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Abstract We investigate some consequences of a specific
non-conservation of the energy-momentum tensor for the
physics of certain cosmic string configurations. This non-
conservation was induced by a new gravitational theory
recently introduced as an attempt to incorporate dissipative
systems in the description of gravity. This model of gravity is
endowed with a variational principle, where an action depen-
dence on the geometric sector is assumed. For the Abelian
Higgs string we derive the dynamical equations and provide
the numerical solutions describing the behavior of the Higgs
and gauge fields and the profile of the metric functions for
different cases of the parameter that characterizes the model.
Additionally, from this numerical approach we find how the
inner structure of the cosmic string is affected by this under-
lying gravitational theory, by analyzing the deviations both
on the mass per unit length and the deficit angle of the string.
Next, we proceed with an analytical treatment obtaining the
solution close to the string axis and also the correspond-
ing vacuum solution. Our analytical results are also comple-
mented with the study of a thick cosmic string model, where
the defect is endowed with a finite core. In this case we have
obtained the proper interior solution which, joined together
with the vacuum metric outside, provides an exact solution
for the exterior geometry which generalizes previous results

Since a non-trivial conservation law is often achieved within many
different alternative theories, there is maybe lack of exactness in using
the phrase “non-conservative gravity” to refer to the present
gravitational theory we are studying here. However, we shall keep this
nomenclature in order to avoid conflicts with the terminology already
established in the literature regarding this issue.
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and leads to a decreasing of the mass per unit length of the
cosmic string.

1 Introduction

The formulation of a least action principle suitable for the
description of dissipative systems is object of a longstand-
ing discussion within theoretical physics. In the context of
classical mechanics one usually deals with it by means of
the dissipation Rayleigh function which emerges as a cor-
rection at the level of the Euler–Lagrange equation [1]. In
1930, Herglotz succeeded in the construction of an extension
of classical mechanics in which the dissipative contributions
possibly appear already at the action level [2], by assuming
a dependence of the Lagrangian function upon the action
itself. Only recently a covariant version of the Herglotz the-
ory emerged in [3], where the authors set out the foundations
of a new gravitational theory whose scope encompasses the
description of the dissipative systems. One of the immedi-
ate consequences of it is that the theory will bring about a
breaking of the diffeomorphism invariance which shall be
translated into a non-conservation of the energy-momentum
tensor. The cosmology resulting from this modified gravity
was recently investigated in [4], where the authors found
an interesting equivalence between the corresponding back-
ground dynamics of such a cosmology with that of a bulk
viscous universe. At the perturbative level, they have shown
that the dynamics of the matter perturbations indicates that
some drawbacks faced by the bulk viscous model may be
alleviated within such a non-conservative framework.

The potential appearance of topological defects in the ear-
liest instants of the universe’s evolution is a significant pos-
sibility within the context of grand unified theories (GUT)
[5–8]. Theoretically, it is expected that such objects contain
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a huge amount of energy, far greater than the scales achiev-
able at the known accelerators, indicating that their detection
would allow us to access high energy scales not yet known,
thus leading to a proper comprehension of key aspects of the
beyond standard model physics. In this picture, topological
defects are relics left behind after symmetry breaking pro-
cesses triggered by the many phase transitions experienced
by the early universe during its expansion and progressive
cooling down. The nature of the symmetry breaking deter-
mines the specific type of topological defect to be formed. A
cosmic string is a line-like defect, resulting from a breaking
of an axial symmetry, which is somewhat analogous to vor-
tex lines in superfluids and superconductors, and dislocation-
like imperfections in crystal structures. On the existence of
these objects is also speculated in the context of string theory,
where cosmic strings are considered as fundamental strings
stretched to a cosmological scale [9]. Besides, one expects
cosmic strings may be formed in some inflationary models, as
in the brane inflation scenario [10]. Possible consequences
in the cosmological or astrophysical contexts of the exis-
tence of cosmic strings have been already extensively inves-
tigated. In the past, one used to think of cosmic strings as
a possible provider of the generating mechanism of the pri-
mordial density fluctuations, competing with the inflationary
model on this same job. However, further observations of the
cosmic microwave background (CMB) supported the latter
as the prevailing source of such fluctuations [11,12], which
was corroborated by the most recent observations [13,14].
Despite all that, it is well known that one possible observa-
tional window for cosmic strings is the gravitational-wave
radiation they can produce. This can occur in several pro-
cesses involving cosmic strings loops, for example decay,
oscillations or self-intersections of these loops [6]. So, the
revolution in astrophysics and cosmology inaugurated by the
first direct detection of gravitational waves by the advanced
LIGO/Virgo interferometers shall represent as regards the
cosmic strings issue a new chance for its thus expected detec-
tion (see [15] for a recent discussion).

