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Abstract Firstly we qualitatively analyze the formation
of the dip and peak structures of the kurtosis ko of net
baryon number fluctuation along imagined freeze-out lines
and discuss the signature of the existence of the QCD crit-
ical end point (CEP) in the Nambu—Jona-Lasinio (NJL)
model, Polyakov-NJL (PNJL) model as well as u-dependent
PNJL(x PNJL) model with different parameter sets, and then
we apply arealistic PNJL model with parameters fixed by lat-
tice data at zero chemical potential, and quantitatively inves-
tigate its ko> along the real freeze-out line extracted from
experiments. The important contribution from gluodynam-
ics to the baryon number fluctuations is discussed. The peak
structure of xko” along the freeze-out line is solely deter-
mined by the existence of the CEP mountain and can be used
as a clean signature for the existence of CEP. The forma-
tion of the dip structure is sensitive to the relation between
the freeze-out line and the phase boundary, and the freeze-
out line starts from the back-ridge of the phase boundary is
required. To our surprise, the kurtosis ko2 produced from
the realistic PNJL. model along the experimental freeze-out
line agrees with BES-I data well, which indicates that equi-
librium result can explain the experimental data. It is worth
to point out that the extracted freeze-out temperatures from
beam energy scan measurement are indeed higher than the
critical temperatures at small chemical potentials, which sup-
ports our qualitative analysis.
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1 Introduction

The phase transition and phase structure of Quantum Chro-
modynamics (QCD) under extreme conditions is the main
topic of relativistic heavy ion collisions, and it is also highly
related to the evolution of the early universe and the equa-
tion of state inside the compact stars. Lattice QCD calcu-
lation shows that at small baryon density, the QCD phase
transitions including the chiral phase transition as well as
deconfinement phase transition are of crossover at finite tem-
perature [1-3]. From symmetry analysis and effective chiral
models, it is generally believed that at high baryon density
the chiral phase transition is of first order and there exists a
QCD critical end point (CEP) for chiral phase transition in the
temperature and baryon chemical potential plane [4-23]. The
QCD CEP have been widely analyzed in different models,
e.g., Nambu—Jona-Lasinio (NJL) model, the Polyakov-loop
improved NJL (PNJL) model, linear sigma model, quark-
meson (QM) model, the Polyakov-loop improved QM model,
the Dyson—Schwinger equations (DSE), and the holographic
QCD model [6-19,24]. However, different models even the
same model with different parameter sets give various loca-
tion of CEP [25]. Therefore, to search for the existence of the
CEP and further to locate the CEP is one of the most central
goals at Relativistic Heavy Ion Collisions (RHIC) as well as
for the future accelerator facilities at Facility for Antiproton
and Ion Research (FAIR) in Darmstadt and Nuclotron-based
Ton Collider Facility (NICA) in Dubna.

The cumulants of conserved quantities up to fourth order
of net-proton, net-charge and net-kaon multiplicity distribu-
tions have been measured in the first phase of beam energy
scan program (BES-I) at RHIC for Au+Au collisions at
SN = 7.7,11.5,14.5,19.6,27, 39, 62.4 and 200 GeV,
and the results are summarized in [26-28]. A non-monotonic
energy dependent behavior for the kurtosis of the net pro-
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ton number distributions x5 has been observed in the most
central Au+Au collisions: ko2 firstly decreases from around
1 at the colliding energy ./syy = 200GeV to 0.1 at
/SN~ = 20GeV and then rises quickly up to around 3.5
at \/sny = 7GeV. From the BES-I observed oscillation
behavior of kurtosis, we need to know what information we
can extract about the CEP and where is the CEP located.
Before the second phase of beam energy scan (BES-II) at
RHIC performed in 2019-2020, it is very urgent for both
experimentalists and theorists to extract a clean signature to
identify the existence of the QCD CEP and further to locate
the CEP. On the one hand, we should try to extract useful
information about QCD phase transitions from the measure-
ment along the freeze out line, and to find the evidence of the
QCD CEP. On the other hand, we should explore carefully
how QCD phase transitions will shed light on properties of
the cumulants of conserved quantities at freeze-out.

By using the Ising model, it was pointed out in [21] that
the quartic cumulant (or kurtosis) of the order parameter is
universally negative when the critical point is approaching
to the crossover side of the phase separation line. From the
results in [21], the oscillation behavior of the kurtosis along
the freeze out line has been regarded as a typical signature
of the existence of the CEP. Many interests have focused
on the sign changing of various cumulants around the CEP,
and the sign changing for higher order susceptibilities has
been recently discussed in [11]. It is noticed that the sign
changing for the 6th and 8th order susceptibilities starts at
the baryon chemical potential quite far away from the CEP, it
may indicate that the sign changing of cumulans of conserved
quantities is not directly related to the CEP. In the holographic
QCD model [29], we explained that the sign changing of the
baryon number susceptibilities along the freeze-out line is not
necessarily related to the CEP, but the peaked baryon number
susceptibilities along the freeze-out line is solely determined
by the CEP thus can be used as an evident signature for the
existence of the CEP, and the peak position is close to the
location of the CEP in the QCD phase diagram. Furthermore,
it is found that at zero chemical potential, the magnitude of
xo? around the phase transition line in the gluodynamics
dominant holographic QCD model is around 1, which is in
agreement with lattice result, and is much larger than that in
the Ising model (close to zero), and also much larger than
that in the NJL model (around 0.1). Therefore, it is natural to
speculate that the gluodynamics contribution is dominant to
the baryon number susceptibilities, which is quite surprising!

