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Abstract In the present work we show that, in the linear
regime, gravity theories with more than four derivatives can
have remarkable regularity properties if compared to their
fourth-order counterpart. To this end, we derive the expres-
sions for the metric potentials associated to a pointlike mass
in a general higher-order gravity model in the Newtonian
limit. It is shown that any polynomial model with at least six
derivatives in both spin-2 and spin-0 sectors has regular cur-
vature invariants. We also discuss the dynamical problem of
the collapse of a small mass, considered as a spherical super-
position of nonspinning gyratons. Similarly to the static case,
for models with more than four derivatives the Kretschmann
invariant is regular during the collapse of a thick null shell.
We also verify the existence of the mass gap for the forma-
tion of mini black holes even if complex and/or degener-
ate poles are allowed, generalizing previous considerations
on the subject and covering the case of Lee–Wick gravity.
These interesting regularity properties of sixth- and higher-
derivative models at the linear level reinforce the question
of whether there can be nonsingular black holes in the full
nonlinear model.

1 Introduction

The problem of quantizing gravity is a long-standing one
and many conceptually different approaches have been used
to tackle it during the last almost five decades. One of the
elements considered in the path towards quantum gravity are
the higher derivatives and the role they play in the ultraviolet
(UV) regime, where classical and quantum singularities show
up. Motivations for the introduction of curvature-squared
terms in the action come already at semiclassical level, from
the observation that the renormalization of quantum field the-

a e-mail: breno@cbpf.br
b e-mail: tiberiop@fisica.ufjf.br

ory on curved background requires such higher-derivative
terms [1] (see also [2,3] for a review). Furthermore, even
though general relativity (GR) is not perturbatively renor-
malizable, its fourth-order counterpart is [4]. Increasing the
number of derivatives in the action can make the theory even
more regular. For example, in the local theories with more
than four derivatives it is possible to achieve superrenormal-
izability [5]. Indeed, the models with six derivatives have
divergences only up to 3-loops, while in those with more
than ten derivatives only 1-loop divergences remain. More-
over, in such models the β-functions are exact and gauge-
independent.

The benefits that higher derivatives bring in what con-
cerns renormalization, however, come together with a serious
drawback regarding unitarity. Although it is possible to asso-
ciate the new degrees of freedom of the theory to positive-
norm states in the Hilbert space, some of them may carry
negative energy [4,5]. These so-called ghost states introduce
instabilities in the theory, with the possibility of a boundless
vacuum decay via the emission of an arbitrary amount of
energy in the form of gravitons. In such a scenario it makes
sense to study classical and quantum aspects of models which
can offer insight on how to deal with, e.g., the tension between
renormalizability and unitarity, or the most appropriate form
of treating (or avoiding) ghosts and related instabilities.1

In this regard, two models have been the subject of inter-
esting investigations in recent years. The first one we mention
is the Lee–Wick gravity [11,12] – see, e.g., [10,13–16] for
further developments and applications. This theory is defined
by the Einstein-Hilbert action enlarged by curvature-squared
terms which contain polynomial functions of the d’Alembert
operator, such as RμνF1(�)Rμν and RF2(�)R. A general
action of this type can be called polynomial higher-derivative
gravity and was introduced in [5]; the Lee–Wick gravity

1 See, for example, [6–10] and references therein for a discussion on
some of the proposals and the difficulties they face.
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assumes, furthermore, that the polynomials Fi are such that
all the massive poles of the propagator which correspond to
ghost modes are complex. Hence, the physical spectrum of
the theory contains the usual massless graviton and, possi-
bly, a healthy massive scalar particle (as the lightest scalar
excitation is not a ghost [5]). The pairs of complex conju-
gate massive modes are understood as virtual ones only and
should decay to healthy particles. It was claimed that the
presence of those complex poles do not violate the unitarity
of the S-matrix if the Lee–Wick quantization prescription is
used [11,12]. Therefore, this could be a form of restoring the
unitarity, weakening the tension between renormalizability
and unitarity.

Another proposal for dealing with the problem of ghosts
is to avoid them, at least at tree level, by replacing the poly-
nomials Fi of the action by nonpolynomial functions of the
d’Alembertian, which makes the theory nonlocal [17–20]
(see also the earlier works [21,22]). It is possible to choose
these functions in such a manner that the theory propagator
contains only the graviton pole,2 at k2 = 0. Owed to the
absence of ghosts, this theory is sometimes called ghost-free
gravity. As pointed out in [43], however, quantum correc-
tions may prompt the emergence of an infinite amount of
complex ghost poles. Therefore, the study of the Lee–Wick
gravity may be useful also to the better understanding and
development of nonlocal UV extensions of GR.

The present work revisits two topics that have previously
been investigated in the context of local and nonlocal higher-
derivative gravity models, namely, the nonrelativistic limit
[10,20,44–49] and the collapse of small mass spherical shells
[50,51]. Our focus is on general polynomial gravity, with
a special attention given to the case of complex poles –
Lee–Wick gravity – and also, for the sake of completeness,
higher-order (degenerate) poles. In this sense, the results pre-
sented here both generalize and refine previous considera-
tions on the aforementioned topics, as we describe in what
follows.

The presence of higher derivatives in the gravitational
action tends to ameliorate both classical and quantum diver-
gences. The former can be viewed, e.g., on the Newto-
nian potential and on the effect of the gravitational col-
lapse. The latter is related, as mentioned before, to the
(super)renormalizability of the theory. Since 1977 it is known
that the fourth-derivative gravity is renormalizable and has
finite nonrelativistic potentials [4,52]. This relation was
recently extended to superrenormalizable higher-order grav-
ity theories with real poles, which were shown to have a finite

2 In the works [18–22] the nonlocality is introduced by the use of differ-
ent types of functions, which may have particularities in what concerns
the renormalizability properties of the model. For further considerations
on quantum and formal classical aspects in nonlocal field theories see,
e.g. [23–42] and references therein.

potential too [44]. On the other hand, the introduction of
higher derivatives only in the R2-sector of the theory results
in a nonrenormalizable model with a divergent (modified)
Newtonian potential [46]. These examples of simultaneous
occurrence of classical and quantum singularities raised the
question of whether there is a fundamental relation between
them [43,44,53]. The negative to this conjecture was given
in [45], where it was shown that the Newtonian singularity is
canceled in all the polynomial gravity theories with at least
one massive mode in each sector, which included Lee–Wick
and also some nonrenormalizable models.

Nevertheless, the proof of the finiteness of the potential
carried out in [45] was based on the calculation only of the
terms which give divergent contributions to the potential,
and on the demonstration of an algebraic relation between
the poles of the propagator of the theory. In the Sect. 2 of
the present work we derive the expression for the weak-field
metric potentials to all orders in r – including the case of
degenerate poles – and obtain an alternative verification of
the cancellation of the Newtonian singularity. This simpler
demonstration is based on partial fraction decomposition and
on the use of the heat kernel method for deriving gravitational
potentials introduced in [51].

Having the expression of the linearized metric for a point-
like source in a general local higher-derivative gravity, it is
possible to go beyond the analysis of the finiteness of the
potential and discuss the regularity of the curvature invari-
ants. This is carried out also in Sect. 2, where we show that the
metric is regular if and only if the model contains more than
four derivatives in both the scalar and tensor sectors. This
includes local superrenormalizable models and a wide class
of Lee–Wick gravities. Following the aforementioned paral-
lel between quantum and classical singularities [43–45,53],
one can say that GR is nonrenormalizable and has a diver-
gent Newtonian potential, fourth-order gravity is renormaliz-
able and has a finite gravitational potential (but its curvature
invariants diverge), and the higher-order gravities which are
superrenormalizable have a complete regular nonrelativistic
limit, i.e., the metric potentials and the curvatures have no
singularities.

In the Sect. 3, the static solution found in the preceding
section is used to obtain the metric associated to a nonspin-
ning gyraton, which is an approximation to an ultrarelativistic
massive particle without angular momentum [54–56]. The
procedure comprise applying a boost to the nonrelativistic
metric and then taking the Penrose limit (see, e.g., [57]).
This turns out be an intermediate step to the analysis of the
collapsing null shells. The field generated by a nonspinning
gyraton was derived in the context of the nonlocal ghost-free
gravity in [50], and for the polynomial gravity with simple
poles in [51]. In the present work we show that this metric has
the same small-distance behavior in all nontrivial polynomial
gravity theories. To conclude this section, some particular
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explicit examples are presented for the cases of complex and
degenerate poles.