All the well-known gravitational effects of cosmic strings
shall be obviously affected by the underlying gravity theory
in which they are studied. Lazo et al.’s modified gravity is
a theory where dissipative effects emerge naturally from the
least action principle, implying a departure from the standard
conservation of the energy-momentum tensor. It is expected
that a cosmic string feels such a deviation through a change
in its mass per unit length or linear energy density (which is
equal to its tension if we consider the string a system with
boost invariance along its axis), what would affect the main
observable quantity of a cosmic string setup. In this vein, our
purpose in this work is to investigate such an influence of
this modified gravity on the main properties of some cosmic
string configurations.

The paper is organized as follows: in the next section
the aforementioned gravitational theory is briefly introduced
with the corresponding equations that dictate its dynamics.
In Sect. 3 we get in touch with the Abelian Higgs model,
the first cosmic string scenario that we shall explore in this
work. We derive the explicit form of the respective field equa-
tions and show that the non-conservative aspect of the theory
may reduce its dynamical equations to the ones describing
the Bogomolnyi–Prasad–Sommerfeld (BPS) limit [16,17].
In Sect. 4 we present the full numerical solutions for this
problem, showing the impact of the model’s parameter on
the profile of the metric function along with the behavior of
the gauge and the Higgs fields. In Sect. 5, we report the analyt-
ical results obtained in this work, covering both approximate
and exact cases. In our approximative approach we find how
this extended gravity shapes both the geometry and the form
of the matter fields close to the cosmic string axis, reveal-
ing consistency with the full numerical treatment when dis-
tances near the string are taken. On the other hand, the exact
cases comprise (i) the vacuum solution, which shall also cor-
respond to the asymptotic behavior of the Abelian Higgs
string far away from the defect and (ii) the generalization of
the Hiscock–Gott solution [22,23], which means an exterior
solution for a cosmic string with finite thickness which has
a uniform energy density contained inside it. Once having
obtained such a solution, we discuss how it affects the struc-
ture of the string by investigating possible variations in its
mass per unit length. In Sect. 6 we shall present our conclud-
ing remarks about this study and some possible extensions
for study in future work.

2 The theory

Originally an action-dependence Lagrangian was used by
Herglotz to deal with the principle of least action for dissipa-
tive systems in the classical mechanics context [2]. Recently,
Lazo et al. generalized this theory, translating it to a covari-
ant language [3]. The authors propose a model of gravity
described by the following Lagrangian:

L = √−g(R − λμs
μ) + Lm, (1)

with sμ being an action-density field (which disappears dur-
ing the variation of the action, so it does not become man-
ifest in the field equations) and λμ is a parameter encoding
the emerging of “geometric” dissipative effects in the grav-
ity and the deviation from General Relativity (GR). A proper
justification for the choice (1) can be found in Refs. [3] and
[4]. In the Herglotz formalism the friction forces (with linear
dependence in the velocity) arises in the equations of motion
when one assumes a Lagrangian with linear dependence in
the action. In this vein, in [3] the authors argue that (1) is
the “best” possible analogy to that linear-in-action depen-
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dence of the Lagrangian in a covariant framework. In Ref.
[4] the authors provide a more detailed discussion about the
motivations behind this choice.

Let us remark that according to the original formulation
for this model, such an action dependence is only upon the
Einstein–Hilbert action, with no dependence on the mat-
ter action being taken into account. This means that the
novel effects arising from this gravitational theory are of
purely geometric origin. This coupling four-vector λμ may
be in general a running variable, although we shall assume
throughout this work the simplest case where its components
are constant.