In order to check the gluodynamics contribution to the
baryon number susceptibilities, in this work, we will try to
explore the structure of the kurtosis of the net proton num-
ber distribution k0% along the freeze out line in the Nambu—
Jona-Lasinio (NJL) model, the Polyakov-loop improved NJL
(PNJL) model as well as u-dependent Polyakov-loop poten-
tial improved NJL («PNJL) model. Also in order to investi-
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gate the relation between the CEP and the structure of the ko'

along the freeze out line, we will need to shift the location of
the CEP by introducing the interaction in the vector channel.
This paper is organized as following: After Introduction, in
Sect. 2, we give a brief introduction to the two-flavor NJL
model, the Polyakov-loop improved NJL (PNJL) model as
well as u Polyakov-loop improved NJL («PNJL) model, and
qualitatively analyze the formation of the dip and peak struc-
tures of the kurtosis ko2 of net baryon number fluctuation
along imagined freeze-out lines and discuss the signature of
the existence of the QCD critical end point (CEP). Then in
Sect. 3 we apply a realistic PNJL model with parameters
fixed by lattice data at zero chemical potential, and quan-
titatively investigate its ko2 along the real freeze-out line
extracted from experiments. Finally, the discussion and con-
clusion part is given in Sect. 4.

2 Qualitative analysis of baryon number fluctuations in
the NJL, PNJL and uPNJL models

In order to qualitatively analyze the formation of the dip
and peak structure of the kurtosis of the net baryon number
distribution ko2 along the freeze-out line, as well as to inves-
tigate the gluodynamics contribution to ko2, in this section
we will compare ko2 in the framework of NJL model, the
Polyakov-loop improved NJL (PNJL) model as well as NJL
with u-dependent Polyakov-loop potential («PNJL) model.
For each model, except the coupling constant in the vector
channel, the parameters from quark part are fitted by vacuum
properties as well as pion mass and decay constant, and the
parameters from the Polykov-loop potential part are fitted
from the Lattice results of the equation of state at © = 0. We
will intendedly shift the location of the CEP in the models
by changing the coupling constant in the vector channel, to
check the peak structure of ko2 along the imagined freeze-
out lines and its relation with the location of CEP.

2.1 The NJL, PNJL and #PNJL models with vector
interaction

In order to shift the location of the CEP, we introduce the
two-flavor NJL model with the vector interaction, and the
Lagrangian is given by [30-32]

Lagt = Y(iyed” —my + Gs[(Yy)? + (Fiysty)?]
— GylWyu¥)* + Wyuysv)?l, (1)

where ¢ = (u,d)” is the doublet of the two light quark
flavors u and d with the current mass m = m, = my, and
T = (rl, 72, 73) the isospin Pauli matrix. Gg and Gy are the
coupling constants in the (pseudo)scalar channel and the vec-
tor channel, respectively. By introducing the auxiliary fields
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for scalars and vectors, and in the vacuum we take the mean-
field approximation with

o = (Vivi), pi = (¥, i), )

the quark condensate and the net quark number density of
flavor i respectively. Then the thermodynamical potential of
this NJL model takes the following form:

QniL = —2Ne Y b [E;i + T In(1 4 ¢ PE—D)
NIJL c 0 (21_[)3 i

i=u,d
+ T In(1 4 e PETADY)
+Gs(ou+0a)* = Gy (pou + pa)’, 3)
with N. = 3 the number of colors. The quark quasiparticle

energies E; and constituent quark masses M; for flavors i =
(u, d) are given by

E;=\/p*+ M}, M;=m; —2Gs(o, + 0a), 4)

and the effective chemical potentials are shifted by
i =i —4Gyp;. ©)

In order to solve the minimum of the thermal potential Qnjp.,
we have the following gap equations

a2
NJIL _ 0QnNyL _o. ©)
adu aad
and
Q2
pi = ——IL ©)
i

For numerical calculations, we fix m,, = mg = 5.5MeV,
N¢ = 3, Ny = 2inall the models. In the regular NJL model,
we choose the parameters as in Ref. [40] by fitting the pion
mass and decay constant. To shift the location of the CEP
in the NJL model we choose different coupling constant in
the vector channel: Gy = —0.5Gs, Gy = 0 and Gy =
0.67Gg [11], which is indicated as NJL-1, NJL-2, NJL-3
respectively, and three sets of parameters are shown in Table
1. Correspondingly, the locations of CEP in the NJL-1 and
NJL-2 are (uk = 796.7MeV, T¥ = 76.8 MeV) and (u§ =
10052MeV, TE = 34.6 MeV), and there is no CEP in the
NIJL-3.

In the 2-flavor PNJL and «PNJL models, we need to add
the Polyakov-loop effective potential 2/ (®, ®, T) with the
following ansatz [33-36]

P + b(T)In[l — 60D

UD D, T)  a(T)
T T2

+ 4D + D) - 3(DD)?, (8)

where a(T) = ag + a1 (%) + a(1)? and b(T) = b3(22)>.

