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Abstract We are investigating universal relations between
different normalisations of the moment of inertia and the
compactness of neutron stars in slow rotation approxima-
tion. We study the relations in particular class of massive
scalar-sensor theories with self-interaction, for which sig-
nificant deviations from General Relativity are allowed for
values of the parameters that are in agreement with the obser-
vations. Moment of inertia-compactness relations are exam-
ined for different normalisation of the moment of inertia. It
is shown that for all studied cases the deviations from EOS
universality are small for the examined equations of state. On
the other hand the scalarization can lead to large deviations
from the general relativistic universal relations for values of
the parameters that are in agreement with the current obser-
vations that can be potentially used to set further test the
scalar-tensor theories.

1 Introduction

The recent direct observations of gravitational waves mark
the beginning of new branch in astronomy – gravitational
wave astronomy [1–6]. With the upcoming start of the next
generation gravitational wave detectors and radio astronomy
observatories, which will greatly extend the astrophysical
phenomena that can be detected, the prospects in front of
astrophysics look ever so promising. On another front, one
of the most important challenges modern astrophysics faces
today is to provide answer what causes the observed acceler-
ated expansion of the Universe. The attempts in solving this
problem can be summarized into two main ways. One is the
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introduction of a new type of matter with exotic properties,
which manifests itself only via gravitational interaction with
visible matter. The other alternative way is to construct gen-
eralized gravitational field theory, which admits GR as weak
field approximation on astrophysical scales, but manifests
itself in qualitatively different way on cosmological scales
and possibly in the strong field regime.

The area of research of alternative theories of gravity is
very active and many different attempts to generalize the
Einstein’s theory have been made, but only small portion of
them can pass all observational tests. One such class of theo-
ries presents an natural cosmological and astrophysical gen-
eralization of GR – scalar-tensor theories of gravity (STT)
[7–11], in which a scalar field is included as an additional
mediator of the gravitational interaction, apart from the
spacetime metric. The presented subclasses of STT, with an
Einstein frame coupling function of the form α(ϕ) = βϕ, are
of particular interest, due the fact that they are indistinguish-
able from GR in the weak field regime, but show nonpertur-
bative effect – spontaneous scalarization [12–23], in which
large deviations from GR are observed, in the strong field
regime, e.g. in the gravitational field of compact objects like
neutron stars (NS). The structure, properties, and physical
effects of NSs in such classes of STT were extensively stud-
ied in the past decades (see e.g. [12–20]) both in the static
and rapidly rotating cases. A few years ago particular interest
attracted the STT with massive scalar field [21,24–26] due
to the possibilities for much larger deviations from GR com-
pared to the massless case within the observationally allowed
values of the parameters.

Current observations of binary systems constrain signif-
icantly the parameter space of massless STT to β � − 4.5
[27–29]. For such values of β no significant deviation from
pure GR is observed as far as static neutron stars are con-
sidered. The situation changes if we extend the study to
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STT with a massive scalar field since for a mass mϕ one
can assign a Compton wave-length λϕ = 2π/mϕ beyond
which the scalar field is exponentially suppressed. For this
reason, as shown in [25], the observationally allowed values
for β can significantly differ from the massless STT and NS
can have considerably different properties and structure (see
e.g. [20,21,24–26]). The inclusion of an additional quartic
self-interaction term in the potential suppresses further the
scalarization effect and thus can reconcile even a wider range
of values of the parameters with the observations. STT with a
self-interacting massive scalar field is specified by three free
parameters – the coupling coefficient β, the scalar field mass
mϕ and the self-interaction coefficient λ. In certain observa-
tionally allowed ranges of the parameters (β,mϕ, λ) the NS
models can have considerably distinct structure compared to
GR [30].

A large number of alternative theories of gravity lead
either to negligible effects on the NS properties, or the effects
fall well within the equations of the state (EOS) uncertainty
for the matter in the star, that is a drawback in the attempts to
constrain the strong field regime of gravity. The large uncer-
tainty in the EOS on one hand is due to our poor under-
standing of the fundamental interactions that take place at
the extreme densities found in the core of NS, and on the
other hand – the lack of enough accurate observational data
or the lack of unique interpretation of these data. In order
to successfully constrain EOS, observations of the neutron
star mass, radius, moment of inertia or tidal Love numbers
are normally employed, but currently this is done either with
limited accuracy or only a few astrophysical objects with
the desired properties are observed (see e.g. [31–33]). Since
binary NSs are one of the most promising sources of gravi-
tational waves, it is expected that the constraints on the EOS
will be quickly improved due to the rapid advance in the
gravitational wave astronomy [34–38].