The set of field equations of the theory proposed in [3] can
be written

Rμν + Kμν = 8πG

c4

(
Tμν − 1

2
gμνT

)
, (2)

where Kμν is defined by

Kμν = λα�α
μν − 1

2

(
λν�

α
μα + λμ�α

να

)
. (3)

We refer the reader to Ref. [3], where a step-by-step deriva-
tion of Eq. (2) is given. In (3) the parameter λμ is a four-vector
encoding the non-conservative nature of the theory. The set of
equations is complemented with the modified conservation
law given by

∇μ

(
Kμ

ν − 1

2
δμ
ν K

)
= 8πG

c4 ∇μT
μ
ν . (4)

From now on we shall consider c = 1.
It is easy to check that Eq. (4) when combined with (2),

ensures the fulfillment of the Bianchi identity. Such an equa-
tion is a natural consequence of the breaking of the diffeo-
morphism invariance experienced by the theory, essentially
due to the presence of the four-vector λμ, which allows for
a preferred direction in the spacetime. However, notice that
locally the variation of energy-momentum tensor is given in
terms of the ordinary derivative, so it behaves locally in the
same way as in GR. Nonetheless, when the curved spacetime
geometry is important, one expects some deviation from GR.
Such a deviation shall have physical consequences, which
can only be examined when specific gravitational problems
are addressed. One example of this, as mentioned in the Intro-
duction, is the bulk viscous model which appears at back-
ground level, when this theory is used in the cosmological
context [4]. In [24] the authors use the same formalism of
action-dependent Lagrangians to a wider class of physical
systems, extending their approach to contexts different from
the gravitational one.

3 Abelian Higgs strings

We are interested in studying cosmic string configurations
and its gravitational effects within such an extended theory
of gravity. We start with the Abelian Higgs string which is
described by the following Lagrangian density:

Lm = Dμφ(Dμφ)∗ − 1

4
FμνF

μν − σ

2

(
φφ∗ − η2

)2
, (5)

where Dμφ = ∇μφ−ieAμφ is the covariant derivative asso-
ciated with the complex scalar field. The field strength tensor
is Fμν = ∇μAν −∇ν Aμ = ∂μAν −∂ν Aμ, of the U(1) gauge
potential Aμ with the coupling constant e. During the sym-
metry breaking process, both the Higgs and the gauge fields
acquire masses, given by MH = √

2λη and MW = √
2eη,

respectively. The parameter σ denotes the self-coupling of
the scalar field, whereas η is its vacuum expectation value.
As is well known the corresponding energy-momentum ten-
sor is obtained from the Lagrangian through the relation

Tμν = 2
δLm

δgμν
− gμνLm . (6)

This leads to the explicit form of the energy-momentum ten-
sor given by

Tαβ = − gαβ

{
(Dμφ)(Dμφ)∗−1

4
FμνF

μν−σ

2

(
φφ∗ − η2)2

}

+ (Dαφ)(Dβφ)∗ + (Dβφ)(Dαφ)∗ − Fαγ F
γ
β , (7)

where the Higgs and gauge fields are [25]

φ(r, ϕ) = η f (r)eiϕ, Aμdxμ = 1

e
[1 − P(r)]dϕ. (8)

The most general static cylindrically symmetric line element,
invariant under boosts along the z-direction, is

ds2 = N 2dt2 − dr2 − L2dϕ2 − N 2dz2, (9)

where N = N (r) and L = L(r).
We can verify that the symmetry of the system under con-

sideration imposes on the four-vector λμ the particular form
(0, λr , 0, 0), with λr = const. The components of the Ricci
tensor associated with (9) are

Rt
t = (LNN ′)′

N 2L
, Rr

r = 2N ′′

N
+ L ′′

L
,

Rϕ
ϕ = (N 2L ′)′

N 2L
, Rz

z = Rt
t . (10)

For Kμν we have

K t
t = λr

N ′

N
= K z

z , Kr
r = λr

(
2N ′

N
+ L ′

L

)
,

K ϕ
ϕ = λr

L ′

L
. (11)
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It is convenient to introduce the following redefinitions:

r → r

eη
, L → L

eη
, λr → (eη)λr , (12)

with the radial distance r being measured in units of MW /
√

2.
Besides, the Lagrangian density, Lm → Lm/(η4e2), is writ-
ten in terms of the dimensionless coupling constants

α = 8πGη2 = 8π
η2

M2
pl

, β = σ

e2 = M2
H

M2
W

, (13)

where Mpl is the Planck mass.
Using the metric (9) in (6) we find the non-vanishing com-

ponents of the energy-momentum tensor

T t
t = ( f ′)2 + f 2P2

L2 + (P ′)2

2L2 +β

2

(
f 2 − 1

)2
, T t

t =T z
z ,

(14)