The critical temperature of the confinement-deconfinement

phase transition Ty in pure gluon system is 270 MeV, and

will be rescaled to about 220 MeV because of the presence of

fermion fields. The thermodynamical potential of this PNJL
model is given by

_ A d3p

Q =U(D, D, T)—2N, P g

PNJL ( ) C.Z\/(\) (271)3[ il

i=u,d
+Gs(ou+0a)* — Gy (pu + pa)”
d3p _
2T — [1 1 + 3PePE—H)

igd/ (2n)3 n(l +3Pe

1 3pe 2P E~i) 4 e—3ﬁ(E[—lli))]

d3p - ~
—oT 2L [+ 3@ AEHD
T [ il soe

43P 2AEFL) 4 6—3/3(Ei+11i))] 9)
with the same definitions of E;, M; and [i; as in the NJL
model. The gap equations are determined by

a0
PNTE _ 0, (10)
30, doy I )

and

0QpNsL  0QpNsL  0QpNJL

_9Q2pNJL

i
In the PNJL model, we fix T = 270MeV, and choose
the parameter sets by fitting the experimental values of
pion decay constant f; = 92.3MeV and the pion mass
my; = 139.3MeV when Gy = 0. And we choose dif-
ferent Gy for PNJL-1, PNJL-2 and PNJL-3 as shown in
Table 2. For the PNJL-1, at zero chemical potential u© =
0, the critical temperature for the chiral phase transition
is TOX = 222.9MeV, and for deconfinement phase tran-
sition 1is TOD = 214.3MeV, and the CEP is located at
(nE = 919.1MeV, TE = 123.5MeV). For the PNJL-2,
at u = 0, the critical temperature for the chiral phase tran-
sition is TOX = 223.6MeV, and for deconfinement phase
transition is TOD = 215.0MeV, and the CEP is located at
(ug = 979.5MeV, TE = 104.2MeV). For the PNJL-3, at

pi = (11)

Table 1 Three sets of

parameters used in the NJL A MeV) Gs (GeV™?) Gv/Gs T® MeV) K g (MeV)
model, and the corresponding NJL-1 651 5.04 —0.5 76.8 796.7
critical temperatures and

chemical potentials at the NJL-2 651 5.04 0 34.6 1005.2
critical end point NJL-3 651 5.04 0.67 No No

@ Springer
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Table 2 Three sets of

E E
parameters used in the PNJL A (MeV)  Gs Gv/Gs a0 1 2 b3 " MeV) — pj (MeV)
model, and the corresponding PNJL-1 651 504 —015 351 —247 1522 —1.75 1235 919.1
critical temperatures and
chemical potentials at the PNJL-2 651 504 0 351 —247 1522 —175 1042 979.5
critical end point PNJL-3 651 504 0.67 351 —247 1522 —175 No No

Table 3 Three parameters sets used in the #PNJL model, and the corresponding critical temperatures and chemical potentials at the critical end

point

A MeV) Gy Gy/Gs T o K ap ap a» b3 TE MeV)  uE MeV)
uPNIL-1 651 504  —0.15 1770 0304 0.1 351 —247 152 —175 1216 909.5
WPNIL-2 651 504 0 1770 0304 0.1 351 —247 152 —175 934 975.7
WPNJL-3 651 504 067 1770 0304 0.1 351 —247 152 —175 NO NO

n = 0, the critical temperature for the chiral phase transition
is TOX = 222.4MeV, and for deconfinement phase transition
is TOD = 214.8 MeV, and there is no CEP in the PNJL-3.

By considering the back-reaction of quark to the glue sec-
tor, we take the so called wPNJL model with the ©-dependent
To [37-39]

-
To(N ., i) = Tee “0TV7 7 (12)

LIN—=2Ny  16Nf 42
61 Ed T_T2

where f(Ng, pi) =

NLf >_; ii. The thermodynamical potential of ;PNJL model
QMPNJL has the same form of PNJL model, and the gap equa-
tions take the following form:

and © =

QuengL  0QpNaL 9S2upNgL OS2uPNIL 0. (13)
doy doy P ad ’
and
0S2,PNIL
; = — pPNIL 14
Pi O (14)

In the #PNJL model, we also choose three different param-
eter sets as shown in Table 3 [39]. For the uPNJL-1, at
n = 0, the critical temperature for the chiral phase tran-
sition is TOX = 201.4MeV, and for deconfinement phase
transition is TOD = 193.7MeV, and the CEP is located at
(nk =909.5MeV, TE = 121.6MeV). For the uPNJL-2,
at u = 0, the critical temperature for the chiral phase tran-
sition is TOX = 202.4MeV, and for deconfinement phase
transition is TOD = 192.8 MeV, and the CEP is located at
(nE = 975.7MeV, TE = 93.4MeV). For uPNJL-3, at
n = 0, the critical temperature for the chiral phase transition
is TOX = 202.5MeV, and for deconfinement phase transition
is T,? = 192.7MeV, and there is no CEP in the #PNJL-3.

@ Springer

2.2 The gluodynamics contribution to ko>

BES-I measures the net-proton number susceptibilities,
which can be approximately regarded as net-baryon number
fluctuations and are defined as the derivative of the dimen-
sionless pressure with respected to the reduced chemical
potential [28]

9"[P/T*]

Yo = . (15)
alup/T]

with the pressure P = — which is just the minus ther-

modynamical potential. The cumulants of baryon number
distributions are given by

CB=vriyB. (16)

. . . . ck
By introducing the variance 0> = Cf, kurtosis k = —%,

one can have the following relation between observable quan-
tities and theoretical calculations:

B B
G _

Ko™ = = —
B B’
G X2

7)

which relates ko with the ratio of fourth and second order
cumulants of net-baryon number fluctuations.

