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Abstract In this work we have presented a special class of
Kerr–Newman-NUT black hole, having its horizon located
precisely at r = 2M , for Q2 = l2 − a2, where M , l, a and
Q are respectively mass, NUT, rotation and electric charge
parameters of the black hole. Clearly this choice radically
alters the causal structure as there exists no Cauchy hori-
zon indicating spacelike nature of the singularity when it
exists. On the other hand, there is no curvature singularity for
l2 > a2, however it may have conical singularities. Further-
more there is no upper bound on specific rotation parameter
a/M , which could exceed unity without risking destruction
of the horizon. To bring out various discerning features of
this special member of the Kerr–Newman-NUT family, we
study timelike and null geodesics in the equatorial as well
as off the equatorial plane, energy extraction through super-
radiance and Penrose process, thermodynamical properties
and also the quasi-periodic oscillations. It turns out that the
black hole under study radiates less energy through the super-
radiant modes and Penrose process than the other black holes
in this family.

1 Introduction

Duality of Maxwell’s equations in the presence of magnetic
monopole has far reaching consequences. Therefore, it seems
legitimate to explore whether there can exist any such duality
for gravitational dynamics as well. Surprisingly, it turns out
that there is indeed such a duality in the realm of gravitational
field of a Kerr–Newman black hole. For asymptotically flat
spacetimes, the unique solutions of the Einstein–Maxwell
field equations are the black holes in Kerr–Newman fam-
ily [1]. However if the condition of asymptotic flatness is
dropped, then one can have an additional hair on the black
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hole, known as the NUT charge and the black holes are
referred to as the Kerr-NUT solutions [2,3]. We also refer
our readers to Refs. [4–8] for a descriptive overview on NUT
solutions and their various implications in Einstein as well
as alternative theories of gravity. Besides admitting separa-
ble Hamilton–Jacobi and Klein–Gordon equations [9], the
above family also shares a very intriguing duality property:
the spacetime structure is invariant under the transformation
mass ↔ NUT charge and radius ↔ angular coordinate [10].
Given this duality transformation one can associate a physi-
cal significance to the NUT parameter, namely a measure of
gravitational magnetic charge. Even though it is possible to
arrive at a NUT solution without having rotation, the above
duality only works if the rotation parameter is non-zero [11].
Thus in order to have a concrete theoretical understanding of
the present scenario rotation is necessary.

On the other hand, even though there is no observa-
tional evidence whatsoever for the existence of gravitomag-
netic mass [12], investigation of the geodesics in Kerr–
Newman-NUT spacetime has significance from both theo-
retical as well as conceptual points of view. The observa-
tional avenues to search for the gravitomagnetic monopole
includes, understanding the spectra of supernovae, quasars
and active galactic nuclei [12]. All of these scenarios require
presence of thin accretion disk [13] and can be modelled
if circular geodesics in the spacetime are known. Thus a
proper understanding of the geodesic motion in the pres-
ence of NUT parameter is essential. Following such impli-
cations in mind, there have been attempts to study circu-
lar timelike geodesics in presence of NUT parameter [14–
16]1 as well as motion of charged particles in this space-
time [17]. Various weak field tests, e.g., perihelion preces-
sion, Lense–Thirring effect has also been discussed [18–20]
(for a taste of these weak field tests in theories beyond gen-

1 Note that the results presented in [14,15] are based on the erroneous
assumption that circular geodesics lie on the equatorial plane, see e.g.,
[16].
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eral relativity, see [21–25]). We would like to emphasize that
most of these studies on the geodesic motion crucially hinges
on the equatorial plane, however there can also be inter-
esting phenomenon when off-the-equatorial plane motion is
considered.