The collapse of small mass shells is analyzed in Sects. 4
and 5 which, respectively, discusses the case of an infinitesi-
mally thin shell and of a shell with a finite thickness. By small
mass we mean that we work only with linearized equations
for the gravitational field, in agreement to what was devel-
oped in the previous sections. The interest in this scenario is
the possibility of formation of mini black holes, e.g., owed
to the collision of ultrarelativistic particles [48]. The formal-
ism we follow was introduced in detail in [50], where it was
applied to the ghost-free gravity. It was later generalized in
[51], where the case of polynomial models with simple poles
was considered. Our extension of the latter work to general
polynomial models verifies the conclusion that there exists a
mass gap to the formation of mini black holes. The presence
of a mass gap is typical in higher-derivative gravity models,
which is known since the 1980s [58], and means that a black
hole can only be formed if its mass is larger than a certain
value. This is in contrast to what happens in GR, where any
mass can become a black hole, provided it is concentrated in
a sufficiently small region.

Also, in Sects. 4 and 5 we discuss the emergence of sin-
gularities during the collapse of null shells within general
polynomial gravities by analyzing the Kretschmann scalar
R2

μναβ . In particular, in Sect. 5 we show that the Kretschmann
scalar for a collapsing thick null shell is regular for all models
with more than four derivatives in the spin-2 sector. This com-
pletely characterizes the class of models for which R2

μναβ can
have the logarithmic singularities found in [51]. Further dis-
cussion concerning similarities between local and nonlocal
higher-derivative gravity and extensions to the full nonlinear
regime are carried out in Sect. 6, where we also draw our
conclusions.

Our sign conventions are ημν = diag (−,+,+,+) for
Minkowski spacetime metric and Rα

βμν = ∂μΓ α
βν − . . . ,

for the Riemann tensor. The Ricci tensor is defined by Rμν =
Rα

μαν . Also, we use spatial distance and mass definitions
such that c = h̄ = 1.

2 Newtonian limit

In the static weak-field approximation we consider metric
fluctuations around Minkowski spacetime

gμν = ημν + hμν (1)

and work with the equations of motion at the linear level.
The only relevant terms in the action which contribute for
the linearized field equations are those of second order in
the perturbation hμν . Consequently, at the Newtonian limit
a general higher-derivative gravity model can be reduced to
the action

Sgrav = 1

4κ

∫
d4x

√−g
{

2R + Rμν F1(�) Rμν

+ R F2(�) R
}
, (2)

where κ = 8πG and F1 and F2 are functions of the
d’Alembert operator. If F1 and F2 are nonzero polyno-
mial functions, not necessarily of the same degree, we
say it is a polynomial higher-derivative model.3 Otherwise,
we say the theory is nonlocal. Let us note that the term
RμναβF3(�)Rμναβ is irrelevant for our purposes since, by
means of the Bianchi identities and integrations by parts,
one can prove that (see, e.g., [5])∫

d4x
√−g

{
RμναβF3(�)Rμναβ − 4RμνF3(�)Rμν

+ RF3(�)R
}

= O(R3) = O(h3). (3)

Hence, the effect of such Riemann-squared term can be repro-
duced, at the linear level, by a redefinition of the functions
F1 and F2.

Performing the expansion (1), the bilinear form of the
action (2) reads [20]

S(2)
grav = 1

4κ

∫
d4x

[
1

2
hμν a(�)�hμν − 1

2
h c(�)�h

+ h c(�) ∂μ∂νh
μν − hρ

ν a(�) ∂ρ∂μh
μν

+ 1

2
hμν [a(�) − c(�)]

1

� ∂μ∂ν∂ρ∂ωh
ρω

]
, (4)

where we introduced the condensate notations

a(�) = 1 + 1

2
F1(�)�, (5)

c(�) = 1 − 2F2(�)� − 1

2
F1(�)�. (6)

The variational principle then yields the field equations,

a(�) (�hμν − ∂ρ∂μh
ρ
ν − ∂ρ∂νh

ρ
μ)

+ c(�) (ημν∂ρ∂ωh
ρω − ημν�h + ∂μ∂νh)

+ [a(�) − c(�)]
1

� ∂μ∂ν∂ρ∂ωh
ρω = −2κ Tμν, (7)

where Tμν is the energy-momentum tensor sourcing the field.
As far as we are interested in a pointlike source, we assume

Tμν = ρ δ0
μ δ0

ν , (8)

where ρ = m δ3(r) is the mass density. In this case the
metric can be written in the isotropic form

ds2 = −(1 + 2ϕ)dt2 + (1 − 2ψ)(dx2 + dy2 + dz2). (9)

Here ϕ = ϕ(r) and ψ = ψ(r) are the Newtonian poten-
tials and r = √

x2 + y2 + z2 . The metric potentials can be
obtained by solving

3 Note that the case of trivial polynomials, i.e., Fi = const. �= 0,
reduces to fourth-order theories; while the choice F1 = F2 = 0 recovers
GR.
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[a(Δ) − c(Δ)]Δϕ + 2c(Δ)Δψ = κρ, (10)

[a(Δ) − 3c(Δ)][Δϕ − 2Δψ] = κρ, (11)

which are, respectively, the 00-component and the trace of the
equations of motion (7). Moreover, the substitution � �→ Δ

was implemented, as the metric is static.
Instead of solving the system above directly for ϕ and ψ ,

it is more convenient to work with their linear combination
in the form of

χ ≡ ϕ + ψ and ω ≡ ϕ − 2ψ. (12)

Once the equations are solved forχ andω it is straightforward
to obtain the original metric potentials via

ϕ = 1

3
(2χ + ω), ψ = 1

3
(χ − ω). (13)

The reason for working with χ and ω is threefold: first,
the field equations for these new potentials have a simple
structure in terms of the functions a and c. In fact, Eqs. (10)
and (11) are equivalent to

a(Δ)Δχ = κρ, (14)

b(Δ)Δω = −κρ/2, (15)

where the function b(z) is defined by4

b(Δ) ≡ 1

2
[3c(Δ) − a(Δ)] . (16)

Second, the functions a and b above correspond precisely to
the terms which appear in the propagator associated to the
theory (2) [59],

G(k) = 1

k2a(−k2)
P(2) − 1

2k2b(−k2)
P(0−s), (17)

where P(2) and P(0−s) are, respectively, the spin-2 and spin-
0 projection operators (see, e.g., [2]; tensorial indices and
the terms which are gauge-dependent were omitted for sim-
plicity). Indeed, the roots of the equations a(−k2) = 0 and
b(−k2) = 0 determine the massive poles of the propagator
and, therefore, the (massive) spectrum of the model. In this
spirit, Eq. (12) splits the metric potentials into the contribu-
tions owed to the spin-2 modes (through χ ) and to the scalar
modes (via ω). Based on this relation between the roots of the
equations a(−k2) = b(−k2) = 0 and the poles of the prop-
agator, throughout the present work we shall refer to these
quantities as either “roots” or “poles”.

The third motivation for working with the special combi-
nation in the form χ = ϕ+ψ is that the potential χ turns out
to be the relevant one for the collapse of the spherical null
shell (see discussion in Sect. 3 and in [51]). The situation

4 The multiplicative factor 1/2 was introduced in order to have b(0) =
a(0) = 1. With this choice the discussion carried out in the Appendix
A applies directly to both a and b, simplifying the considerations of
Sects. 2.2 and 2.3.

resembles what occurs in the light bending [60]. Qualita-
tively, this happens because in the ultrarelativistic limit the
interaction between particles and the gravitational field is
similar to that of photons.

2.1 Heat kernel solution

Equations (14) and (15) have the very same structure, the
only difference being the operator function. From now on
we assume that F1 and F2 are polynomial functions, as our
interest in this work is on higher-derivative polynomial grav-
ity. Then, a, b and c are also polynomials, but with different
coefficients, and the equations for χ and ω are essentially the
same. Therefore, we explicitly work out the solution for (14)
and, mutatis mutandis, write down the solution for (15). The
solution for χ can be easily found by means of the heat ker-
nel approach, based on the Laplace transformation, as carried
out in [51].