Because the measurement of ko? from BES-I is along
the freeze-out line, here we define three different imagined
freeze-out lines for the NJL, PNJL and uPNJL models as:

(p. up)fI1 = T1(up) = 1.03T;(uB)
-5,2 —10,,4
=107 up — 107 "up
(p, up)fI2 : To(up) = Th(us) —3 x 107 ug
10, 4
=3 x 107 up
(p, up)fI3 : T3(up) = 0.96T}(1p)
—8x 10773 —6 x 107197, (18)

Here I = 1,2, 3 is the label of different model e.g. NJL
(PNJL or uPNJL)-I and p, up is for the PNJL and uPNJL
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Fig. 1 The kurtosis of baryon number fluctuation ko2 as a func- result in [41]. ko2 = 1 in the hadron resonance gas (HRG) limit and

tion of the temperature at zero baryon chemical potential in the NJL
model, PNJL model and #PNJL model, and compare with the lattice

model, respectively. And Tlf (up) is the function fitting of
chiral phase transition line and both 7" and up are in MeVs.
These three imagined freeze-out lines just qualitatively indi-
cate how far the freeze-out line is away from the phase bound-
ary, which is an important information to analyze the struc-
ture of ko? along the freeze-out line.

In Fig. 1, we show ko2 as a function of T/ TOX in three
parameter sets of NJL model, and three parameter sets of
PNJL model and three parameter sets of ©PNJL model at
zero chemical potential, and compare with lattice results
in [41], with TOX the critical temperature for chiral phase
transition at zero chemical potential up = 0. The critical
temperature of lattice data at up = 0 is 154 &= 9MeV and
we choose 154 MeV. The value of ko2 of net baryon num-
ber fluctuations is unity in the limit of hadron resonance
gas (HRG) and, in the ideal free quark gas (FQG) limit
at infinite temperature it takes the value of ko2 ~ 0.068,
which are also shown in Fig. 1. It is worthy of mentioning
that from the lattice result shown in Ref. [41], that at the
critical temperature TOX, the magnitude of xo? is around
0.8, which is smaller than its value of 1 at the tempera-
ture of Tod“' =~ 140 MeV, at which quark matter transfers to
hadron gas. Here Tod“' describes a physical “confinement—
deconfinement” transition, which is different from the TOD
describing the confinement-deconfinement phase transition
by using the order parameter of Polyakov loop.

In the NJL model, the magnitude of Ko? at TOX is around
0.4,0.2, 0.1 in the NJL-1, NJL-2 and NJL-3, which is much
smaller than the lattice result. In the whole temperature region
T > Ty, the magnitude of ko2 is quite small comparing with
the lattice results.

When the gluodynamics contribution is taken into account
in the PNJL model and ©«PNJL model, the critical temper-
atures for the chiral phase transition TOX and deconfinement
phase transition TOD are separated, and the critical tempera-
ture for the deconfinement phase transition TOD is lower than
that of the chiral phase transition TOX at zero chemical poten-
tial. It is observed that the magnitude of ko> shows a peak at

ko2 >~ 0.068 in the ideal free quark gas (FQG) limit

the critical temperature for deconfinement phase transition
7.2, and in the hadron gas phase with T < 7”, the magni-
tude of ko? decreases with the decreasing temperature, and
matches the HRG limit at low temperature.

From the magnitude of ko in the NJL model, PNJL
model and uPNJL model, we can see that the dominant con-
tribution to ko> comes from gluodynamics at zero chemical
potential. In the future for model construction, ko2 as a func-
tion of the temperature can be used to constrain models.

2.3 The kurtosis of baryon number fluctuation ko2 in the
NJL model

In Fig. 2, we show the 3D plot for the kurtosis of baryon
number fluctuation ko2 as a function of the temperature and
baryon chemical potential in the NJL model. In Fig.3 we
show the chiral phase transition line and 2D plot for ko2 as
a function of the baryon chemical potential along different
freeze-out lines for NJL-1,NJL-2 and NJL-3, respectively.

By changing the coupling constant in the vector channel,
the location of the CEP will shift. The CEP in the NJL-1 and
NJL-2 is located at (uf = 796.7MeV, T = 76.8 MeV),
(nk = 1005.2MeV, TE = 34.6MeV), respectively, and it
is observed that ko2 develops a high CEP mountain in the
NJL-1 and NJL-2. There is no CEP in the NJL-3, therefore,
no CEP mountain of ko2 develops in the NJL-3. From the
3D plot in Fig. 2, one can observe an obvious chiral phase
boundary in the crossover side, and the magnitude of its ridge
decreases with the increase of the baryon chemical potential.
Here we define the ridge as along the phase boundary, the
back/front ridge as the higher/lower temperature side com-
paring with the phase boundary, respectively. If there is a
CEP located on the phase diagram, a CEP mountain rises up
around the CEP, and one can observe a negative region of ko2
around the CEP above the chiral phase boundary extended
from the crossover side.

