for the process
pp → t t̄ Z at the LHC with

√
S = 13 TeV, calculated with MMHT2014

pdf set and the input parameter values for [32]. Results are shown for
the choice μ = μF = μR and the central scale value μ0 = Q/2

the difference between the NLO+NNLL total cross section
for the t t̄ H process obtained in the SCET formalism with
μF = μh = Q, μs = Q/N and the NLO+NNLL total
cross section obtained using the direct QCD method with
μF = μR = Q [25] amounts to 2.5% at

√
S=13 TeV when

the same pdf and input parameter setup is used. Given this,
and the values we can read off from Fig. 1 of [32], we
expect the difference between the two cross sections quoted
here to be significantly impacted by the scale setting proce-
dure.

3.4 Comparison with the t t̄V total cross section
measurements at the LHC

The currently most precise measurements of t t̄W± and t t̄ Z
cross sections in pp collisions at

√
S = 13 TeV were

recently published by CMS [6] and ATLAS collaborations
[7] . The data samples correspond to an integrated luminos-
ity of 35.9 fb−1 and 36.1 fb−1, respectively. While ATLAS
measures t t̄W± and t t̄ Z production cross sections simulta-
neously, CMS provides numerical values for individual mea-
surements and a figure with the results of a simultaneous fit.
In Table 3 we compare the results of these measurements
with the central theoretical predictions of this paper at the
NLO+NNLL accuracy (19), (20) and (21), to which elec-
troweak corrections reported in [51] are added. For each pro-
cess, the EW corrections are estimated from the values of the
relative EW corrections listed in Table 40 of [51] (−0.2% for
t t̄ Z , −3.5% for t t̄W+, −2.6% for t t̄W−, −3.2% for t t̄W ),
and the corresponding NLO QCD cross sections calculated
using the envelope method and the NLO values listed in Table
1 in this paper. The QCD uncertainties are applied also to the
EW correction effects. In this way we provide theoretical

predictions which include state-of-the-art knowledge of the
QCD at the NLO+NNLL accuracy and the EW effects up to
the NLO accuracy.

The comparison shows good agreement between theory
and data within errors. The largest relative difference between
theory and experiment is found for the CMS measurement
of the t t̄W+ production. Even with the most conservative
estimate of scale error provided by the envelope method,
the overall theory error are smaller than the current exper-
imental errors. It is interesting to note a general trend for
the theoretical results to be lower or comparable to the
measured experimental values. The same conclusions hold
if instead the NLO+NNLL predictions with the conserva-
tive scale error estimates provided by the envelope method,
NLO+NNLL predictions for the scale choice μ = M/2 are
considered.

In addition, in Figs. 15 and 16 we show the NLO predic-
tions and our NLO+NNLL predictions for the t t̄ Z and t t̄W
processes, to which we add the electroweak corrections com-
puted in [51]. The NLO+NNLL results are marked by full
lines for the central values and darker shaded bands for the
errors, while for NLO dashed lines and light shaded bands
are used correspondingly. In the figures we also plot the val-
ues of the corresponding cross sections measured using a
combined fit by the CMS [6] and ATLAS [7] collaborations,
together with their confidence level (CL) contours. The the-
ory errors are estimated by adding the the scale errors and
pdf+αs errors of the QCD cross sections. In Fig. 15 the theory
values for the central scale μ0 = M/2 are shown. The NLO
QCD+EW results with this scale choice have been reported
in the Yellow Report [51], and are taken as the benchmark
theory predictions by the experiments. Since, however, the
choice of a single fixed scale at the NLO accuracy may lead
to underestimation of the theoretical uncertainty, in Fig. 16
we display also the NLO+NNLL and NLO predictions that
include the whole span of the central scales from M/2 to
Q. The NLO+NNLL results (19), (20) and (21) with added
EW corrections combine predictions for various central scale
choices, thus yielding more conservative error estimates. The
two-dimensional analyses visualised in Figs. 15 and 16 con-
firm good agreement between the theory predictions and
the measurements by the ATLAS and the CMS collabora-
tions. Since the NLO+NNLL total cross sections are higher
than the NLO ones, the NNLL calculations result in bring-
ing the central values of the theoretical predictions closer
to the experimentally measured cross sections. In the case
of analysis with more conservative error estimates (Fig. 16),
this distance gets reduced by as much as a factor of two
for the t t̄ Z production. The theoretical accuracy for t t̄ Z in
this conservative approach is equally well improved due to
inclusion of the soft gluon resummation effects in the NNLL
approximation, also by around a factor of two w.r.t. the NLO
result.
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Table 3 Results of
experimental measurements by
CMS [6] and ATLAS [7]
collaborations of total cross
sections σ for
pp → t t̄W+/W−/Z at√
S = 13 TeV compared to

theory predictions at
NLO+NNLL accuracy given in
Eqs. (19), (20) and (21) with
added the electroweak
corrections as reported in [51]