T r
r = −( f ′)2 + f 2P2

L2 − (P ′)2

2L2 + β

2

(
f 2 − 1

)2
, (15)

T ϕ
ϕ = ( f ′)2 − f 2P2

L2 − (P ′)2

2L2 + β

2

(
f 2 − 1

)2
, (16)

while the trace T ≡ Tμ
μ is

T = 2

[
( f ′)2 + f 2P2

L2 + β( f 2 − 1)2
]

. (17)

From T t
t and T z

z it is possible to obtain two important proper-
ties of the string; its tension, τ , and its linear energy density.
These two quantities are, respectively, given by

τ =
∫ ∞

0

∫ 2π

0
T z
z

√
g(2)dρdϕ (18)

and

μ =
∫ ∞

0

∫ 2π

0
T t
t

√
g(2)dρdϕ. (19)

However, due to the boost invariance in the z-direction, we
shall have μ = τ . One denotes the deficit angle by δ, which
can be defined in terms of the metric function L(r) as follows:

δ = 2π
[
1 − L ′(∞)

]
. (20)

3.1 The field equations

When we use (9), (10) and (11), along with (14), in the mod-
ified field equation (2) we are left with the following system
of nonlinear differential equations:

(LNN ′)′

N 2L
+ λr

N ′

N
= α

[
(P ′)2

2L2 − β

2
( f 2 − 1)2

]
, (21)

2N ′′

N
+ L ′′

L
+ λr

(
2N ′

N
+ L ′

L

)

= α

[
−2( f ′)2 − (P ′)2

2L2 − β

2
( f 2 − 1)2

]
, (22)

(N 2L ′)′

N 2L
+ λr

L ′

L
= α

[
−2 f 2P2

L2 − (P ′)2

2L2 − β

2
( f 2 − 1)2

]
.

(23)

The variables involved in the problem are subject to the fol-
lowing boundary conditions:

L(0) = 0, L ′(0) = 1, N (0) = 1, N ′(0) = 0,

f (0) = 0, P(0) = 1, (24)

which guarantee a regular solution at the z-axis. Besides, we
admit that the matter fields reach their respective vacuum
expectation values far away from the string, which means

f (r → ∞) → 1, P(r → ∞) → 0. (25)

We can properly combine (21)–(23) so that a new con-
straint is obtained:

2N ′L ′

NL
+ (N ′)2

N 2 = α

[
( f ′)2+ (P ′)2

2L2 − f 2P2

L2 −β

2
( f 2 − 1)2

]
,

(26)

which is going to be useful to us later on. Since the correction
λμsμ in (1) does not depend on the Higgs and gauge fields,
this term is unaffected by the extremization of the action with
respect to these fields, so that the dynamical equations for the
two are strictly the same as the GR ones, namely

f ′′ + L ′

L
f ′ + 2N ′

N
f ′ − f P2

L2 − β f ( f 2 − 1) = 0 (27)

and

P ′′

L2 + 2N ′

N

P ′

L2 − L ′P ′

L3 − 2P f 2

L2 = 0. (28)

On the other hand, the modified conservation law (4) gives

2λr

[
2N ′L ′

NL
+ (N ′)2

N 2

]

= α

[
−2 f ′

(
f ′′+ L ′

L
f ′+2N ′

N
f ′− f P2

L2 −β f ( f 2 − 1)

)

− P ′
(

2N ′

N

P ′

L2 + P ′′

L2 − L ′P ′

L3 − 2P f 2

L2

)]
. (29)

When used in the equation above, (27) and (28) lead straight-
forwardly to two possible conditions for the metric functions
N (r) and L(r), for λr 	= 0:
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Fig. 1 In the left panel, we present the behavior for the Higgs field as a function of r . In the right panel, the gauge field, P(r), is shown. For the
two situations we fix α = 0.2 and take successively the values λr = 0.0, 0.2, 0.5, 0.8

N (r) = const. (30)

or

2L ′

L
= −N ′

N
. (31)