Because the measurement of heavy-ion collision is along
the freeze-out line, we choose three different freeze-out lines

@ Springer
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Fig. 2 The 3D plot for the kurtosis of the baryon number fluctuation

xo? as a function of the temperature and baryon chemical potential in

the NJL model. The long dashed, dashed-dotted and dashed lines in

each model NJL-I (with I = 1, 2, 3) are imagined freeze-out lines fI1,
fI2 and fI3 defined in Eq. (18), respectively

250
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Fig. 3 (Above) The chiral phase transition line in the NJL model with
the 1st order phase transition line and the crossover indicated by solid
and dotted lines, respectively. Three different freeze-out lines for each
model NJL-I (withI=1, 2, 3) are defined in Eq. (18): (1) fI1 starts from
the back ridge of the chiral phase boundary, goes through the negative
region and then cross the phase boundary; (2) fI2 starts from the chiral

in the NJL model defined in Eq.(18): (1) starting from the
back ridge of the chiral phase boundary, goes through the
negative region and then cross the phase boundary; (2) start-
ing from the chiral phase boundary and then cross the foot
of the CEP mountain; (3) far away from the phase boundary.
These three freeze-out lines are indicated by long dashed,
dashed-dotted and dashed lines, respectively.

Itis observed that when the freeze-out line crosses the CEP
mountain or crosses the foot of the CEP mountain, there will
be a peak showing up for ko2 along the freeze-out line, and
the location of the peak is close to the location of the CEP

@ Springer

phase boundary and then cross the foot of the CEP mountain; (3) fI3
is far away from the phase boundary. These three freeze-out lines are
indicated by long dashed, dashed-dotted and dashed lines, respectively.
(Below) The 2D plot for ko2 as a function of the baryon chemical
potential along three freeze-out lines

mountain. In the case of no CEP, it is found that « o2 keeps flat
in almost the whole region and does not show any structure.
In the NJL-1 and NJL-2 with the existence of CEP in the
phase diagram, it is found that for the first case freeze-out
line, because the freeze-out line starts from the back ridge
of the chiral phase boundary and goes through the negative
region of ko2, then crosses the CEP mountain, therefore,
ko? decreases from around 0.2 and then down to negative
value then rises up quickly and shows up a high peak around
the critical chemical potential, which shows a dip and then
a peak structure of ko2 along the freeze-out line. For the
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second case of freeze-out line, because the freeze-out line
starts from the chiral phase boundary, and then crosses the
foot of the CEP mountain, we can only see a peak structure
of ko2 along the freeze-out line at high chemical potential.
For the third case of freeze-out, if the freeze-out line is far
away from the phase boundary, one can only observe a weak
peak of ko2 along the freeze-out line.

It is found that the magnitude of ko2 in the NJL model at
small baryon chemical potential region is small comparing
with experiment measurement which is around 1.

2.4 The kurtosis of the baryon number fluctuation ko2 in

the PNJL model

In Fig. 4, we show the 3D plot for the kurtosis of baryon
number fluctuation ko2 as a function of the temperature and
baryon chemical potential in the PNJL model. In Fig.5 we
show the phase transition lines and 2D plot for k0% as a func-
tion of the baryon chemical potential along different freeze-
out lines for PNJL-1,PNJL-2 and PNJL-3, respectively.

Different from the NJL model, in the PNJL model, when
the gluodynamics is taken into account, there will be two
phase transitions: one for the chiral phase transition and
another for the deconfinement phase transition, and the
deconfinement phase transition line lays below the chiral
phase transition line at small chemical potential region. The
two separate phase transition lines can be obviously seen
from the (7, u) phase diagram in Fig.5. In the 3D plot
Fig.4 one can observe two separate phase boundaries at small
baryon chemical potentials, and a valley forms in between
the two phase boundaries. It is noticed that the magnitude of
baryon number fluctuation ko2 is quite small along the chi-
ral phase boundary, but around 1.5 along the deconfinement
phase boundary.

By changing the coupling constant in the vector chan-
nel and parameter sets, the CEP of the chiral phase tran-

2

Fig. 4 The 3D plot for the kurtosis of baryon number fluctuation ko
as a function of the temperature and baryon chemical potential in the
PNIJL model. The long dashed, dashed-dotted and dashed lines in each

sition in the PNJL model can shift. The CEPs are located
at (uh = 919.1MeV, TE = 123.5MeV) and (uf =
979.5MeV, TE = 104.2 MeV) in the PNJL-1 and PNJL-
2 models, respectively. Even though the two critical baryon
chemical potentials /1% in the PNJL-1 and PNJL-2 are almost
the same, the critical temperature in the PNJL-1 model is
higher than that in the PNJL-2. For the parameters used in
the PNJL-3, there is no CEP shows up in the phase diagram.
From the 3D plotin Fig. 4, one can observe two obvious phase
boundaries for the chiral and deconfinement phase transitions
in the crossover side, and the magnitude of the deconfinement
ridge is much higher than the chiral ridge. If a CEP for the
chiral phase transition exists in the PNJL model, the structure
of the CEP mountain for the chiral phase transition looks as
the same as that in the NJL model, and one can observe a neg-
ative region of ko2 around the CEP above the chiral phase
boundary extended from the crossover side. The only differ-
ence is that the deconfinement phase boundary extends to the
CEP mountain and merges with the chiral phase boundary.