Indeed, introducing the Green’s function for (14) via

Ĥ · Ĝ = 1̂, (18)

where

Ĥ = a(Δ)Δ, (19)

we have the integral solution

χ(x) = 8πG
∫

d3x ′G(x, x ′) ρ(x ′). (20)

Let us now assume that the inverse Ĥ−1(Δ) of the opera-
tor (19) can be written as the Laplace transform of some
function f (s), that is,

H−1(−ξ) =
∫ ∞

0
ds f (s) e−sξ . (21)

Then, the x-representation of the Green’s function Ĝ reduces
to

G(x, x ′) =
∫ ∞

0
ds f (s) 〈x | esΔ | x ′〉, (22)

where

〈x | esΔ | x ′〉 = K (|x − x ′|; s) = e−|x−x ′|2/4s

(4πs)3/2 (23)

is the heat kernel of the Laplacian. By choosing x = r and
x ′ = 0 , formula (20) simplifies to

χ(r) = 8πGm
∫ ∞

0
ds f (s) K (r; s). (24)
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Particularizing for the higher-derivative model (2), accord-
ing to the fundamental theorem of algebra we can write the
polynomial a(−ξ) in the factored form5

a(−ξ) =
N∏
i=1

(
m2

i + ξ

m2
i

)αi

, (25)

where ξ = −m2
i (with i ∈ {1, 2, . . . , N }) is a root of the

equation a(−ξ) = 0 and αi is its multiplicity. Notice that if
N is the degree of a(Δ) – i.e., if there are 2(N+1) derivatives
in the spin-2 sector – then

∑N
i=1 αi = N . With the focus on

general polynomial models, we shall not make any initial
restriction on the complex or real nature of the quantities m2

i ,
nor on their multiplicity.

The function f (s) for the general higher-derivative gravity
can be promptly obtained by substituting (25) into (21) and
inverting the Laplace transform using expansion in partial
fractions [61]. The result is

f (s) = −1 +
N∑
i=1

αi∑
j=1

Ai, j s
j−1 e−sm2

i , (26)

where the coefficients Ai, j are obtained from the comparison
with H−1(−ξ) in terms of its partial fraction decomposition,
namely,

Ai, j = −1

(αi − j)!( j − 1)!
dαi− j

dξαi− j

(
ξ + m2

i

)αi
ξa(−ξ)

∣∣∣∣
ξ=−m2

i

. (27)

Also, for compactness of notation, it is useful to define the
symbol Ai, j for j > αi by setting Ai, j>αi ≡ 0.

The potential χ can thus be evaluated by substituting (26)
into (24), which gives

χ(r) = −2Gm

r
+ Gm√

π

N∑
i=1

αi∑
j=1

Ai, j

×
∫ ∞

0
ds s j−

5
2 e−(sm2

i +r2/4s), (28)

where we assume that Rem2
i > 0 for the integrals to con-

verge. Under the change of variables sm2
i �→ s each of the

above integrals becomes

Ii =
∫ ∞

0
ds s j−

5
2 e−(sm2

i +r2/4s)

= (m2
i )

3
2 − j

∫
Γ

ds s j−
5
2 e−(s+m2

i r
2/4s), (29)

with the last integral being carried out along the line Γ =
{w ∈ C : w = m2

i t, t ∈ R
+}. In the case of a real root m2

i
the integration remains along the positive real axis, while for
complex roots the integration line undergoes a rotation in the

5 The factors m−2
i must be introduced because Eq. (5) requires a(0) =

1. Analogous factors must be introduced for the polynomial b(−ξ), as
b(0) = 1 by definition.

complex plane, but its points still satisfy Re w > 0. However,
the integrand h(s) on the r.h.s.of (29) is an analytical function
with only a removable singularity at the origin, and which
vanishes for |s| → ∞. Therefore, the integral of h(s) along
the oriented contour Γ� = [0, �] ∪ C� ∪ {w ∈ C : w =
m2

i (� − t), t ∈ (0, �]}, where C� is the circumference arc
of radius � connecting the points w1 = � and w2 = m2

i �, is
null. Taking the limit � → ∞, it follows that

∫∞
0 h(s)ds =∫

Γ
h(s)ds. We conclude that even in presence of complex

roots m2
i it is possible to perform the integration along the

positive real axis. Then,

Ii = (m2
i )

3
2 − j

∫ ∞

0
ds s j−

5
2 e−(s+m2

i r
2/4s)

= 2

(
r

2mi

) j− 3
2

K 3
2 − j (mir), (30)

where we chose the square root of m2
i with positive real part

and recognized in the integral a representation of the modi-
fied Bessel function of the second kind Kν [61]. Hence, the
potential χ is given by

χ(r) = −2Gm

r
+ 2Gm√

π

N∑
i=1

αi∑
j=1

Ai, j

×
(

r

2mi

) j− 3
2

K j− 3
2
(mir). (31)

In deriving this result it was assumed that Rem2
i >

0 and Remi > 0. The last assumption is physically
justified by the requirement that the potential decays to
zero at large distances, as well as to avoid tachyons on
the model. The former assumption, however, is related
to the heat kernel method used to solve (14) and the
premise that the operator Ĥ−1 has the form of (21).
Actually, the solution (31) also holds for the cases in
which the polynomial a(−ξ) has roots with | Immi | >

Remi > 0, as the Bessel functions provide the analyt-
ical continuation of each term in (28) viewed as func-
tion of an arbitrary m2

i with Remi > 0. We point out
that it is possible to obtain the potential (31), even though
with a longer calculation, directly for the general case of
| argmi | < π/2 by means of the Fourier transform method
and using Basset’s representation of the modified Bessel
functions [62].

The case of GR (a ≡ 1) is a trivial example of the pre-
vious formulas, as fGR(s) = −1 and χGR(r) = −2Gmr−1.
Another direct example is if a(−ξ) = 0 has only nondegen-
erate (ND) roots. Then αi = 1 for all i , and f (s) boils down
to [51]

fND(s) = −1 +
N∑
i=1

e−sm2
i
∏
j �=i

m2
j

m2
j − m2

i

, (32)
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while the potential is given by [51]

χND(r) = −2Gm

r

[
1 −

N∑
i=1

e−mir
∏
j �=i

m2
j

m2
j − m2

i

]
. (33)

Since the only assumption in finding the solution for χ

was that it satisfied Eq. (14), one can write down the solu-
tion for ω which satisfies (15). Let N ′ be the degree of the
polynomial b(−ξ) and let −m′2

i (with i ∈ {1, 2, . . . , N ′}) be
the roots of the equation b(−ξ) = 0, each of them with mul-
tiplicity α′

i . Then, the formula for ω(r) can be obtained by
simply making the substitution (χ, Ai, j , a,m, N ,mi , αi ) �→
(ω, A′

i, j , b,−m
2 , N ′,m′

i , α
′
i ) in Eqs. (27) and (31).

In view of (13), the modified Newtonian potential ϕ for a
general higher-derivative polynomial gravity is given by

ϕ(r) = −Gm

r

+ 4

3

Gm√
π

N∑
i=1

αi∑
j=1

Ai, j

(
r

2mi

) j− 3
2

K j− 3
2
(mir)

− 1

3

Gm√
π

N ′∑
i=1

α′
i∑

j=1

A′
i, j

(
r

2m′
i

) j− 3
2

K j− 3
2
(m′

i r),

(34)

while ψ reads

ψ(r) = −Gm

r

+ 2

3

Gm√
π

N∑
i=1

αi∑
j=1

Ai, j

(
r

2mi

) j− 3
2

K j− 3
2
(mir)

+ 1

3

Gm√
π

N ′∑
i=1

α′
i∑

j=1

A′
i, j

(
r

2m′
i

) j− 3
2

K j− 3
2
(m′

i r).

(35)

As noted before, the quantities mi are the masses of the extra
degrees of freedom with spin-2, while m′

i are related to the
scalar ones. Moreover, the potentials are real despite the pos-
sibility of complex poles in the propagator. The cancellation
of the imaginary part takes place because Kn(z̄) = Kn(z) for
n ∈ R, and Aī, j = Ai, j , where the subscript index ī refers

to the complex pole conjugate to m2
i .

The general potential (34) generalizes previous considera-
tions found in the literature which took into account real mas-
sive poles only in the scalar sector [46], or simple real poles
[44] and simple complex poles [45,51] in scalar and ten-
sor sectors. As noticed in [10,45,46], it is possible to obtain
the potential for the case of degenerate poles by considering
limits of the potential with only simple poles. This proce-
dure may be ambiguous, however, when applied to poles
with αi > 2. The formula (34) clarifies the situation, as it
explicitly allows for arbitrary multiplicity.

2.2 Finiteness of the metric potentials

If both χ and ω are finite, so are the metric potentials ϕ and
ψ . As noticed in [51], if the roots of a(−ξ) = 0 are all
simple, then χ is finite. In what follows we use the general
formula (31) to show that χ is finite for an arbitrary nontrivial
polynomial a of the form (5). Using the similarity between
the solution for χ and ω, it then follows that these properties
are valid also for ω defined by a nontrivial b given by (16). As
a conclusion, if a and b have degree of at least one, then the
potentials ϕ and ψ are finite at r = 0. This can be viewed as
an explicit verification of the result obtained in [45], where
only the terms of order r−1 were evaluated and the presence
of degenerate poles was dealt with by the procedure of taking
limits.