Workaround for the EOS uncertainty is to use indepen-
dent, from the EOS, relations of stellar parameters, the so
called universal relations. One of the first construction of
such relations which involve the NS oscillation frequencies
on one hand and the neutron star mass and radius on the
other, was made in [39–41]. Later, these studies have been
extended with inclusion of additional realistic EOS [42]. In a
recent work Lau et. al. [43] exchanged the compactness with
an “effective compactness” η ≡ √

M3/I with the purpose
of achieving better EOS independence. In [44] one can also
find nice investigation of the above mentioned relations and
comments on their universality. Another promising univer-
sal relations was found by Yagi and Yunes [45,46] which
connects the normalized moment of inertia Ī , the tidal Love
numbers, and the normalized quadrupole moment Q̄. This
relation was thoroughly investigated in following years in
many papers (see e.g. [47–54]).

The study of different universal relations in alternative
theories of gravity has proven to be very fruitful (see e.g.
[46,55–60]). In some cases clear distinction with GR can be
observed that serves as a way to constrain the strong field
regime of gravity in an EOS independent way while in other
cases the results are not only to some degree EOS indepen-
dent, but up to a large extend theory independent too. In the
latter case one can use the universal relations to determine
the NS parameters without any arbitrariness.

A particularly interesting application of the universal rela-
tions between normalized moment of inertia and the stellar
compactness was employed by Lattimer and Schutz [31],
where they point out the possibility to estimate the NS radius
by using the mass and the moment of inertia of a pulsar in
binary system in pure GR. In recent paper Breu and Rezzolla
[61] thoroughly investigate such relations and comment on
their application. Following their work Staykov et al [62]
extended the study by looking at universal relations between
normalized moment of inertia and stellar compactness in GR,
f (R) and STT theories of gravity.

The paper is organized as follows. In Sect. 2 we review the
basic theoretical background behind the calculation of neu-
tron star models in STT with massive self-interacting scalar
field. In Sect. 3 the numerical results are presented. The paper
ends with Conclusions.

2 Basic equations

We will adopt the well established in the literature way of
examining STT theories by writing out the field equations
here in the more convenient non-physical Einstein frame,
which is specified with metric gμν , but we will present the
results in following sections in the physical Jordan frame,
which is specified with metric ∗gμν . The two metrics are con-
nected with conformal transformation ∗gμν = A2(ϕ)gμν ,
were the Einstein frame scalar field is denoted by ϕ. As a
rule we will use superscript star ∗ to note quantities in Jordan
frame. The general form of the action of STT in the Einstein
frame is given as

S = 1

16πG

∫
d4x

√−g
[
R − 2gμν∂μϕ∂νϕ − V (ϕ)

]

+ Smatter(A2(ϕ)gμν, χ), (1)

where R is the Ricci scalar curvature with respect to gμν .
Smatter is the matter action, where the mater fields are collec-
tively denoted by χ . The STT is fully specified by the func-
tions A(ϕ) and V (ϕ). In the present paper we will restrict
our study to STT with conformal factor of the form

A(ϕ) = e
1
2 βϕ2

, (2)
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where β is a parameter. This class of STT is indistinguishable
from pure GR in the weak field regime, while exhibiting non-
perturbative effects for strong fields. We will adopt a natural
non-negative scalar potential with self-interaction

V (ϕ) = 2m2
ϕϕ2 + λϕ4, (3)

where mϕ is the mass of the scalar field ϕ and λ ≥ 0 is the
self-interaction parameter with dimensions length−2.

The field equations that follow from (1) are

Rμν − 1

2
gμνR = 8πGTμν + 2∇μϕ∇νϕ

−gμνg
αβ∇αϕ∇βϕ − 1

2
V (ϕ)gμν, (4)

∇μ∇μϕ = − 4πGα(ϕ)T + 1

4

dV (ϕ)

dϕ
, (5)

where ∇μ is the covariant derivative with respect to gμν ,
the coupling function α(ϕ) is defined via the conformal
factor α(ϕ) = d ln A(ϕ)

dϕ
, and T is the trace of the energy-

momentum tensor. Using the field equations and the con-
tracted Bianchi identities we derive the conservation law of
the energy-momentum tensor in the Einstein frame:

∇μT
μ
ν = α(ϕ)T∇νϕ. (6)

The Einstein frame energy-momentum tensor Tμν and the
Jordan frame one ∗Tμν are related in the following way Tμν =
A2(ϕ)∗Tμν . We will consider stationary and axisymmetric
perfect fluid and scalar field configurations, for which the
transformation of the energy density ρ, the pressure p and
the 4-velocity uμ between the Einstein and the Jordan frame
are given as follows:

ρ = A4(ϕ)∗ρ, p = A4(ϕ)∗ p, uμ = A−1(ϕ)∗uμ. (7)

Our metric ansatz is the standard one for stationary and
axisymmetric spacetime in the slow rotation approximation
[63]:

ds2 = −e2�(r)dt2 + e2
(r)dr2 + r2(dθ2

+ sin2 θdϑ2) − 2ω(r, θ)r2 sin2 θdϑdt. (8)

Since the rotational corrections to the metric functions
(except for ω(r, θ)), the scalar field, the fluid energy den-
sity and the pressure are of order O(�2), where � = uϑ/ut

is the angular velocity, this approximation allows us to cal-
culate the moment of inertia of the star I , while the rest
parameters, such as the mass and the radius, will coincide
with the static case. The asymptotic behavior of ω at large
distances from the star is ω → 2J/r3, where J is the angular
momentum of the stars and I = J/�. It turns out, though,
that it is numerically much more convenient to calculate the
moment of inertia via an integral throughout the volume of
the star that can be found in [30].

To obtain the results in the present paper, we solve numer-
ically the dimensionally reduced ODE system derived from

Eqs. (4) and (5) with the metric ansatz (8) by containing at
most terms linear in � and supplementing it with the equa-
tion for hydrostatic equilibrium and an EOS. Further details
on the mathematical formulation of the problem one can find
in [30,64,65].

In the next section, where we present our numerical
results, we shall use dimensionless parameters mϕ → mϕR0

and λ → λR2
0, where R0 = 1.47664 km is one half of the

solar gravitational radius.

3 Numerical results

3.1 Preliminaries

As discussed earlier, STT with self-interacting massive scalar
field with conformal factor A(ϕ) = eβϕ2/2 has three free
parameters – (β,mϕ, λ) and for different sets of values, it
has varying degrees of development of spontaneous scalar-
ization. Namely, decreasing the value of β < 0 increases
the deviations from GR, while the increase of either mϕ or λ

suppresses them [30]. The constraints on the parameter space
are derived after confronting against the observations of the
gradual orbit contraction of binary pulsars due to the grav-
itational wave emission and the strongest constraints come
from [28,29]. The present data on the rate of orbital decay
matches very well the GR predictions, which suggests non
or negligible scalar gravitational radiation, and thus non or
very weak scalarization effect. As result, for the massless
STT, (β,mϕ = 0, λ = 0), the observationally allowed val-
ues of β > − 4.5 are such that possibility only for small
deviations from GR is left, since spontaneous scalarization
occurs roughly for β < − 4.35 [13,15] and β < − 3.9 [19]
for the static and the rapidly rotating cases correspondingly.

If, however, one considers STT with massive scalar field,
(β,mϕ, λ = 0), the parameter space that is in agreement
with the same binary observations is substantially expanded.
The reason is that the mass of the scalar field suppresses
the emission of scalar radiation, which reconciles already
discarded values of β. The lower boundary of the scalar field
mass can be estimated using the distance between the two
companions rb as follows: a negligible scalar gravitational
radiation implies that the Compton wavelength should be
much smaller than the orbital separation λϕ � rb, which
for the observed binaries rb ∼ 109m translates into mϕ 

10−16eV. The upper limit is calculated by the condition that
the mass of the scalar filed should be such that it does not
suppress the spontaneous scalarization in the stars, i.e. the
characteristic length of the star should be smaller than the
Compton wavelength, which leads to mϕ � 10−9eV. Thus,
we will work with the following range of values for mϕ :

10−16eV � mϕ � 10−9eV (9)
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or in dimensionless units 10−6 � mϕ � 10. Although, there
are additional midrange constraints for the mass of the scalar
field, the above ones are most reliable and we will stick
to them. For such scalar field masses the observationally
allowed ranges of values for β significantly increases com-
pared to the massless case, more precisely 3 � −β � 103

coming from the requirement that we can have scalarized
NS, but no scalarization for white dwarfs.

The allowed range of parameters extends even further, as
shown in [30], if we consider STT with self-interacting mas-
sive scalar field, (β,mϕ, λ). In such STT the scalarization is
suppressed further by the self-interaction term and up to a
large extent the self-interaction constant λ in (3) has quali-
tatively very similar effect on the NS properties as the scalar
field mass. The main difference comes from the fact that
the self-interaction does not change (for fixed mass of the
scalar field) the critical values of the parameters where new
branches of scalarized solutions originate from the GR ones,
while the mass of the scalar field changes these bifurcation
points.