The structure of ko2 along the freeze-out line in the PNJL
model is more complicated due to the two separated phase
boundaries. Comparing with the NJL model, the magnitude
of ko2 at small baryon chemical potentials in the PNJL model
is in agreement with experiment measurement due to the
contribution from gluodynamics. We also choose three dif-
ferent freeze-out lines defined in Eq. (18): (1) starting from
the back ridge of the chiral phase boundary, goes through the
negative region and then crosses the foot of the CEP moun-
tain; (2) starting from the back ridge of the deconfinement
phase boundary, and then crosses the foot of the CEP moun-
tain; (3) starting from the deconfinement phase boundary and
keeps far away from the CEP mountain. These three different
freeze-out lines are indicated by long dashed, dashed-dotted
and dashed lines, respectively. Here the back/ front ridge also
means the higher/lower temperature side comparing with the
phase boundary, respectively.

model PNJL-I (with I =1, 2, 3) are imagined freeze-out lines pfI1, pfI2
and pfI3 defined in Eq. (18), respectively

@ Springer
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Fig. 5 (Above) The deconfinement phase transition line indicated by
short-dashed line and the chiral phase transition line in the PNJL model
with the Ist order phase transition line and the crossover indicated by
solid and dotted lines, respectively. Three different freeze-out lines for
each model PNJL-I (with I =1, 2, 3) are defined in Eq. (18): (1) pfIl
starts from the back ridge of the chiral phase boundary, goes through
the negative region and then crosses the foot of the CEP mountain; (2)

The same as in the NJL model, the peak structure of ko2
along the freeze-out line in the PNJL model is solely related to
the CEP mountain, when the freeze-out line crosses the CEP
mountain or crosses the foot of the CEP mountain, there will
be a peak showing up for ko2, and the location of the peak
is related to the location of the CEP mountain. If there is no
CEP, ko2 keeps flat in almost the whole chemical potential
region. In the PNJL-1 and PNJL-2 models with the existence
of CEP in the phase diagram, it is found that for the first case
of the freeze-out lines, one can observe the dip-peak structure
for ko2 along the freeze-out lines. The freeze-out line starts
from the back ridge of the chiral phase boundary and goes
through the negative region of ko2, then crosses the foot of
the CEP mountain, therefore, x o2 decreases from around 0.5
and then down to negative value then rises up quickly and
shows up a high peak around the critical chemical potential,
thus shows a dip and then a peak structure of ko along the
freeze-out line. For the second case, the freeze-out line starts
from the back ridge of the deconfinement phase boundary,
and has no chance to go through the negative region, then
crosses the foot of the CEP mountain. For the third case when
the freeze-out line is far away from the phase boundary, ko>
along the freeze-out line is almost flat.

Inthe PNJL-3 model, there is no CEP in the phase diagram,
and no special structure of ko> along the freeze-out lines is
observed.

@ Springer

pfl2 starts from the back ridge of the deconfinement phase boundary,
and then crosses the foot of the CEP mountain; (3) pfI3 starts from
the deconfinement phase boundary and keeps far away from the CEP
mountain. These three different freeze-out lines are indicated by long
dashed, dashed-dotted and dashed lines, respectively. (Below) The 2D
plot for ko2 as a function of the baryon chemical potential in the PNJL
model along three freeze-out lines

2.5 The kurtosis of the baryon number fluctuation ko2 in

the uPNJL model

In Fig. 6, we show the 3D plot for the kurtosis of baryon
number fluctuation ko2 as a function of the temperature and
baryon chemical potential in the uPNJL model. In Fig.7
we show the phase transition lines and 2D plot for ko2 as
a function of the baryon chemical potential along different
freeze-out lines for uPNJL-1 uPNJL-2 and uPNJL-3 mod-
els, respectively.

Same as that in the PNJL model, in the uPNJL model,
there also exist two separate phase transitions for the chiral
phase transition and deconfinement phase transition, and the
deconfinement phase transition line also lays below the chiral
phase transition line at small chemical potential region. From
the 3D plot Fig. 6 one can observe two separate phase bound-
aries at small baryon chemical potentials. The height of the
ridge along the deconfinement phase boundary is around 1.5
at small chemical potentials in the ©PNJL model, which is
similar with in the PNJL model.

Similar to that in the PNJL model, we choose three dif-
ferent freeze-out lines defined in Eq. (18): (1) starting from
the back ridge of the chiral phase boundary, goes through the
negative region and then crosses the foot of the CEP moun-
tain; (2) starting from the back ridge of the deconfinement
phase boundary, and then crosses the foot of the CEP moun-
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2

Fig. 6 The 3D plot for the kurtosis of baryon number fluctuation ko
as a function of the temperature and baryon chemical potential in the
#PNJL model. The long dashed, dashed-dotted and dashed lines in each

model uPNJL-I (with I = 1, 2, 3) are imagined freeze-out lines upfll,
upfl2 and ppfl3 defined in Eq. (18), respectively
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Fig. 7 (Above) The deconfinement phase transition line indicated by
short-dashed line and the chiral phase transition line in the £ PNJL model
with the Ist order phase transition line and the crossover indicated by
solid and dotted lines, respectively. Three different freeze-out lines for
each model uPNJL-I (with I = 1,2,3) are defined in Eq. (18): (1) upfIl
starts from the back ridge of the chiral phase boundary, goes through
the negative region and then crosses the foot of the CEP mountain; (2)

tain; (3) starting from the deconfinement phase boundary and
keeps far away from the CEP mountain. These three different
freeze-out lines are indicated by long dashed, dashed-dotted
and dashed lines, respectively. The structure of ko > along the
freeze-out line in uPNJL-1 and uPNJL-2 can show the dip
and peak structure for the first case of the freeze-out lines,
and ko2 goes to negative at the dip.