To this end, let us rewrite (31) separating the terms for
which j > 3/2:

χ(r) = −2Gm

r
+ 2Gm√

π

N∑
i=1

[
Ai,1

√
2mi

r
K− 1

2
(mir)

+
αi∑
j=2

Ai, j

(
r

2mi

) j− 3
2

K j− 3
2
(mir)

]
, (36)

where the summation over j ≥ 2 is considered only if αi > 1.
For j ≥ 2 and small r the functions K j− 3

2
(mir) behave like

r− j+3/2. Hence, all the terms with j ≥ 2 are finite at r = 0.
It remains to check if the terms with j = 1 manage to cancel
the Newtonian singularity. Since

K± 1
2
(z) =

√
π

2z
e−z, (37)

the terms with j = 1 have the form

2Gm√
π

N∑
i=1

Ai,1

√
2mi

r
K− 1

2
(mir) = 2Gm

r

N∑
i=1

Ai,1e
−mir .

Therefore, the potential (31) can be written as

χ(r) = 2Gm

r

[
−1 +

N∑
i=1

Ai,1

]
+ χ0 + χ1r + O(r2),

(38)

where χ0 and χ1 are constants. Using the identity
∑
i

Ai,1 = 1 (39)

(see Eq. (A.4) of the Appendix A), it follows that the Newto-
nian singularity at r = 0 is canceled by the higher-derivative
correction terms, even in presence of complex and/or degen-
erate poles.

The same reasoning holds for the potential ω, and there-
fore the metric potentials ϕ and ψ are finite, verifying the
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result of [45]. The condition for the cancellation of the sin-
gularity of the potential is the presence of at least one massive
mode in the spin-2 and in the spin-0 sectors. For example, if
F1 = 0 but F2 �= 0 then ω is finite but ϕ and ψ are not [46].

2.3 Regularity of the curvature invariants

As it is well known, the finiteness of the potential is not
enough to guarantee the regularity of the solution, as the
curvature can still be singular. For a general metric in the
form (9), e.g., the Kretschmann invariant

R2
μναβ = 4(ϕ′′2 + 2ψ ′′2) + 16

r
ψ ′ψ ′′ + 8

r2 (ϕ′2 + 3ψ ′2),

(40)

clearly diverges if ϕ′(0) and ψ ′(0) are not zero.
In order to find more rigorously the conditions for having

regular curvature invariants, let us assume that both metric
potentials are finite and write

ϕ(r) = ϕ0 + ϕ1r + ϕ2r
2 + ϕ3r

3 + O(r4), (41)

ψ(r) = ψ0 + ψ1r + ψ2r
2 + ψ3r

3 + O(r4). (42)

In terms of ϕn and ψn the Kretschmann scalar reads

R2
μναβ = 8(ϕ2

1 + 3ψ2
1 )

r2 + 32(ϕ1ϕ2 + 4ψ1ψ2)

r

+ 48
(
ϕ2

2 + 4ψ2
2 + ϕ1ϕ3 + 5ψ1ψ3

)
+ O(r).

(43)

Therefore, the invariant R2
μναβ is regular if, and only if, ϕ1 =

ψ1 = 0 [51,63]. Actually, this is the same condition for the
regularity of the set of curvature invariants:6

R2
μν = 2(3ϕ2

1 − 6ϕ1ψ1 + 11ψ2
1 )

r2

+ 32(ϕ1ϕ2 − ϕ2ψ1 − ϕ1ψ2 + 4ψ1ψ2)

r
+ 12

[
4ϕ2

2 + 16ψ2
2 − 8ϕ2ψ2 + 5ϕ1(ϕ3 − ψ3)

+ψ1(21ψ3 − 5ϕ3)
]+ O(r), (44)

R = −4ω1

r
− 12ω2 + O(r), (45)

C2
μναβ = 4χ2

1

3r2 − 8χ1χ3 + O(r), (46)

where Cμναβ is the Weyl tensor and

χn = ϕn + ψn, ωn = ϕn − 2ψn, n ∈ N. (47)

In this spirit, one may be tempted to ask whether the con-
dition ϕ1 = ψ1 = 0 is recurrent in higher-derivative gravity

6 Note, however, that the invariants R and C2
μναβ can be regular inde-

pendently of the others as they depend, respectively, only on the scalar
and on the tensor sectors.

models. For example, there is a large class of non-local grav-
ities that satisfy this condition when coupled to a δ-source
[48,63,64] (see also [65] for more general non-local theo-
ries). On what concerns local models, the ones with only
fourth derivatives do not satisfy this condition [52,66,67];
however, it holds for the sixth-order gravity with a pair of
complex poles [14], and in [68] it was given general consid-
erations supporting the conjecture that for theories with more
than four derivatives one has ϕ1 = ψ1 = 0. We here address
a more direct answer to this question by explicitly showing
which polynomial gravity models fulfil the conditions for
having a regular metric at the linear regime.

To this end, let us extend to order r the calculations of
Sect. 2.2. Using the general expression for the potential (36)
and the series expansion of the modified Bessel functions for
j ≥ 2 [61],

K j− 3
2
(mir) = √

π e−mir
j−2∑
k=0

( j + k − 2)!
k!( j − k − 2)!(2mir)k+

1
2

,

it is not difficult to verify that the terms which contribute to
order r yield

χ1 = 2Gm
N∑
i=1

{
Ai,1m2

i

2
− Ai,2

2

+
N∑
j=3

Ai, j

(4m2
i )

j−2

[
(2 j − 5)!
( j − 3)! − (2 j − 4)!

2( j − 2)!
]⎫⎬
⎭ . (48)

But the term inside the summation over j ≥ 3 is

(2 j − 5)! [2( j − 2) − (2 j − 4)]

2( j − 2)! = 0. (49)

Thus,

χ1 = Gm(S1 − S2), (50)

where we define

S1 =
N∑
i=1

Ai,1m
2
i , S2 =

N∑
i=1

Ai,2. (51)

In the Appendix A we show that if the polynomial a(−ξ)

is of degree N > 1, then S1 = S2 (see Eq. (A.7)) – recall that
2(N + 1) is the number of derivatives in the spin-2 sector
of the action. It follows that for theories of order higher than
four, the non-relativistic potential χ is not only finite, but
it is also regular, i.e., χ1 = 0. On the other hand, for the
case of N = 1 with a root at ξ = −m2

1 one has the trivial
result A1 = 1 and S2 = 0, which gives χ1 = Gmm2

1. This
reasoning can be immediately extended to the potential ω,
for which ω1 = − 1

2Gmm′2
1 if the polynomial b(−ξ) is of

order N ′ = 1, otherwise ω1 = 0.
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We conclude that the condition for the regularity of the
curvature invariants7 is the presence of at least two mas-
sive modes (or one degenerate pole) in each of the spin-2
and the spin-0 sectors – which is equivalent to having a and
b of degree higher than one.8 In other words, all higher-
derivative theories defined by nonconstant polynomials F2

and F1 �= −3F2 are regular at the Newtonian limit. In par-
ticular, this holds for the superrenormalizable local higher-
derivative gravity models, including Lee–Wick models.

In this context, the only possibilities for having a singu-
lar solution for a point source in the Newtonian limit is to
have F1(�) = const. or F1(�) = −3F2(�). In the first case
the spin-2 sector contains the massless pole corresponding
to the graviton and, possibly, one massive (ghost) particle.
In terms of the definition of π -regularity [51], which means
that π1 = 0 for a metric potential π(r), we can say such
a solution is not χ -regular, but it could be ω-regular pro-
vided that F2(�) ∼ �p with p ≥ 1. For the second case,
i.e., if F1(�) = −3F2(�), the solution is not ω-regular. Of
course, for the solution to be regular it must be both χ - and
ω-regular. In particular, Stelle’s fourth order gravity is not
regular at the Newtonian limit when coupled to a δ-source
[52,66–68], even though it can be ϕ-regular for particular
choices of parameters, namely, if m′

1 = 2m1.