In this paper we will set β = − 6, similar to [21,24,25,30],
as it is a moderate value for which big enough deviation from
GR is observed. We will use massless STT, (β = − 6,mϕ =
0, λ = 0) and STT with massive scalar field with dimension-
less masses (β = − 6,mϕ = {5 × 10−3, 5 × 10−2}, λ = 0),
which fall well within the range given by Eq. (9) and for the
chosen β present very well the influence of the mass. We will
use massless STT with self-interaction with dimensionless
set of values (β = − 6,mϕ = 0, λ = {0.1, 1, 10}) and STT
with massive self-interacting scalar field with set of values
(β = − 6,mϕ = {5 × 10−3, 5 × 10−2}, λ = {0.1, 1, 10}).

In this study we are using the piecewise polytropic approx-
imation of several EOS [66]. They are chosen in such a way in
order to cover a wide variety of theoretical approaches such
as nuclear many body approach, e.g. APR, relativistic mean
field theory approach, e.g. MS1, and others. Similar to [62],
we also include softer EOS already excluded by the observa-
tions of two solar mass neutron stars because in STT under
certain initial conditions the maximum mass can reach, even
exceed, this observational limit due to scalarization effect. In
addition, considering a very wide set of EOS, even if they are
excluded from the observations, can give us a more profound
insight whether the observed EOS universality is due to the
limited set of chosen EOS or is indeed an intrinsic feature of
the theory.

In Fig. 1 we are plotting two mass-radius-relations: in
the top pane all the EOS employed in the present study are
shown for pure GR only; in the bottom panel only repre-
sentative EOS are used – stiff (MPA1), moderate (SLy) and
soft(APR2), and the results are both for GR and STT. As one
can see, indeed there is a degeneracy between effects coming
from the presence of scalar field or from varying the EOS. In
the bottom panel, the effects of the mass and self-interaction

Fig. 1 Mass of radius relation for all of the employed EOS in GR (top
panel), and representative EOS – APR2, MPA1, SLy, in GR and in STT
with fixed β = − 6 and various values of mϕ and λ (bottom panel).
On both figures unique marker is assigned to each EOS and GR results
are presented with orange continues line. Bottom: STT solutions with
scalar field mass are presented with different colour: mϕ = 0 – red,
mϕ = 5 × 10−3 – green, mϕ = 5 × 10−2 – blue. For each mass,
solutions for various self-interactions are presented with different line
patterns: λ = 0 – dashed line, λ = 0.1 – dashed line with one dot, λ = 1
– dashed line with two dots, λ = 10 – dashed line with three dots

are also clearly visible. Although both of them independently
suppress scalarization, the ∼ ϕ4 term retains the position
of the bifurcation points of the massless STT without self-
interaction (red dashed line), while the ∼ ϕ2 decreases the
distance between them. The latter means that even for big val-
ues for λ, i.e. highly suppressed scalarization, we will have a
wider range of central densities for which scalarization can
occur contrary to massive case. Further discussion can be
found in [30].

3.2 Normalized moment of inertia–compactness relations

Here we will investigative the universality in normalized
moment of inertia – compactness relations, suggested for
the first time in [67], and extensively studied by Breu and
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Fig. 2 The normalized moment of inertia, I/MR2, as a function of the
stellar compactness M/R in GR and STT with β = − 6 and various
values of mϕ and λ, with corresponding polynomial fits, are shown.
EOS are indicated with individual symbol, GR results are represented
with orange and models in STT with different masses of the scalar field
are presented with different colour: mϕ = 0 – red, mϕ = 5 × 10−3 –
green, mϕ = 5 × 10−2 – blue. For all masses, results for various self-
interaction terms are calculated and the corresponding polynomial fits
are presented with different line pattern: λ = 0 – dashed line, λ = 0.1
– dashed line with one dot, λ = 1 – dashed line with two dots, λ = 10
– dashed line with three dots. In the middle panel the corresponding

deviations of the polynomial fits and the data
∣∣∣1 − Ĩ/ Ĩfit

∣∣∣ are presented

while in the bottom panel – the deviations from the GR polynomial fit∣∣∣1 − Ĩ/ Ĩfit GR

∣∣∣ for all data, including the STT models

Rezzolla [61] in GR and Staykov et al. [62] in f (R) gravity
and massless STT.

In Fig. 2 we are plotting the normalized moment of iner-
tia Ĩ ≡ I/(MR3) as a function of compactness M/R in
GR and in STT with fixed β = − 6 and various sets of val-
ues (mϕ, λ). The results show quite good EOS universality
for fixed (mϕ, λ). For large compactnesses M/R the devi-
ations from GR, due to scalarization effect, are larger than
the EOS uncertainty, e.g. NS for massive STT with com-
pactness M/R � 0.25 separate from massive STT with self-
interaction λ = 0.1 in the same interval.