For the sake of simplicity we are going to stick to the first
case, in which the metric function N (r) can be merely writ-
ten as N (r) = 1. It is easy to see that such a choice implies
in the so-called BPS limit for which β = 1 [16,17]. Addi-
tionally, N (r) = 1 makes the set of equations of motion for
the Abelian Higgs string much simpler; it now becomes

f ′ = P

L
f, P ′ = L( f 2 − 1) and L ′′ + λr L

′

= −αL

[
( f 2 − 1)2 + 2P2 f 2

L2

]
. (32)

It is worth comparing the present study with the results pre-
sented in [20]. There the authors investigate Abelian Higgs
strings within another non-conservative framework, namely
the Rastall theory [21].1 The main difference we may note
between the two studies is related to the gauge–Higgs cou-
pling ratio, namely the constant β. In our case, as shown
above, the consistency imposed by the dynamical equations
sets β = 1, which means that the gauge–Higgs couplings
(likewise the gauge–Higgs masses) are necessarily equal.
On the other hand, in Rastall case the β parameter is strongly
dependent of the Rastall parameter; thus it can assume a much
wider range of values. Since it has direct consequences on
the physical properties of both the gauge and Higgs fields, it

1 Contrary to the theory under analysis, Rastall gravity is a theory where
a violation of the traditional conservation law is assumed in a purely
phenomenological way, without a proper variational formulation.

means that the structure of the fields may be heavily affected
by the type of non-conservative gravity in which they are
studied.

4 Numerical results

Now we are going to describe the numerical results obtained
in this work. We have integrated the system of nonlinear
differential equations (32) considering the set of boundary
conditions (24) and (25). This was performed by means of
the ODE solver COLSYS [18]. Relative errors of the solu-
tions are usually of the order of 10−8–10−10 (sometimes even
better).

In Fig. 1 we present the plots of the Higgs and gauge fields,
f (r) and P(r), for different values of λr , fixing α = 0.2.
In Fig. 2 we report a similar analysis, however, for α =
0.5. Notice that increasing the value of λr makes the two
fields f (r) and P(r) get more and more spread around the
string axis, causing an effective increasing of the string width.
However, these fields showed to be almost insensitive to the
α parameter. Additionally, we observe a common tendency
of both fields to “slowly” reach the vacuum expectation value
for higher values of λr .

In Fig. 3 we present the behavior of the metric function
L(r) considering again the parameters α = 0.2 and α = 0.5.
For both cases, we consider λr = 0.0, 0.2, 0.5 and 0.8. We
notice that L(r) is less sensitive to the λr effects at small
distances, although a tiny discrepancy is perceivable for dif-
ferent λr . However, the deviation from GR shows up indeed
to be more pronounced for large r , for which L(r) has its
slope decreased when one takes higher and higher values
for the parameter λr . This behavior indicates that stronger
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Fig. 2 In the left panel, we present the behavior for the Higgs field as a function of r considering the parameters α = 0.5 and λr = 0.0, 0.2, 0.5, 0.8.
In the right panel we exhibit the gauge field profile for the same α and λr values
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Fig. 3 The comparison between the behavior of the metric function L as functions of r . In the left panel considering α = 0.2 and the right panel
considering α = 0.5. In both plots we cover the cases λr = 0.0, 0.2, 0.5, 0.8

deviations from GR will lead to larger values for the deficit
angle.

The behaviors of the linear energy density (or mass per
unit length of the string) and planar angle deficit are shown
in Fig. 4. In the left panel we plot the linear energy density
as a function of λr considering the cases α = 0.2 and α =
0.5. The right panel displays the planar angle deficit as a
function of λr , for the same two values of α. We notice a
decreasing of the linear energy density as the λr parameter,
which can be seen as a direct consequence of the dissipative
effect one expects to observe within such an extended gravity.
On the other hand, for the two cases of α the planar angle
deficit increases as λr takes higher values. We also see that
the influence of α weakens as λr is enhanced. Additionally,

we notice the existence of a critical value for λr about λcrr ≈
0.5, at which the deficit angle reaches a maximum value,
2π . From this λcrr onwards, the deficit angle saturates at its
maximum value, which spoils any suitable description of a
Abelian Higgs string within such a gravitational theory for
λr � λcrr . Therefore, this modified gravity is only able to
accommodate a proper description of a gravitating Abelian
Higgs string if the departure of GR is not so large.