2.3.1 Small-r conformally flat solutions

In view of the Eq. (46), it follows that a χ -regular solution
yields C2

μναβ = 0 at r = 0. The components of the Weyl
tensor read

Ctrtr = 1

3

(
χ ′′ − χ ′

r

)
, (52)

Ctθ tθ = Crθrθ = Ctφtφ

sin2 θ
= Crφrφ

sin2 θ
= −1

2
r2Ctrtr , (53)

Cθφθφ = −r4 sin2 θ Ctrtr . (54)

As one can see, most of them do not contain terms with
powers of r−1, which implies that if the potentials are finite in
the origin, the same is true for the corresponding components.
The exception is the only independent component, Ctrtr . In
fact,

Ctrtr = −χ1

3r
+ O(r). (55)

7 The calculation of the curvatures in this section was carried out using
the GRTensor program (for analogous expressions in other parametriza-
tions see, e.g., [51,63,64]). It is also possible to verify that under these
conditions all individual components of the curvature tensors remain
finite [69].
8 We point out that the effect of the regularization of the curvature can
be viewed also in the polynomial theories as a regularization of the
source in the Poisson equation for the metric potentials [65].

Thus, we conclude that this component is finite in r = 0 only
for χ -regular theories. In such a case, χ1 = 0 and the compo-
nents of the Weyl tensor tend to zero as r → 0, which means
that the metric is approximately conformally flat near the ori-
gin. This situation also holds in non-local higher-derivative
gravity [63,64].

3 Ultrarelativistic limit

Up to this point we restricted considerations to the Newto-
nian limit. In the following sections the weak-field potential
χ will be used to discuss the emergence of a singularity in the
collapse of null shells. As a first step towards the gravitational
field of a collapsing shell, we shall obtain the field associated
to an ultrarelativistic point-particle, which may be done by
the following procedure. First, we perform a Lorentz trans-
formation into Eq. (9), which yields the metric of a moving
object with velocity β. Thereafter, we take the limit β → 1
while keeping the relativistic mass of the object fixed (Pen-
rose limit), i.e.,

lim
γ→∞(γm) = M, (56)

being M the mass of the ultrarelativistic particle and γ =
(1 − β2)−1/2 the Lorentz factor. The resultant metric corre-
sponds to a nonspinning gyraton [57].

In order to apply this scheme to the solution found in the
previous section, let us rewrite the metric (9) in the form

ds2 = ds2
0 + dh2, (57)

where

ds2
0 = −dt2 + dx2 + dy2 + dz2 (58)

is the flat spacetime metric and

dh2 = −2 [ϕdt2 + ψ(dx2 + dy2 + dz2)] (59)

is the perturbation.
Now, consider a boost in the x-direction,

t = γ
(
t ′ − β x ′) , x = γ

(
x ′ − β t ′

)
. (60)

Introducing the null coordinates v = t ′ +x ′ and u = t ′ −x ′,
Eq. (60) read

t = γ

2
[(1 − β) v + (1 + β) u] , (61)

x = γ

2
[(1 − β) v − (1 + β) u] . (62)

Therefore, after applying the boost to the metric (57) one gets

ds2
0 = −2dudv + dy2 + dz2 (63)

and
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dh2 = −γ 2 (ϕ + ψ)

2

[
(1 − β)2 dv2 + (1 + β)2 du2

]

− (ϕ − ψ) du dv − 2ψ (dy2 + dz2). (64)

In the limit β → 1 the form of flat metric (63) remains
unchanged, while the perturbation goes to

dh2 = Φ du2, where Φ = −2 lim
γ→∞(γ 2χ). (65)

This shows, as mentioned before, that the dominant contri-
bution in the ultrarelativistic limit comes from the special
combination χ = ϕ + ψ of the metric potentials. Owed to
this fact, in this section and in Sects. 4 and 5 we restrict con-
siderations to the spin-2 sector of the theory. In this spirit,
when we refer to, e.g., “models with more than four deriva-
tives” is must be understood that these derivatives are on the
spin-2 sector.

The function Φ can be evaluated through (65) by combin-
ing Eqs. (24) and (56) and recalling that

lim
γ→∞

γ e−γ 2u2/4s

√
4πs

= δ(u). (66)

Indeed, taking into account that r2 = γ 2u2 + y2 + z2 after
the boost, it follows

Φ = −4G lim
γ→∞(γm)

×
∫ ∞

0

ds

s
f (s) e−(y2+z2)/4s lim

γ→∞
γ e−γ 2u2/4s

√
4πs

, (67)

which can be written as

Φ = −4GM F(y2 + z2) δ(u), (68)

where we defined the function F : R → R via

F(z) =
∫ ∞

0

ds

s
f (s) e−z/4s . (69)

The integral (69) typically has an infrared divergence, owed
to the massless nature of the graviton. To overcome this prob-
lem one can introduce an infrared cutoff Ω for large s. Any
change in the cutoff parameter can be absorbed into a redefi-
nition of the coordinates. In other words, this ambiguity just
reflects the freedom in the gauge choice. Quantities with clas-
sical physical meaning, such as the curvature tensors, do not
depend on Ω (for a more detailed exposition see, e.g., [50]).

For example, f (s) = −1 in the case of GR, so that

FGR
Ω (z) = −

∫ Ω2

0

ds

s
e−z/4s = −E1

( z

4Ω2

)
. (70)

Here E1(z) is the exponential integral function. As Ω is a
huge arbitrary cutoff, we assume z � Ω2 and write

FGR
Ω (z) ≈ γ + ln

( z

Ω2

)
, (71)

where γ is the Euler-Mascheroni constant, and terms of order
z/Ω2 and higher were discarded.

For the general higher-derivative model (2) the function
f (s) is given by Eq. (26), which yields

FΩ(z) = −E1

( z

4Ω2

)

+
N∑
i=1

αi∑
j=1

Ai, j

∫ ∞

0
ds s j−2 e−(sm2

i +z/4s). (72)

By applying the same arguments used in Sect. 2.1 it is pos-
sible to express the function FΩ in terms of modified Bessel
functions of the second kind,

FΩ(z) = −E1

( z

4Ω2

)

+2
N∑
i=1

αi∑
j=1

Ai, j

( √
z

2mi

) j−1

K j−1(mi
√
z). (73)

Before we present some explicit calculations for the cases
of complex and degenerate poles, let us show a general prop-
erty of the function in Eq. (73). On the one hand, Eq. (71)
shows that in GR FGR

Ω (z) ∼ ln z diverges as z → 0. On the
other hand, in [51] it was shown that this divergence do not
occur in the case of polynomial gravity with simple poles,
because the leading terms of FΩ(z) for small z are linear
in z or of the type z ln z. Now we prove that this feature is
present also in the general polynomial theory. Indeed, for
small arguments the modified Bessel functions of the second
kind Kn(z) (n ∈ N) can be expanded as

K0(z) = − ln z + 1

4
z2(1 − γ + ln 2) − 1

4
z2 ln z

+ c0 + O(z4), (74)

K1(z) = 1

z
+ z

2

(
ln z + γ − 1

2
− ln 2

)
+ O(z3), (75)

Kn(z) = (n − 1)!
2

(
2

z

)n

− (n − 2)!
2

(
2

z

)n−2

+ cn + O(z−n+4), for n ≥ 2, (76)

where ci are constants and γ is the Euler-Mascheroni con-
stant. Substituting these expressions in (73) and using (A.4)
it follows (c′ is a new constant)

F(z) = − z

4

[
( ln z + 2γ − 2 ln 2 − 1)(S1 − S2) − S1 + S

]

+ c′ + O(z2). (77)

The constants Sn are defined just like in (51), while S is given
by

S = S′
1 − S′

2 + P3, S′
n =

N∑
i=1

Ai,n(m
2
i )

2−n lnm2
i ,

P3 =
N∑
i=1

N∑
j=3

( j − 3)!
(m2

i )
j−2

Ai, j . (78)
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Note that in any higher-derivative gravity model the sin-
gular term ln z which stems in GR (see (71)) is canceled by
a specific combination of the contribution owed to each mas-
sive mode through K0(mi

√
z). This is a direct consequence

of the cancellation of the Newtonian singularity discussed in
Sect. 2.2 and in Refs. [44,45]. Also, while the constant S′

1
is nontrivial for all higher-derivative polynomial models, the
quantities S2 and S′

2 only appear if there is at least one pole
with multiplicity equal or larger than 2, and P3 is relevant
only for models with at least one pole for which αi ≥ 3 –
this justifies our choice for the subscript labels.

3.1 Particular cases and examples

To close this section let us consider some examples of the
diversity of scenarios which occur in higher-derivative grav-
ity. In particular, we present explicit calculations for the sixth-
order gravity, which is the simplest model which admits com-
plex or degenerate real poles. We shall return to these exam-
ples in the next section, when analyzing the gravitational field
of collapsing null shells.