We are fitting the different theories separately with poly-
nomial fit of forth order, with excluded second and third order
terms having the following form

Ĩ = ã0 + ã1
M

R
+ ã4

(
M

R

)4

, (10)

which gives small correction to the natural choice – the lin-
ear fit. This form of the fit is suggested for the first time by
Lattimer and Schutz [31], studied further by Breu and Rez-
zolla [61] and later used by Staykov et al. [62] in alternative
theories of gravity.

The numerical values of the fitting coefficients and the
corresponding χ2 estimations of each fit in Fig. 2 can be
found in Table 1 in the Appendix. In the middle panel of
the graph we are plotting the relative deviation of the data
points from the fitting curve for each theory. We define the
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Fig. 3 The normalized moment of inertia I/MR2 as a function of the
stellar compactness M/R. (Top panel) Neutron star models in massive
STT with self-interaction with fixedm = 5×10−3 and several different
values for λ are plotted using green line in different patterns. (bottom
panel) Neutron star models in massive STT with self-interaction with
fixed λ = 0.1 and several different values ofmϕ are plotted using dashed
line with one dot in different colours. In both figures the correspond-
ing polynomial fits to the data of the form given by Eq. (10) are also
presented. In the middle of each graph the corresponding deviations of

the polynomial fits and the data
∣∣∣1 − Ĩ/ Ĩfit

∣∣∣ are presented while in the

bottom – the deviations from the GR polynomial fit
∣∣∣1 − Ĩ/ Ĩfit GR

∣∣∣ for

all data, including the STT models

deviations as
∣∣1 − Ĩ/ Ĩfit

∣∣ and for the set of EOS we are using
it is below 10% for all theories studied here.

Additionally we present several residual norms for each
fit – 〈L〉, the average over all EOSs of all the residuals∣∣1 − Ĩ/ Ĩfit

∣∣; 〈L∞〉, the average over all EOSs of the largest
relative deviation between the data and fit; L∞, the largest
residual across all EOSs. A summary of the values of the
various norms for both STT and GR is shown in Table 2 in
the Appendix. The 〈L∞〉 and L∞ residual norms of the GR
fit are presented in the plot as shaded areas, with the latter
one being with lighter colour than the former.

In Fig. 3 we present a simplified version of Fig. 2 by fix-
ing one additional free parameter – either mϕ = 5 × 10−3

in the top panel or λ = 0.1 in the bottom panel, and plot-
ting the results when varying the corresponding remaining
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Fig. 4 The normalized moment of inertia I/M3 as a function of the
stellar compactness M/R in GR and STT with β = − 6 and various
values of mϕ and λ, with corresponding polynomial fits are shown. The
notations are same as in Fig. 2

one. On both figures we observe that when either mϕ or λ is
increased the scalarization effect is suppressed and the results
for massive STT with self-interaction fall well within the fit
uncertainty of GR and even converge to it.

In Fig. 4 we are using different normalization for the
moment of inertia, namely I ≡ I/M3. Qualitative this choice
for normalization is different from Ĩ , as with the increase of
compactness I decreases, but otherwise we observe similar
behaviour – all the results show quite good universality. For
small compactness both STT and GR cluster together and
for large compactness (roughly M/R � 0.25) the scalar-
ized results deviate non-negligibly from the GR ones. We
are using polynomial of the form:

I = a1

(
M

R

)−1

+ a2

(
M

R

)−2

+ a3

(
M

R

)−3

+ a4

(
M

R

)−4

(11)

to fit each of the presented cases separately. Visually I looks
like the better normalization, compared to Ĩ , but in fact this is
a misleading artifact of the plot due to the different scales used
on the y-axis. Indeed, if one compares the data in the lower
plots, which again is the deviation between fit and data, he
will find out that for the same set of EOSs it does not exceed
10%. Even more, the residual norms for each normalization
(for Ĩ are in Table 2 and for I are in Table 4) are comparable:
the typical average over all EOSs of all residuals per theory is
〈L〉 � 2%; the average over all EOSs of maximum residual
per theory is 〈L∞〉 � 5%; largest residual across all EOS per
theory is L∞ � 10%, with the softest (larger compactness
M/R) EOS being the major contributors to the largest relative
deviations between data and fit.