upfl2 starts from the back ridge of the deconfinement phase boundary,
and then crosses the foot of the CEP mountain; (3) upfI3 starts from
the deconfinement phase boundary and keeps far away from the CEP
mountain. These three different freeze-out lines are indicated by long
dashed, dashed-dotted and dashed lines, respectively. (Below) The 2D
plot for k% as a function of the baryon chemical potential in the PNJL
model along three freeze-out lines

3 The kurtosis of the baryon number fluctuation o2 in

a realistic PNJL model

In last section, we have investigated gluodynamics contri-
bution to the baryon number fluctuations, and analyzed the
formation of the dip and peak structures of the kurtosis along
the imagined freeze-out lines. In this section, we will inves-
tigate the kurtosis along the experimental freeze-out line in

@ Springer
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Table 4 Parameters for the NJL

part in the realistic PNJL model ~ wd (MeV)

my; (MeV)

A (MeV)

gsA?  gpAS g (MeV™H) g (MeV~¥)

55 183.468

637.720

2914 75.968 2.193 x 10721 —5.890 x 10~22

a realistic 3-flavor PNJL model which takes into account 8-
quark interaction [45]. The effective potential is given below:

8D
Q=gs ZU% - 701401105
f
2

81 2 4 A d3p
+3? Xf:(rf +3g2;(rf—6/0 WEt

3
—ZT/ DD a1 4 30 + e Er 10/ Ty~ Er )T
@2m)?

+e*3(Ef71Lf)/T]

_ZT/

_|_ef3<Ef+uf)/T]

3
(;1 1))3 In [1 +3(D + Do Ertup)/Tyo=Ep+pp)/T
/g

+U (@, D, T), (19)

where oy = (71 f) corresponds to quark condensates and
f takes u, d for two light flavors while s for strange quark.
Ef=./p>+ M} with My the dynamically generated con-
stituent quark mass:

gD
My =myp—2850f+ = -0+10f+2

—2g1oy Zafz», —4g20;. (20)
f/

Ifof =oy,thenosi| =04 and o2 = 0y, and so onin a
clockwise manner.

U’ describes the contribution from self interaction of &
and ® and it reads [46]:

U’ U =

F= i k In[J (D, P)], (21)
where

U by (T) - b3 3 =3 by =2

— =0 - — (P (o} — (PP 22
- > C(@ )+ @d) @)
and

(22.) o004 a0+ 8505
J=1—75)U0-6DD+4(D° + P°) — 3(dD)) (23)
2472

correspond to the effective potential of the Polyakov loop and
the Jacobian of the transformation from the Polyakov loop to
its trace, respectively. Besides, « is a dimensionless param-
eter. bo(T) is a temperature dependent coefficient which is
chosen to have the form of

To T
by(T) = ag + al? exp (—a2—> . (24)

To
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Table 5 Parameters for the Polyakov loop part in the realistic PNJL
model

To (MeV) ag ap ar b3 by K
175 6.75 —98 0.26 0.805 7.555 0.1
1.2
HRG
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Fig. 8 The kurtosis of baryon number fluctuation ko in the realistic
PNJL model as a function of the temperature at zero baryon number
density with TOX = 166MeV. ko2 = 1 in the hadron resonance gas
(HRG) limit and ko2 ~ 0.068 in the ideal free quark gas (FQG) limit
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Fig. 9 The chiral phase transition line for the u, d quark in the realis-
tic PNJL model and freeze-out lines extracted from experiments. The
CEP is marked by a triangle and located at (p.g = 720MeV, TF =
93 MeV). The phase transition and crossover are shown by black line
and black dotted line, respectively. The freeze-out temperatures and
baryon number chemical potentials extracted from BES-I at RHIC [42—
44] are shown in dots, and the freeze-out temperatures and baryon num-
ber chemical potentials for lower energy heavy-ion collisions summa-
rized in [47] are shown in squares, and two fitted freeze-out lines f1, f2
are shown by long dashed and dashed-dotted lines, respectively

Follow [45], the parameters of the NJL part are fixed by
vacuum properties and the parameters of Polyakov loop part
are fixed by global fitting of the pressure density at zero
chemical potential, and the details are listed in Tables 4 and
5, respectively.
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Fig. 10 The 2D plot for ko2 as 5 -
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With these parameters, as shown in [45], at zero chemical
potential up = 0, the equation of state, baryon number fluc-
tuations above the critical temperature are in good agreement
with Lattice data. The kurtosis of baryon number fluctuation
ko2 as a function of the temperature at zero baryon number
density is shown in Fig. 8. It is noticed that x o’% in the realis-
tic PNJL model in general is in good agreement with lattice
data, especially comparing with the NJL model, PNJL model
as well as uPNJL model. The phase transition line is shown
in Fig. 9, and the CEP is located at (1% = 720MeV, Tt =
93 MeV). In Fig. 9, the freeze-out temperatures and baryon
number chemical potentials extracted from BES-I at RHIC
[44] are shown in dots, and the freeze-out temperatures and
baryon number chemical potentials for lower energy heavy-
ion collisions summarized in [47] are shown in squares, and
the two fitted freeze-out lines f1, f2 described by T () =
0.158 — 0.14u> — 0.04u* — 0.01 exp(—(u — 0.067)/0.05)
and T(n) = 0.158 — 0.14p% — 0.04u* as used in [28] are
shown in long dashed and dashed-dotted lines, respectively.
Note that in these two formulas the 7" and pp are in GeVs.
The first freeze-out line f1 starts from the back ridge of the
phase boundary and f?2 starts from the front ridge of the
phase boundary 9.