3.1.1 4th-order gravity

There is only one possible scenario: the equation a(−ξ) = 0
has one real simple root at ξ = −m2

1. Therefore, S1 = m2
1

and S = m2
1 lnm2

1, so that

F(z) = c′ − z

4

(
ln z + 2γ − 2 ln 2 − 2 + lnm2

1

)
m2

1

+O(z2). (79)

As the other examples show, and in consonance with the
discussion in Sect. 2.3, this is the only case in which the
small-z expansion of F(z) contains the term z ln z.

3.1.2 Models with more than four derivatives

For any model of order higher than four there is the identity
S1 = S2 (see Eq. (A.7) of the Appendix A). Hence, Eq. (77)
can be cast in a very simple form:

F(z) = c′ − z

4
(S − S2) + O(z2). (80)

This result is both a generalization and a simplification of the
analogous expression derived in [51], as it accounts for the
possibility of degenerate poles and also rules out the terms
of the type z ln z.

3.1.3 Nondegenerate models

The case of nondegenerate roots was investigated in Ref.
[51]. Here we show that our general considerations correctly
reproduce this particular case. If all the roots of a(−ξ) = 0

are simple, then αi = 1 ∀ i and the general expression (73)
for F(z) reduces to [51]

F(z) = −E1

( z

4Ω2

)
+ 2

N∑
i=1

K0(mi
√
z)
∏
j �=i

m2
j

m2
j − m2

i

.

(81)

Now, let us assume that N > 1 (the case of N = 1 was
discussed in the Example 3.1.1). Inasmuch as all the roots are
nondegenerate, it follows that S2 = S′

2 = P3 = 0, whence
S = S′

1. Therefore, for small z the function F(z) behaves
like

F(z) = c′ − z

4
S′

1 + O(z2). (82)

3.1.4 Maximally degenerate models

We say the higher-derivative model of order N > 1 is max-
imally degenerate if the equation a(−ξ) = 0 has only one
root at ξ = −m2

1, with multiplicity N . In such a case, the
following relations are valid:

S = P3 =
{

0, if N = 2,

m2
1

∑N
j=3[( j − 1)( j − 2)]−1, if N > 2,

S′
1 = S′

2, and S2 = m2
1. (83)

Thus, for small z the function F(z) can be written as

F(z) = c′ + z

4
(m2

1 − P3) + O(z2). (84)

3.1.5 6th-order gravity with simple poles

For a pair of simple poles m2
1 and m2

2, Eqs. (51) and (78)
yield S2 = 0 and S′

1 �= 0. If these poles are simple and real
the function f (s) is given by

f (s) = −1 + m2
2

m2
2 − m2

1

e−m2
1s + m2

1

m2
1 − m2

2

e−m2
2s, (85)

which yields, for small z,

F(z) = c′ +
m2

1m
2
2 ln

(
m1
m2

)

2(m2
1 − m2

2)
z + O(z2, z2 ln z). (86)

In the case of two conjugate complex roots with m1 =
α + iβ and m2 = α − iβ, it follows

f (s) = −1 +
[

cos(2αβs)

+ α2 − β2

2αβ
sin(2αβs)

]
e−s(α2−β2) (87)

and

F(z) = c′ + (α2 + β2)2

4αβ
arctan

(
β

α

)
z + O(z2, z2 ln z).

(88)
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3.1.6 6th-order gravity with degenerate poles

For degenerate real poles m2
1 = m2

2 we have

f (s) = −1 + e−m2
1s
(

1 + m2
1s
)

. (89)

As the particular case of the N = 2 maximally degenerate
model, it holds S′

1 = S′
2 = m2

1 lnm2
1, which gives S = 0 and

F(z) = ln
( z

Ω2

)
+ 2K0

(
m1

√
z
)+ m1

√
z K1

(
m1

√
z
)

= c′ + z

4
m2

1 + O(z2, z2 ln z). (90)

We note that Eq. (90) can be obtained from the analogous
equations for simple poles by taking the limit m2 → m1

in (86) – or the limit β → 0 in (88). While this procedure of
taking the limit is simple to carry out in the case of two roots
(see, e.g., [10] for more examples), the situation might be
not so clear if one is to consider a higher-order root. In such
a case it is preferred to work with the general formula (73),
or (80), as discussed in Sect. 2.

4 Thin null shell collapse

In this section we analyze the collapse of a null shell and the
formation of mini black holes. Following Refs. [50,51], we
first consider a shell with vanishing thickness. For this case
the Kretschmann curvature invariant is still singular, but this
singularity is consequence of the nonphysical approximation
of a infinitesimally thin shell.

The field associated to a thin null shell (or δ-shell) can be
obtained, at the linearized level, by the superposition of an
infinite amount of gyratons spherically distributed and which
pass through one given point O [50], which we take as the
origin of the coordinate system. This point is the vertex of
the null cone representing the shell, so that for t < 0 the shell
is collapsing towards the apex O and for t > 0 it proceeds
its expansion after the collapse. It can be shown that, outside
the shell, the averaged metric perturbation 〈dh2〉 resulting
from this distribution of nonspinning gyratons is given by
(see [50] for a detailed derivation of this result)

〈dh2〉 = −2GMF(r2 − t2)

r

[(
dt − t

r
dr

)2

+ r2 − t2

2
dΩ2

]
, r � |t |, (91)

where we use spherical coordinates, so that dΩ2 = dθ2 +
sin θ2dφ2 is the metric of the unit sphere and

ds2 = −dt2 + dr2 + r2dΩ2 + 〈dh2〉 (92)

is the complete metric. Here F(z) is defined by (69), as given
by the metric (65) associated to a single gyraton.

4.1 Apparent horizon

The formation of black holes is closely related to the invariant

g ≡ (∇�)2 = 1

4 f
gμν ∇μ f ∇ν f, (93)

where f = �2 ≡ gθθ . Indeed, the points for which g = 0
correspond to an apparent horizon [71]. If it happens that
g(t, r) is strictly positive then the collapsing shell generates
no apparent horizon.

For the general metric (92) the invariant g is given by [51]

g = 1 − 2GM

r
q(r2 − t2), (94)

where

q(z) ≡ z
dF

dz
(z). (95)

If there is a positive constant C such that

|q(r2 − t2)|
r

< C, (96)

then g is positive anywhere provided that M < (2GC)−1.
Therefore, in order to show the existence of a mass gap to the
formation of mini black holes one should verify that the func-
tion r−1q(r2 − t2) is bounded. In [51] it was shown that for
nondegenerate models there is the mass gap. In what follows
we extend this result to the general polynomial model.

For F(z) given by Eq. (73) we have

q(z) = 1 − √
z

N∑
i=1

Ai,1 mi K1(mi
√
z)

+ 2
N∑
i=1

αi∑
j=2

Ai, j

( √
z

2mi

) j−1 [
( j − 1)K j−1(mi

√
z)

− mi
√
z

2
K j (mi

√
z)
]
. (97)

As a finite sum of continuous functions defined for all
z ∈ R

+, q(z) is also continuous. Hence, if q(z) has any sin-
gularity it can only take place for large or small z. The former
divergence does not occur, because the functions K j (z)decay
exponentially as |z| → ∞, in such a way that q(z) → 1 as
z → ∞. On the other hand, assuming N > 1, for small
arguments one has

q(z) = − z

4
(S − S2) + O(z2), (98)

whence q(z) → 0 as z → 0. Being the asymptotic limits
finite, it follows that q(z) is bounded. Now let us analyze
the function r−1q(r2 − t2). The function r−1 is continuous,
it vanishes for large r and only diverges as r → 0. In this
regime, however,q(r2−t2) dominates over r−1, since |t | < r
outside the shell implies in r2 − t2 < r2. Thus,
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Fig. 1 Graph of V (v) for the sixth-order gravity with degenerate roots

lim
r→0

|q(r2 − t2)|
r

= 0. (99)

Similar analysis can be applied for the case N = 1, with the
same result [51]. We conclude that r−1q(r2 − t2) is bounded
for general polynomial gravity models, which implies in
the existence of the mass gap for the formation of mini
black holes. The size of the gap depends on the scale λ =
maxi {m−1

i } defined by the massive excitations of the model;
such scale could be affected by a gravitational seesaw-like
mechanism as discussed in [13] (see also [10,70] for exper-
imental bounds on λ).