We also include simplified version of Fig. 4 that is Fig. 5,
where the free parameters –mϕ = 5×10−3 (top) and λ = 0.1
(bottom), are fixed. Qualitative, as in Fig. 3, the massive STT
theories with self-interaction is well enough separated from
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Ī
/Ī
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Fig. 5 The normalized moment of inertia I/M3 as a function of the
stellar compactness M/R are plotted. The notations are the same as in
Fig. 3

GR for large compactness and small (mϕ, λ), but with the
increase mϕ or λ they converge to GR.

Let us now comment on the differences with the GR case.
In each of the Figs. 2, 3, 4, 5 in the bottom panel the rela-
tive deviation from the GR fit is shown. As one can see, the
deviations of the scalarized models are clearly larger than
the equation of state uncertainty reaching up to 20%. We
should note, that this is only for the moderate chosen values
of the parameters. For even smaller β these deviations can
increase considerably. That is why the universal relations can
be potentially used to constrain observationally the massive
STT with self-interaction. On the other hand, as the intuition
from building equilibrium models also shows [30], even for
very small β there exist a range of parameters, typically for
higher λ, where the models are still scalarized for a large
range of central energy densities, but the properties of the
neutron stars and the corresponding universal relations are
almost indistinguishable for GR.

At the end we will briefly discuss the possibilities to actu-
ally use the obtained relations in order to test massive STT.
For this purpose one has to be able to independently deter-
mine the neutron star mass, radius and moment of inertia.
Assuming that every parameter is measured with a certain
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accuracy one can then draw a box at the corresponding uni-
versal relation diagram and check for which values of the
parameters the STT curve passes through this box. In this
way one can constrain the parameters of the theory or even
detect a deviation from pure GR. Determining independently
M , R and I , though, for the same neutron star might be a very
difficult task. The mass can be measured with a very good
accuracy for binary systems via both electromagnetic and
gravitational wave observations [27,68,69]. The moment of
inertia is expected to be determined with approximately 10%
accuracy in the near future for neutron stars in binary sys-
tems [31]. The radius can be measured for neutron stars in
low-mass X-ray binaries [32,33] and very recently also by
the gravitational wave observations of neutron star mergers
[34,35,70–72]. One option suggested in [45,46] in order to
test alternative theories of gravity using universal relations
is to measure the mass and the moment of inertia for a given
binary system and then measure the radius from the grav-
itational wave observations of merging neutron stars with
similar masses. This of course will not be easy task, but with
the rapid advance of both the gravitational wave and the elec-
tromagnetic observations, it is completely realistic.

4 Conclusion

Very often there is a degeneracy between effects coming from
modifications of general relativity and from the EOS uncer-
tainty. That is why the study of universal relations between
NS parameters is appealing. It can provide us with a pow-
erful tool to overcome the large uncertainty in the EOS and
allows us to test alternative theories of gravity against GR.
The current state-of-the-art measurements of M and R, with
the expected near future capability to measure I [31], makes
these star parameters the natural choice for forming univer-
sal relations. Our study showed that using I/(MR2) or I/M3

as functions of the compactness leads to quite good univer-
sality in agreement with [61,62] not only for GR, but for
all examined classes of STT, and for our set of EOS. The
deviations, per theory, is not higher than 10% for both stud-
ied normalisations, with the largest deviations being for the
softer EOS. Some authors [61,73,74] have suggested that a
reason for the existence of the universal relations is the fact
that the stiff enough EOS can be modeled as approximately
uncompressible. This is not the case for soft EOS, which
makes the relations more sensitive to the EOS itself, hence
the higher deviations. The differences between the universal
relations for scalarized models and the GR ones is clearly

larger than the spread of the data due to the EOS uncertainty
and it reaches up to roughly 20% for the considered values
of β = − 6. The difference will naturally increase with the
decrease of β. This shows that the considered relations can
serve as a way to constraint the massive STT with self inter-
action independently of the EOS uncertainty.

Among the studied subclasses of STT, particularly inter-
esting is the massive case, (β = − 6,mϕ = 5×10−3, λ = 0),
for which we know that the maximum deviation for the
moment of inertia can be of order 40%, for the EOS studied
in [25], but for each of the examined normalized relations
the deviation from GR is about 10% for the whole interval
of compactnesses. We should stress out that although values
β � − 4.5 for massless STT are restricted by the astro-
nomical observations, this is not the case when investigating
massive STT for which (β = − 6,mϕ = 5 × 10−3, λ = 0)

is well within the allowed interval. Moreover, massive STT
with self-interaction with large λ admit greater β < 0 with
simultaneously exhibiting smaller deviation from GR while
scalarization occurs for a large range of central energy densi-
ties. Hence one can say that these relations are not only EOS
independent, but for a large part of the domain of the chosen
STT, theory independent too.
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5 Appendix