The kurtosis ko from the realistic PNJL model along the
two freeze-out lines f1, f2 fitted from experimental data
are shown in Fig. 10, the left figure is shown as a function of
the baryon number chemical potential and the right figure is
shown as a function of the collision energy, where we have
used the following relation between the chemical potential
and the collision energy:

1.477

MB(\/E) = m

(25)

Note that in this formula the T and wp are also in GeVs.
We can see that the kurtosis ko2 from the realistic PNJL
model along the freeze-out line f1, which starts from the
back ridge of the phase boundary, develops a dip structure
around up = 0.2GeV(y/s = 20GeV), and a peak struc-
ture at around up = 0.45GeV (/s = 6GeV). To our
surprise, the kurtosis ko from the realistic PNJL model
along this experimental freeze-out line agree with BES-I

result very well. Along the second freeze-out line f2, which
starts from the front ridge of the phase boundary, the kurto-
sis only develops a peak structure at around pup = 0.45 GeV
(v/s = 6GeV) and no dip structure is developed. This sup-
ports our qualitative analysis in Sect. 2.

4 Conclusion and discussion

In this work, firstly we qualitatively investigate the kurtosis
ko2 of net baryon number fluctuation and analyze the forma-
tion of its dip and peak structures along the imagined freeze-
out lines in the NJL model, PNJL model as well as uPNJL
model with different parameter sets, and then we apply a
realistic PNJL model and quantitatively investigate its ko>
along the real freeze-out line extracted from experiments.
Through qualitative analysis, we find that: (1) at zero
chemical potential, the magnitude of ko is rather small in
the NJL model comparing with lattice result, and it can reach
around 1.5 in the PNJL and £ PNJL models around the critical
temperature. This indicates that gluodynamics plays impor-
tant role in the baryon number fluctuation ko2; (2) the peak
structure of k o> along the freeze-out line is solely determined
by the existence of the CEP mountain. When the freeze-out
line crosses the CEP mountain or crosses the foot of the CEP
mountain, there will be a peak showing up for ko2 along the
freeze-out line, and the location of the peak is close to the
location of the CEP mountain. The higher the peak, the closer
the peak location to the CEP. In the case of no CEP, it is found
that ko2 keeps flat almost in the whole chemical potential
region and does not show any structure; (3) the formation of
the dip structure is more complicated: firstly, it requires the
existence of the CEP in the QCD phase diagram; secondly,
it is sensitive to the relation between the freeze-out line and
the phase boundary. The dip structure can be formed if the
freeze-out line starts from the temperature above the critical
temperature at & = 0 and crosses the phase boundary from
above when the CEP exists in the phase diagram. Because
the CEP is for chiral phase transition and there is a negative
region of xo? from the crossover side, if the freeze-out line
starts from the back ridge of the chiral phase boundary and if
it goes through the negative region of ko2, and then crosses
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the CEP mountain or the foot of the CEP mountain, in this
case one can observe a dip structure and a peak structure, and
the magnitude of ko will go to negative at the dip. If the
freeze-out line starts from the back ridge of the deconfine-
ment phase boundary, and then crosses the foot of the CEP
mountain, we can also see a dip and peak structure of ko>
along the freeze-out line, but the magnitude of ko> will not
go to negative at the dip. Therefore we can read the infor-
mation on how does the freeze-out line crosses the chiral
phase boundary from the negative/positive value at the dip
of measured ko2 along the freeze-out line.

Quantitatively, we use a reparameterized realistic PNJL
model, with its critical temperature, equation of state and
baryon number fluctuations in good agreement lattice data
at zero chemical potential. To our surprise, the kurtosis ko2
produced from the realistic PNJL model along the experi-
mental freeze-out line agrees with BES-I data well. This may
indicate that the equilibrium result can explain the BES-I
data on baryon number fluctuations. Indeed, from the analy-
sis in [48], after collision, the system reaches thermalization
quickly in quite high temperature and then evolves in equilib-
rium state, e.g. in the collision energy of 4/s = 200 GeV, the
system reaches thermalization at around 7' >~ 210—230 MeV
, which is much higher than the freeze-out temperature as well
as the phase transition temperature. It is worth to point out
that the extracted freeze-out temperatures from beam energy
scan measurement are indeed higher than the critical tem-
peratures at small chemical potentials, which supports our
qualitative analysis on the formation of dip structure of ko>
along the freeze-out line.

At last, we should mention that in this work, even
though our quantitative result from static thermodynamics
can describe BES-I data [28] well, the non-thermal effect, or
memory effect [49-51], and finite size effect deserves further
studies to locate the CEP.
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