5 Analytical treatment

After a full numerical treatment of the system (32) we present
in this section the main analytical findings of our study.
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Fig. 4 In the left panel, we present the behavior of the density of the energy per unit of 2π as a function of λr . In the right panel, the behavior of
the planar deficit angle in units of 2π as a function of λr

5.1 Solution close to the string axis

Using the set of boundary conditions (24) we can write the
approximate form for the system of equations (32) which
will in turn provide solutions for L(r), P(r) and f (r) in
the regions very close to the string axis (r ∼ 0). In this
regime, due to the condition f (0) = 0, it is reasonable to keep
only linear terms in f (r) and neglect all the possible higher
contributions of this function. This implies an approximative
form for the system (32) given by

f ′ = P

L
f, P ′ � −L and L ′′ + λr L

′ � −αL , (33)

which gives the following set of solutions:

L(r) � r − λr

2
r2 + O(r3), (34)

P(r) � 1 − r2

2
+ λr

6
r3 + O(r4), (35)

and

f (r) � r + λr

2
r2 + O(r3). (36)

As expected, the behaviors both of the matter fields and the
metric function shown above are clearly endorsed by the full
numerical analysis we have performed in the previous sec-
tion. As the plots (1a), (2a), (3a) and (3b) show us, the profiles
of f (r) and L(r) are only considerably affected by λr as one
departs from the string’s vicinity, with a significant influ-
ence only from the r2 powers onwards. As such, the closer
to the string axis, the more these fields look like their GR
counterparts, with f (r) being a bit more sensitive than L(r)
to the modification of gravity in this close-to-string regime.
On the other hand, we observe that λr ’s impact on the P(r)

behavior is even weaker, with a dependence on this parame-
ter becoming evident just from the r3 power onwards. In fact,
one notices from Figs. 1b and 2b that this tiny dependence
of P(r) upon λr is also verified even in the full regime.

5.2 Vacuum solution

One assumes that the cosmic string is a localized configura-
tion whose corresponding matter fields shall vanish far away
from its core, and the spacetime of the string will reduce to
the cylindrically symmetric vacuum solution of the respec-
tive gravitational theory. In GR the vacuum for this symmetry
is described by the Kasner solutions [26]; however, here one
expects a new set of metric functions modified by the con-
tribution of the parameter λr . In this vein, we integrated the
field equations (21)–(23) in empty space and obtained an
exact result, given by

N (r) = N1

(
1 − e−λr r

λr

)a

(37)

and

L(r) = L1

(
1 − e−λr r

λr

)b

, (38)

where N1 and L1 are constants. For the sake of simplicity, we
shall restrict our attention to regular solutions whose behavior
is well defined in the whole space. This leads us to assume
λr ’s sign as positive, since a negative one would imply a
naked singularity at infinity, as one can clearly see from (37)
and (38). Notice that in the limit when λr → 0, the solution
above recovers the Kasner one N (r) ∼ N1ra and L(r) ∼
L1rb. The relation between the exponents a and b is
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2a2 + b2 = 2a + b = 1, (39)

which is found by means of the vacuum equations arising
from (21). This relation is the same as the one found in the
GR context [26] and leads to the two possible solutions

(a, b) = (0, 1) and (a, b) =
(

2

3
,−1

3

)
. (40)

In fact the first case is particularly interesting for the study of
cosmic strings as it contains solutions with the deficit angle.
So, we shall focus on this case, in which (a, b) = (0, 1).
Notice that setting b = 1 in (38) one finds L ′(∞) = 0, lead-
ing to δ = 2π , which is the critical limit acceptable for the
deficit angle. This indicates that for r large the surface (t, z)
= const of the vacuum geometry approaches asymptotically
a cusp.