In the appendix we will give tables with detailed information
about the fits used in the figures (Tables 1, 2, 3, 4).
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Table 1 I/MR2 fit coefficients and corresponding χ2 values. The first row and column hold all the presented in the paper values for mϕ and λ.
The entries in each cell present the numerical value of coefficients in (10) and the corresponding χ2

m λ

0 0.1 1 10

0

a0 = 0.131

a1 = 1.514

a4 = − 1.263

χ2
r = 6.044 × 10−5

a0 = 0.160

a1 = 1.255

a4 = − 3.061

χ2
r = 5.461 × 10−5

a0 = 0.196

a1 = 0.921

a4 = 1.136

χ2
r = 4.764 × 10−5

a0 = 0.209

a1 = 0.800

a4 = 3.662

χ2
r = 4.189 × 10−5

5 × 10−3

a0 = 0.137

a1 = 1.445

a4 = − 1.331

χ2
r = 5.703 × 10−5

a0 = 0.162

a1 = 1.230

a4 = − 2.621

χ2
r = 5.329 × 10−5

a0 = 0.196

a1 = 0.918

a4 = 1.215

χ2
r = 4.724 × 10−5

a0 = 0.209

a1 = 0.798

a4 = 3.720

χ2
r = 4.270 × 10−5

5 × 10−2

a0 = 0.195

a1 = 0.917

a4 = 1.122

χ2
r = 4.211 × 10−5

a0 = 0.199

a1 = 0.882

a4 = 1.862

χ2
r = 4.402 × 10−5

a0 = 0.207

a1 = 0.817

a4 = 3.280

χ2
r = 4.321 × 10−5

a0 = 0.210

a1 = 0.789

a4 = 3.905

χ2
r = 4.193 × 10−5

GR: a0 = 2.103e − 01; a1 = 7.877e − 01; a4 = 3.950e + 00; χ2
r = 4.186e − 05

Table 2 Summary of various averaged norms of I/MR2 fit residuals
|1− Ĩ/ Ĩfit|. The first row and column hold all the presented in the paper
values for mϕ and λ. The entries in each cell present each fit as follows
– 〈L1〉, the average over all EOSs of all the residuals; 〈L∞〉, the average

over all EOSs of the largest relative deviation between the data and fit;
L∞, the largest residual across all EOSs. Only the GR 〈L∞〉 and L∞
are included in Fig. 2 as shaded areas

m λ

0 0.1 1 10

0

〈L〉 = 2.131 × 10−2

〈L∞〉 = 5.249 × 10−2

L∞ = 1.228 × 10−1

〈L〉 = 2.131 × 10−2

〈L∞〉 = 5.249 × 10−2

L∞ = 1.228 × 10−1

〈L〉 = 2.268 × 10−2

〈L∞〉 = 5.020 × 10−2

L∞ = 1.018 × 10−1

〈L〉 = 2.216 × 10−2

〈L∞〉 = 5.198 × 10−2

L∞ = 9.286 × 10−2

5 × 10−3

〈L〉 = 2.171 × 10−2

〈L∞〉 = 5.814 × 10−2

L∞ = 1.257 × 10−1

〈L〉 = 2.238 × 10−2

〈L∞〉 = 4.874 × 10−2

L∞ = 1.149 × 10−1

〈L〉 = 2.259 × 10−2

〈L∞〉 = 4.982 × 10−2

L∞ = 9.963 × 10−2

〈L〉 = 2.241 × 10−2

〈L∞〉 = 5.213 × 10−2

L∞ = 9.271 × 10−2

5 × 10−2

〈L〉 = 2.143 × 10−2

〈L∞〉 = 4.796 × 10−2

L∞ = 9.661 × 10−2

〈L〉 = 2.198 × 10−2

〈L∞〉 = 4.920 × 10−2

L∞ = 9.481 × 10−2

〈L〉 = 2.222 × 10−2

〈L∞〉 = 5.119 × 10−2

L∞ = 9.295 × 10−2

〈L〉 = 2.235 × 10−2

〈L∞〉 = 5.205 × 10−2

L∞ = 9.246 × 10−2

GR: 〈L〉 = 2.236 × 10−2, 〈L∞〉 = 5.209 × 10−2, L∞ = 9.262 × 10−2
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Table 3 I/M3 fit coefficients and corresponding χ2 scores. The first row and column hold all the presented in the paper values for mϕ and λ. The
entries in each cell present the numerical value of coefficients in (11) and the corresponding χ2