To give an example of an explicit calculation, consider
the sixth-order gravity with degenerate poles discussed in
Sect. 3.1.6, for which

q(z) = 1 − m1
√
z

2
K1(m1

√
z)

− m2
1z

4
[K0(m1

√
z) + K2(m1

√
z)] . (100)

Following [51] we put β2 ≡ 1 − t2r−2 and v ≡ m1βr , so
that r−1q(r2 − t2) = m1βV (v), with

V (v) = 1

v
− 1

2
K1(v) − v

4
[K0(v) + K2(v)] . (101)

The function V (v) is positive and reaches its maximum of
about 0.249 at v ≈ 2.324 (see Fig. 1). Thus,

2GM

r
q(r2 − t2) = 2GMm1βV (v) � 0.5GMm1, (102)

as outside the shell the parameter β ranges in the interval
(0, 1). Therefore, if M � 2(Gm1)

−1 the collapse does not
result in a black hole.

4.2 Kretschmann scalar

Even though there is a mass gap for the mini black hole forma-
tion in the general higher-derivative gravity, the Kretschmann
invariant is not regular at r = 0. Indeed, for a metric in the
form (92) it is given by [50,51]

R2
μναβ = 48G2M2

r6 Q(r2 − t2),

where Q(z) ≡ 2z2q ′2 − 2zqq ′ + q2 (103)

and primes denote differentiation with respect to the argu-
ment z. For N > 1 and small arguments, q(z) is given
by (98), yielding

R2
μναβ ≈ 3G2M2 (S − S2)

2 β4

r2 , (104)

where β2 ≡ 1 − t2r−2 ranges between 0 and 1 outside
the shell. As the collapse proceeds, the Kretschmann scalar
diverges9 for r → 0. This very same behavior occurs in the
nonlocal ghost-free gravity [50], and it was previously veri-
fied to occur also in the particular case of polynomial models
with simple poles [51]. Actually, in view of these results on
similar models it is natural to expect the nonregularity of the
Kretschmann invariant, as in these cases the function F(z)
has the same linear dependence on z for small arguments.
As pointed out in [50,51] this singularity of R2

μναβ is associ-
ated to the nonphysical assumption of an infinitesimally thin
shell. The physical imploding shell must have finite thick-
ness, which tends to regularize the curvature (see Sect. 5).

It is also instructive to recall that for the fourth-order grav-
ity, i.e., N = 1, one gets

q(z) = − z

4
( ln z + q1)m

2
1 + O(z2), (105)

around z = 0, where q1 ≡ 2γ − 2 ln 2 − 1 + lnm2
1. This

gives [51]

R2
μναβ ≈ 3G2M2m4

1β
4

r2

{
q2

1 + 2(1 + q1)
[
1 + ln (β2r2)

]

+
[

ln (β2r2)
]2 }

, (106)

which diverges more rapidly (c.f. Eq. (104)) as the collapse
proceeds and r → 0.

5 Thick null shell collapse

In the linear regime one can build the metric associated to
thick null shell by superposing a set of δ-shells collapsing
to the same spatial point O , which we take as origin of the
coordinate system. Of course, there are infinite possibilities
of distributing the total energy of the shell throughout its
thickness. Since our goal is to show that a nonsingular source
regularizes the Kretschmann scalar in the polynomial gravity
(and ameliorates the divergence for the fourth-order model),
we choose the most simple profile by assuming that the den-
sity ρ(t) at r = 0 remains constant during the collapse, being
null before/after it. Such a definition of the energy flux pass-
ing at O suffices to determine the density profile of the shell,

9 Note, however, that the divergence is less strong than in GR, for which
R2

μναβ ∼ r−6.
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insomuch as each element of the fluid moves at the speed
of the light and no self-interaction is considered inside the
shell. Therefore, for a shell with total mass M and thickness
(or duration) τ ,

ρ(t) =
{

0, if |t | > τ/2,

M/τ, if − τ/2 < t < τ/2,
(107)

where we set t = 0 as the moment when half of the total
mass crosses O . The corresponding metric perturbation can
be obtained by averaging the metric (91) of the thin null shells
with respect to the density ρ [50],

〈〈dh2〉〉(t, r) =
∫

dt ′ρ(t ′)〈dh2〉(t − t ′, r). (108)

The collapse of a thick null shell defines specific space-
time domains (see, e.g., [50]). In the present work we restrict
considerations to the domain I near t = r = 0, where (and
when) the shell assumes its highest density – favoring the
mini black hole formation and the emergence of singulari-
ties. This domain is characterized by the intersection of the
in-coming and the out-coming fluxes of null fluid, and it
is formally defined by the locus of the spacetime points for
which r+|t | < τ/2. Moreover, the metric is stationary inside
I , for the energy density is constant. Taking into account that
only the δ-layers which cross O at times t ′ ∈ (t − r, t + r)
contribute to the field inside this domain, it is not difficult to
verify that Eq. (108) yields [50]

〈〈dh2〉〉 = −2GM

τr

[
J0dt

2 + J2
dr2

r2

+ 1

2

(
J0r

2 − J2

)
dΩ2

]
, r + |t | <

τ

2
, (109)

where we defined

Jn(r) ≡
∫ r

−r
dx xn F(r2 − x2). (110)

Particularizing this solution for gravity models with six
or more derivatives in the action, we substitute the expres-
sion (80) for F(z) around z = 0. It follows

J0(r) = 2c′r − r3

3
(S − S2) + O(r5),

J2(r) = 2c′r3

3
− r5

15
(S − S2) + O(r7). (111)

The Kretschmann scalar associated to this solution is

R2
μναβ = 32G2M2 (S − S2)

2

3τ 2 + O(r2), (112)

which is regular at r = 0, as anticipated. It is worthwhile to
mention that the nonsingularity of the source is not enough,
by itself, to guarantee the regularity of the curvature. In fact,
F(z) ∼ ln z in GR, which gives R2

μναβ ∼ r−4 for the
collapsing thick null shell. Also, the presence of the term

z ln z in the small-z expansion of F(z) could yield logarith-
mic divergences in the Kretschmann scalar. Such singularity
was considered in [51] as a possibility for general higher-
derivative polynomial gravity (see Eq. (77)). Nonetheless, it
only occurs for the models with four derivatives in the spin-2
sector, since for nontrivial polynomial theories there is the
relation S1 = S2 which regularizes the potential χ .

Explicitly, the Kretschmann scalar for a collapsing thick
null shell in the fourth-derivative gravity follows from (79)
and reads [51]

R2
μναβ = 32G2M2m4

1

27τ 2

[
5 + 9c2 + 36c ln r + 36( ln r)2

]

+ O(r2), (113)

with c ≡ 2γ − 2 + lnm2
1. The origin of this singularity can

be traced back to the nonrelativistic limit. Indeed, in [51] it
was shown that, for polynomial theories with simple poles,
the nonregularity of the potential χ implied in a singular
Kretschmann scalar for the collapsing thick null shell.

We have seen that the divergences are softened when a
δ-shell is substituted by a thick shell. It is therefore natural
to expect the existence of a mass gap to the formation of
mini black holes for a collapsing thick null shell too. For the
sake of completeness, we calculate the invariant g(r) on the
domain I for the solution (111), which reads

g(r) = 1 + 2GM(S − S2)r2

3τ
+ O(r4). (114)

Since r < τ on I , it follows that

2GM |S − S2|r2

3τ
<

2GM |S − S2|τ
3

. (115)

Hence, for a given τ it is also possible to avoid the existence
of an apparent horizon inside I provided that the mass M is
sufficiently small.

6 Summary and discussion

Let us summarize the results obtained. We derived the solu-
tions for the Newtonian potentials associated to a pointlike
mass in a general polynomial higher-derivative gravity, i.e.,
allowing the presence of complex and degenerate poles (with
arbitrary order) on the propagator. This includes the classes of
(super)renormalizable theories and Lee–Wick gravity mod-
els. It was verified, in agreement to [45], that the metric poten-
tials remains finite in r = 0 provided that there is at least one
massive mode in each spin-2 and spin-0 sectors. This is not a
sufficient condition, however, to ensure the regularity of the
solution, because there can be singularities in the curvatures.

Indeed, since the 1970s it is known that Stelle’s fourth-
order gravity possesses curvature singularities in the linear
regime [52]. On the other hand, there were evidences that
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such singularities would be regularized in the models which
contain more than four derivatives in the action [14,68].
Using the expressions (34) and (35) derived in Sect. 2 for
the nonrelativistic potentials ϕ and ψ , we showed explic-
itly that in a generic polynomial gravity with more than four
derivatives in both scalar and spin-2 sectors the curvatures
remain finite at the origin. This result completely character-
izes the class of local higher-derivative gravities which have
a regular Newtonian limit.