Process Experiment NLO + NNLL + EW
σ ± stat. err. ± syst. err. [pb] σ ± scale err. ± pdf+αs err. [pb]

t t̄W+ 0.58 ± 0.09+0.09
−0.08 (CMS) 0.36+0.09

−0.06 ± 0.01

t t̄W− 0.19 ± 0.07 ± 0.06 (CMS) 0.19+0.05
−0.03 ± 0.01

t t̄W 0.77+0.12
−0.11

+0.13
−0.12 (CMS) 0.55+0.14

−0.09 ± 0.02

t t̄W 0.87 ± 0.13 ± 0.14 (ATLAS) 0.55+0.14
−0.09 ± 0.02

t t̄ Z 0.99+0.09
−0.08

+0.12
−0.10 (CMS) 0.86+0.07

−0.08 ± 0.03

t t̄ Z 0.95 ± 0.08 ± 0.10 (ATLAS) 0.86+0.07
−0.08 ± 0.03

The scale and the pdf+αs errors correspond to QCD cross sections

Fig. 15 NLO+NNLL and NLO
predictions for the total t t̄ Z and
t t̄W cross sections at the central
scale μF,0 = μR,0 = M/2 and
with added electroweak
corrections reported in [51],
compared to the CMS [6] (left
plot) and ATLAS [7] (right plot)
measurements

Fig. 16 NLO+NNLL and NLO
predictions for the total t t̄ Z and
t t̄W cross sections, using the
envelope method as described in
the text, and with added
electroweak corrections reported
in [51], compared to the CMS
[6] (left plot) and ATLAS [7]
(right plot) measurements

4 Summary

In this paper soft gluon corrections were calculated to t t̄V
production in association with a heavy electroweak boson
V , V = W± or Z in pp collisions. The calculations were
performed in the three particle invariant mass kinematics
through NNLL accuracy, and the results were matched to
existing NLO results. Resummation was achieved using the
direct QCD approach in the Mellin space. We computed
invariant mass distributions and the total cross sections,

obtained by integration of these distributions. In particular,
we calculated NLO+NNLL total cross sections for the LHC
collisions at

√
S = 13 TeV and

√
S = 14 TeV. The scale

uncertainty of these predictions were estimated by indepen-
dent variation of the factorisation and renormalisation scales
around a central scale μ0, using the seven point method.
Three different choices of the central scale μ0 were assumed:
μ0 = M/2, μ0 = Q/2 and μ0 = Q, where M = 2mt +mV

is the absolute threshold energy, and Q is the invariant mass
of the t t̄V system.
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The effect of soft gluon corrections was found to be more
important for the t t̄ Z than for the t t̄W± production. This
was expected, as the LO amplitudes for t t̄W± production
are driven by quark scattering, while for t t̄ Z the two gluon
production channel is dominant, and stronger gluon radiation
occurs due to higher colour charges. For the t t̄ Z produc-
tion we observed a substantial improvement of the theoret-
ical accuracy due to inclusion of the soft gluon corrections.
First of all, the results are much more stable w.r.t. the central
scale choice: at NLO+NNLL the total cross section increases
by only 3% when μ0 decreases from Q to M/2, while the
corresponding increase is 28% at NLO. Moreover, for the
fixed central scale, the dominant theory errors from the scale
choice uncertainty decrease by 29–38% by going from NLO
to NLO+NNLL. A conservative estimate of the theoretical
accuracy obtained as an envelope over results for various
scale choices and their errors is improved by up to a factor
of two by performing the NNLL soft gluon resummation. As
in the case of the Higgs boson production with association
of t t̄ quarks, our results are compatible with NLO predic-
tion for the central scale choice μ0 = μF,0 = μR,0 = M/2
justifying that common choice at least for the t t̄ Z process.

The obtained results were compared to the existing predic-
tions for the t t̄W± and t t̄ Z cross sections at NLO+NNLL that
were calculated in the SCET framework. In order to perform
a meaningful comparison, we computed the cross sections
employing the same sets of parton distribution functions and
the input parameters as in those papers. For equivalent scale
choice setups, our NLO+NNLL predictions and the cross
sections calculated using the SCET framework agree well.

Finally, the theoretical estimates of t t̄V total cross sections
were compared to the latest ATLAS and CMS measurements
at

√
S = 13 TeV. A good agreement was found between

theory and data. In a two dimensional analysis of t t̄W and
t t̄ Z cross sections, the combined experimental data differ by
about one standard deviation from the results of this paper.
In comparison with the NLO predictions, the NLO+NNLL
calculations result in theoretical predictions with central val-
ues closer to the measured experimental cross sections. The
errors of the NLO+NNLL predictions are in general smaller
than the current experimental errors.
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