m λ

0 1 × 10−1 1 × 100 1 × 101

0

a1 = 1.175

a2 = 0.282

a3 = − 2.267 × 10−2

a4 = 1.099 × 10−3

χ2
r = 0.154

a1 = 0.763

a2 = 0.343

a3 = − 2.182 × 10−2

a4 = 8.227 × 10−4

χ2
r = 0.148

a1 = 1.052

a2 = 0.121

a3 = 1.500 × 10−2

a4 = − 9.189 × 10−4

χ2
r = 0.127

a1 = 1.253

a2 = 8.055 × 10−3

a3 = 3.207 × 10−2

a4 = − 1.689 × 10−3

χ2
r = 0.121

5 × 10−3

a1 = 1.206

a2 = 0.242

a3 = − 1.582 × 10−2

a4 = 7.863 × 10−4

χ2
r = 0.152

a1 = 0.853

a2 = 0.298

a3 = − 1.584 × 10−2

a4 = 5.805 × 10−4

χ2
r = 0.147

a1 = 1.069

a2 = 0.113

a3 = 1.603 × 10−2

a4 = − 9.592 × 10−4

χ2
r = 0.127

a1 = 1.257

a2 = 6.625 × 10−3

a3 = 3.227 × 10−2

a4 = − 1.698 × 10−3

χ2
r = 0.122

5 × 10−2

a1 = 1.206

a2 = 4.868 × 10−2

a3 = 2.484 × 10−2

a4 = − 1.327 × 10−3

χ2
r = 0.124

a1 = 1.213

a2 = 3.948 × 10−2

a3 = 2.659 × 10−2

a4 = − 1.418 × 10−3

χ2
r = 0.124

a1 = 1.249

a2 = 1.218 × 10−2

a3 = 3.127 × 10−2

a4 = − 1.647 × 10−3

χ2
r = 0.122

a1 = 1.273

a2 = − 2.283 × 10−3

a3 = 3.362 × 10−2

a4 = − 1.759 × 10−3

χ2
r = 0.121

GR: a1 = 1.275, a2 = − 3.584 × 10−3, a3 = 3.383 × 10−2, a4 = − 1.769 × 10−3; χ2
r = 0.121

Table 4 Summary of various averaged norms of I/R3 fit residuals
|1− Ĩ/ Ĩfit|. The first row and column hold all the presented in the paper
values for mϕ and λ. The entries in each cell present for each fit as
follows – 〈L1〉, the average over all EOSs of all the residuals; 〈L∞〉, the

average over all EOSs of the largest relative deviation between the data
and fit; L∞, the largest residual across all EOSs. Only the GR 〈L∞〉
and L∞ are included in Fig. 4 as shaded areas

m λ

0 1 × 10−1 1 × 100 1 × 101

0

〈L〉 = 2.162 × 10−2

〈L∞〉 = 5.971 × 10−2

L∞ = 1.302 × 10−1

〈L〉 = 2.249 × 10−2

〈L∞〉 = 4.922 × 10−2

L∞ = 1.145 × 10−1

〈L〉 = 2.268 × 10−2

〈L∞〉 = 5.020 × 10−2

L∞ = 9.745 × 10−2

〈L〉 = 2.216 × 10−2

〈L∞〉 = 5.198 × 10−2

L∞ = 9.286 × 10−2

5 × 10−3

〈L〉 = 2.173 × 10−2

〈L∞〉 = 5.918 × 10−2

L∞ = 1.259 × 10−1

〈L〉 = 2.227 × 10−2

〈L∞〉 = 4.769 × 10−2

L∞ = 1.123 × 10−1

〈L〉 = 2.161 × 10−2

〈L∞〉 = 4.229 × 10−2

L∞ = 9.928 × 10−2

〈L〉 = 2.162 × 10−2

〈L∞〉 = 4.079 × 10−2

L∞ = 9.418 × 10−2

5 × 10−2

〈L〉 = 2.081 × 10−2

〈L∞〉 = 4.526 × 10−2

L∞ = 9.481 × 10−2

〈L〉 = 2.122 × 10−2

〈L∞〉 = 4.453 × 10−2

L∞ = 9.388 × 10−2

〈L〉 = 2.138 × 10−2

〈L∞〉 = 4.145 × 10−2

L∞ = 9.377 × 10−2

〈L〉 = 2.156 × 10−2

〈L∞〉 = 4.078 × 10−2

L∞ = 9.406 × 10−2

GR: 〈L〉 = 2.158 × 10−2, 〈L∞〉 = 4.077 × 10−2, L∞ = 9.428 × 10−2
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