In the ensuing part of the paper we considered the dynam-
ical process of the spherically symmetric collapse of null
shells in linearized higher-derivative polynomial gravities.
Here we generalized the discussion carried out in [51] to
include the possibility of degenerate poles. If one allows
the shell to have a certain thickness, then the Kretschmann
invariant becomes finite during the collapse provided that
the model has at least six derivatives in its spin-2 sector. This
observation on the regularity of the metric of the thick shell
is a refinement of the result derived in [51]. Indeed, the loga-
rithmic divergences of the Kretschmann scalar which in prin-
ciple could occur in polynomial theories are actually ruled
out in most of the cases, due to a specific algebraic relation
between the poles of the propagator. Only in the fourth-order
gravity these logarithmic divergences are possible. Finally,
we have shown that, like in the case of polynomial gravities
with simple poles in the propagator [51], there exists a mass
gap for the mini black hole formation also in the models with
higher-order poles.

With the results obtained in the present work it is pos-
sible to observe some similarities between the nonlocal
(ghost-free) higher-derivative gravity and the local (poly-
nomial) models with more than four derivatives. First, in
both theories there is the cancellation of the Newtonian sin-
gularity of the metric potentials associated to a δ-source
[17,19,20,44,45,49]. Second, it is known that in the nonrel-
ativistic limit there is a class of nonlocal gravities that have a
regular solution for the field generated by a pointlike source
[48,63,64]. Our results show that in a generic polynomial
higher-derivative gravity with more than four derivatives in
each sector the Newtonian limit is regular too. (Actually,
using the description of effective sources presented in [65] it
is possible to deduce the regularity of some nonlocal theories
from the comparison with a sequence of sources associated
to the local models.) A third similarity is the regularity of the
metric of the collapsing shell. In fact, if a thin shell is consid-
ered, nonpolynomial and nontrivial polynomial theories have
a Kretschmann scalar which diverges quadratically for small
r [50,51]. This is, however, the consequence of the nonphysi-
cal assumption of an infinitesimally thin shell. If the shell has
some thickness, then in both theories the Kretschmann invari-
ant becomes finite during the collapse. This happens, again,
because the leading term in the expansion of Eq. (90) around
z = 0 is the linear one, just like what occurs in the non-

local ghost-free gravity (see [50,51]). Solely in the fourth-
order gravity the divergences in the Kretschmann invariant
are possible, a situation analogous to what happens in the
Newtonian limit. Moreover, in both theories there is a mass
gap for the mini black hole formation. Indeed, this feature
is present in any higher-derivative model with an arbitrary
number of derivatives in the spin-2 sector [50,51,58], since
in these theories there is a new mass scale. These four con-
nections between polynomial and ghost-free gravity theories
can be supportive of the view that the nonlocal models may
be considered as the limit of a theory with an infinite amount
of complex poles hidden at the infinity [43]. In this sense, it
is useful to notice that many good regularity properties of the
nonlocal gravity [19,63,64] can be achieved without the need
of losing locality at the classical level, and may be common
to models with at least six derivatives. Further discussion
on the similarities between local and nonlocal models are
carried out in the parallel work [65].

All the results which were mentioned above have been
obtained in the linear approximation. The most interesting
question is whether there can be nonsingular solutions in the
full nonlinear regime of polynomial gravity theories. The first
step in this direction was done within the fourth-order gravity
in Ref. [52], where the asymptotic analysis of the static field
equations near the origin was carried out via the Frobenius
technique. It was shown the existence of three families of
solutions: a set of nonsingular solutions, and two sets of sin-
gular ones – one of them containing the Schwarzschild solu-
tion. The presence of the Schwarzschild solution is expected,
because by means of the Gauss-Bonnet relation∫

d4x
√−g E = total derivative, (116)

where E = R2
μναβ − 4R2

μν + R2, it is possible to com-
pletely remove the Riemann-squared term of the action, and
it is clear that any vacuum solution of the Einstein equa-
tions (Rμν = 0) is also a solution of the fourth-order grav-
ity [52,72]. Nonetheless, in this model the Schwarzschild
solution is not coupled to a positive-definite matter source
[52]. More recently, some new aspects of the nonlinear static
spherically solutions in fourth-order gravity were considered
in [66–68] by means of numerical methods. In particular, it
was studied what happens when the asymptotic solutions in
strong-field regime near r = 0 are linked with the weak-field
solution at large r in the form of a combination of Newton and
Yukawa potentials – such a potential is the particular case of
our general result, Eqs. (34) and (35). In summary, the result
is that for a δ-like source the solution has no horizon and falls
to a timelike singularity at r = 0. Actually, the presence of
the singularity in this solution is expected in view of the fact
that R2

μναβ diverges yet at the linear regime. Moreover, the
absence of horizon in the full fourth-order model is guaran-
teed by a general theorem [66,67,73]; and only the particular
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theories where the R2-term is excluded from the action could
have horizons.

In what concerns the theories with derivatives higher than
fourth, in Ref. [68] the asymptotic solutions near r = 0 were
studied by the Frobenius series expansion method in models
with up to 10 derivatives in the action. It was shown that there
is no Schwarzschild-like solutions, or other ones with singu-
larity. Only the nonsingular solutions remain in the static
spherically symmetric case for sixth- and higher-order theo-
ries.10 The nonexistence of the exact Schwarzschild solution
is due to the absence of the Gauss-Bonnet relation for the
higher-order terms. The analogue relation (3) is insufficient to
eliminate the effect of the Riemann-squared terms in the non-
linear regime, since O(R3) structures still remain. Also, the
nature of these nonsingular solutions implies that the com-
plete solutions with large r behavior given by Eqs. (34) and
(35) must have no horizon or an even number of horizons.
Another interesting result of Ref. [68] is the necessity of the-
ories with six or more derivatives to the possible elimination
of the de Sitter-like horizons.

The results of the present work, in light of [68], bring
more motivations for further investigation of the spherically
symmetric static solutions in the full nonlinear regime for the
polynomial theories with more than four derivatives. It would
also be interesting to know whether in these theories there is
some kind of no-horizon theorem, and we expect to revisit
this issue in the future. In case of a positive answer, the com-
plicated numerical search of solutions might be simplified.
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10 We point out, however, that the method based on the expansion in
Frobenius series around r = 0 is not sufficient to rule out the existence of
singularities, as there may be solutions with a violent singularity which
does not admit such representation at the origin. Also, it is possible to
have solutions with singularities at a finite radius.

Appendix A: Useful identities with the coefficients Ai, j

Let a(z) be a polynomial function of degree N ≥ 1 which
satisfies a(0) = 1. The quantities Ai, j defined by (27) are
related to the coefficients ai, j of the partial fraction expansion
of

− 1

ξa(−ξ)
= −1

ξ
+

N∑
i=1

αi∑
j=1

ai, j
1

(ξ + m2
i )

j
. (A.1)

In fact, ai, j = Ai, j ( j − 1)! and, in particular, Ai,1 = ai,1
and Ai,2 = ai,2. Proceeding the regrouping of the r.h.s. into
a single fraction one obtains

− 1

ξa(−ξ)
= 1

ξ
∏N

i=1(ξ + m2
i )

αi

[
−

N∏
i=1

(ξ + m2
i )

αi

+ξ

N∑
i=1

αi∑
j=1

ai, j (ξ + m2
i )

αi− j
∏
k �=i

(ξ + m2
k)

αk

]
. (A.2)

Comparing the numerators of the fractions above order
by order in ξ , one obtains for the highest order term (N =∑

i αi )

0 =
(

−1 +
N∑
i=1

ai,1

)
ξN , (A.3)

whence

N∑
i=1

Ai,1 = 1. (A.4)

The substitution of this result into (38) shows that the New-
tonian singularity is canceled in general higher-derivative
models.

Now, let us assume that N ≥ 2. Comparing both sides
of (A.2) for the term proportional to ξN−1 one obtains

N∑
i=1

[
− m2

i αi + Ai,1

(
m2

i (αi − 1) +
∑
j �=i

m2
jα j

)
+ Ai,2

]

= 0. (A.5)

Since, for a given i ,
∑
j �=i

m2
jα j = −m2

i αi +
∑
j

m2
jα j , (A.6)

and using (A.4), it follows that

N∑
i=1

Ai,2 =
N∑
i=1

Ai,1m
2
i . (A.7)

In terms of the definitions in the Eq. (51), the identity above
reads S2 = S1. We recall that this relation is valid only if
N ≥ 2. The case N = 1 implies in S1 = m2

1 and S2 = 0.
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