5.3 The string as an extended source

It is common to consider the string as a line source, mean-
ing that all the matter distribution characterizing the defect
is concentrated at the central axis. This leads one to model
the cosmic string in terms of a delta-like energy-momentum
tensor, which arises as the suitable way to represent a coni-
cal singularity lying at the origin, with a locally flat space-
time being achieved in the outside region. However, such a
hypothesis is somewhat unrealistic, as it would bring about an
undesirable divergence to the model, which possibly would
cause difficulties to the practical treatment of this problem.
A simple and direct attempt to circumvent this inconvenient
feature could be assuming that the defect is enclosed in a
finite radius, ρ0, inside of which its energy density is dis-
tributed. Let us consider that the inner region is described by
the following metric tensor:

ds2 = A2dT 2 − dρ2 − B2dϕ2 − A2dZ2, (41)

where A = A(ρ) and B = B(ρ). The energy distribution of
the string is parametrized by a radial function ε(ρ). So, this
energy-momentum tensor could be written as

T ν
μ = ε(ρ)diag(1, 0, 0, 1). (42)

For this configuration the modified field equations become

(BAA′)′

A2B
+ λr

A′

A
= 0, (43)

2A′′

A
+ B ′′

B
+ λr

(
2A′

A
+ B ′

B

)
= −8πGε(ρ), (44)

(A2B ′)′

A2B
+ λr

B ′

B
= −8πGε(ρ), (45)

where the prime here denotes the derivative with respect to
ρ. It is easy to verify that the system above also admits the

same two family of solutions (30) and (31). Of the two cases
we shall focus on the one which is simpler and also more
interesting for the study of cosmic strings, namely A(ρ) =
const. This case reduces the remaining field equations into a
single one given by

B ′′(ρ) + λr B
′(ρ) + 8πGε(ρ)B(ρ) = 0. (46)

To solve (46) we should in principle specify ε(ρ). However,
in order to obtain a closed solution for this equation and cap-
ture the immediate effect of the parameter λr , we can simplify
the problem by assuming a model where the energy density
is almost uniform, ε(ρ) ∼ ε0. This implies the following
solution:2

B(ρ) = e−λrρ/2 [a0 cos(ρ/ρ∗) + b0 sin(ρ/ρ∗)] , (47)

where a0 and b0 are integration constants and ρ∗ ≡[
8πGε0 − λ2

r
4

]−1/2
. Notice that for λr = 0 we recover the

Hiscock solution [22], obtained in the context of GR. This
solution was also derived independently by Gott III in [23],
where the author discusses possible consequences of this
solution on the gravitational lens effect.

Let us recall that (47) is subject to the boundary condition
B(0) = 0, which imposes fixing a0 = 0. Besides, the con-
stant b0 can be determined by following the same claim by
Hiscock: avoidance of a conical singularity. This is achieved
by setting b0 = ρ∗, so that the solution becomes

B(ρ) = e−λrρ/2ρ∗ sin(ρ/ρ∗). (48)

The exterior metric is given by the vacuum solution (38) [with
b = 1]:

L(r) = L1

(
1 − e−λr r

λr

)
. (49)

We are looking for an exact solution holding in the entire
space, so we must require that the inner and the exterior solu-
tions join together along the surface of the string. This means
assuming continuity for B(ρ) (interior) and L(r) (exterior)
and their respective first derivatives at ρ = ρ0 and r = r0.
These two conditions provide us, respectively, with the equa-
tions

L1 = e−λrρ0/2λr

2(1 − e−λr r0)
ρ∗sin(ρ0/ρ∗) (50)

2 Although the results obtained in this section so far are valid for any
value of λr , from now on we shall concentrate in the specific case where

the condition λ2
r

4 < 8πGε0 is assumed, implying (47).
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and

L1e−λr r0 = e−λrρ0/2
[
−λrρ∗

2
sin(ρ0/ρ∗) + cos(ρ0/ρ∗)

]
.

(51)

In fact we are interested in determining the constant L1 which
carries the information about the deficit angle. This can be
achieved from (50) and (51), by eliminating r0 and reducing
the two equations into a single one, which gives L1 in terms
of the remaining parameters of the model,

L1 = e−λrρ0/2
[
λrρ∗

2
sin(ρ0/ρ∗) + cos(ρ0/ρ∗)

]
. (52)

Now we are able to assess the impact of the parameter λr
on the mass per unit length (or linear energy density) of the
string, which in terms of (42) can be given by

μ̃ =
∫ ρ0

0

∫ 2π

0
T 0

0

√
g(2)dρdϕ, (53)

where g(2)
i j denotes the metric of the surface (t, z) =const.,

whose determinant is B2(ρ). This quantity plays a crucial
role within the physics of cosmic strings, since it has con-
nection with the energy scale of the symmetry breaking that
produced the cosmic string. Given the energy scale at which
the symmetry was broken, η, it is shown that μ ∼ η2 [6]. This
parameter is usually expressed in terms of a dimensionless
quantityGμ̃2 which is indeed the main observable associated
with the cosmic strings. From (53) one finds

4Gμ̃ = 1 − e−λrρ0/2
[
λrρ∗

2
sin(ρ0/ρ∗) + cos(ρ0/ρ∗)

]
,

(54)

which from (52) leads to

4Gμ̃ = 1 − L1. (55)

Since λr is positive the equations above show that the effec-
tive mass per unit length within this modified theory is
smaller than its GR counterpart,

μ̃ < μGR, (56)

where 4GμGR = 1 − cos(ρ0/ρ̃) and ρ̃ ≡ (8πGε0)
−1/2.

So, the geometric dissipative effects coming from such a
deviation from GR contributes to a decreasing of the linear
energy density of the cosmic string. As the main observable
associated with cosmic string configurations, the mass per
unit length may carry some information about the underly-
ing gravitational theory. In GR, the gravitational lensing for

cosmic strings reveals that the bending angle is proportional
to μ, as shown in [27]. So, the result (56) makes the lensing
effect a possible tool to distinguish the non-conservative ver-
sion of gravity from the Einsteinian theory. Moreover, with
aid of (55) it is possible to write the exterior solution in terms
of μ̃ as follows:

ds2 = dt2 − dr2 − (1 − 4Gμ̃)2
(

1 − e−λr r

λr

)2

dϕ2 − dz2,

(57)

which generalizes the exact solution originally obtained in
the context of GR [22,23] for arbitrary values of λr .

6 Conclusions and perspectives

In this work we have investigated some immediate conse-
quences of a specific modified gravity on some cosmic string
configurations. This alternative theory is characterized by the
presence of dissipative effects emerging from first principles
through a correction on the usual Einstein–Hilbert action,
which makes the energy-momentum tensor respect a non-
standard conservation law. We have obtained the respec-
tive dynamical equations for the Abelian Higgs string and
have found that the modified conservation law of the energy-
momentum tensor gives rise to a constraint which leads auto-

matically to β ≡ M2
H

M2
W

= 1, enormously simplifying the set

of dynamical equations. This case can be seen as the corre-
sponding BPS regime achievable within this model of gravity.
Our next step was to integrate numerically this resulting sys-
tem of nonlinear equations both for the metric and the matter
fields, analyzing the choices α = 0.2 and α = 0.5. We notice
that the impact of α on f (r) and P(r) is quite small, con-
trarily to what occurs with the λr parameter, which clearly
modifies the manner these fields get distributed around the
string. In particular, we verified that both f (r) and P(r) con-
tribute to an increasing of the string’s width as the modified
gravity gets stronger and stronger. Besides, the consequences
on the deficit angle and the mass per unit length of the string
are also addressed. From this analysis we found an upper
bound for the λr parameter given by λcr

r ≈ 0.5 for which
the deficit angle reaches its maximum value, δmax = 2π ,
leading to an undesirable cosmic string setup from the phys-
ical point of view. In our analytical approach we computed
the solution close to the string, which gave expected behav-
iors when compared with the numerical results. Moreover,
we have obtained the exact solution in the absence of matter
fields, generalizing the standard Kasner type solution for the
vacuum of cylindrical geometry of Einsteinian gravity. This
solution was used in Sect. 5.3, where we studied a gravitating
cosmic string endowed with a finite radius. We computed the
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inner metric tensor and matched it at the boundary with the
vacuum solution outside. We have found a result generaliz-
ing the usual Gott–Hiscock solution for the non-conservative
gravity. In particular, we verified that the influence of the
parameter λr in such a thick string configuration becomes
manifest as a decreasing in the linear energy density of the
string, which can be interpreted as a direct consequence of the
dissipative effects emerging from this new theory of gravity,
leaving its signature on the main observable of the cosmic
string physics. This work also leaves open issues that may be
properly explored in the future, for instance making a more
careful analysis of the class of solutions given by (31), which
would also involve the use of numerical methods in a way
similar to what we have done here. Furthermore, it would
be interesting to investigate the two remaining cases of solu-

tions for (46), namely λ2
r

4 = 8πGε0 and λ2
r

4 > 8πGε0, and
analyze how the inner structure of a thick cosmic string is
affected by the modification of gravity in both cases.
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