Besides understanding the geodesic structure, it is of
utmost importance to explore the possibilities of energy
extraction from black holes as well. In particular, the phe-
nomenon of Penrose process [26], superradiance [27,28] and
the Bañados–Silk–West effect are well studied in the context
of Kerr spacetime [29]. Implications and modifications to
these energy extraction processes in presence of NUT charge
is another important issue to address. It will be interesting
to see how the efficiency of energy extraction in the Pen-
rose process depends on the gravitomagnetic charge inher-
ited by the spacetime. Further, being asymptotically non-flat,
whether some non-trivial corrections to the energy extraction
process appear is something to wonder about. Moreover, it
is expected that the phenomenon of superradiance and the
counter-intuitive Banados–Silk–West effect will inherit mod-
ifications over and above the Kerr spacetime due to presence
of the NUT charge. In particular, for what values of angular
momentum the center-of-mass energy of a system of particles
diverges is an interesting question in itself.

The uniqueness theorems dictates that a black hole can
have only three hairs, mass, angular momentum and electric
charge in an asymptotically flat spacetime. If the require-
ment of asymptotic flatness is relaxed, it can have a new
hair, namely the NUT parameter. Each of these black hole
hairs must be tested on the anvil of astrophysical observa-
tions. So the question is, could we work out an observa-
tionally testable effect that could put bounds on NUT para-
mater. For that we have studied quasi periodic oscillations
for the black hole in question where fundamental frequency
of oscillations depends upon it. This could be one of the
possible observational tests to unveil the existence of NUT
parameter.

Finally we should say a word about our choice of the met-
ric for this investigation. In the Kerr–Newman-NUT metric,
rotation, NUT charge and the electric charge parameters, a2,
l2 and Q2, appear linearly in � = r2 −2Mr − l2 +a2 +Q2.
Thus if we make the following unusual choice: Q2 +a2 = l2

[30],2 � becomes simply r2 − 2Mr and thereby black hole
horizon is entirely determined by mass alone and coincides
with that of the Schwarzschild’s. Despite this the black hole
is having both electric and NUT charge and also rotating.
This happens because the electric charge appears only in
� and nowhere else in the metric, while NUT and rotation
parameters also define geometrical symmetry of the space-

2 Since it is well known that presence of rotation also produces gravo-
magnetic effects, it is not out of place to consider a relation between
them.

time. This is why it could be simply added or subtracted,
i.e., in � of Kerr-NUT metric, simply add Q2 to obtain
the Kerr–Newman-NUT solution of the Einstein–Maxwell
equations. It is noteworthy that despite presence of rotation
and electric charge, the singularity is not timelike but rather
spacelike, as of the Schwarzschild black hole. That is, the
choice of Q2 + a2 = l2 indicates that repulsive effect due
to charge and rotation is fully balanced by attractive effect
due to the NUT parameter. This is why the causal struc-
ture of spacetime has been radically altered [31]. Unlike
any other black holes in this family, it would have space-
like singularity when it exists. For existence of singularity,
one must have r2 + (l + a cos θ)2 = 0, which will never be
so for l > a. Thus spacelike singularity will only exist for
l ≤ a, else for l > a it would be free of the ring singular-
ity at r = 0. Another remarkable feature is that the specific
rotation parameter a/M could have any values even exceed-
ing unity without risking the singularity turning naked. All
these are very novel and interesting features, and their expo-
sition is the main aim of this paper. With the choice l > a,
there occurs no ring singularity as reflected in the fact that
r2 + (l+a cos θ)2 �= 0 for any choices of r and θ . It is there-
fore a very interesting special case of the Kerr–Newman-
NUT family of spacetimes, whose structure we wish to under-
stand in this paper for studying its various interesting prop-
erties.

The paper is organized as follows: In Sect. 2 we have elab-
orated the spacetime structure we will be considering in this
work. Subsequently in Sect. 3 the trajectory of a particle in
both equatorial and non-equatorial plane has been presented.
Various energy extraction processes in this spacetime have
been illustrated in Sect. 4 and finally thermodynamics of
black holes in presence of NUT charge has been jotted down
in Sect. 6. We finish with a discussion on the results obtained
in Sect. 7.

Notations and conventions Throughout this paper we have
set the fundamental constants c = 1 = G. All the Greek
indices run over four dimensional spacetime coordinates,
while the roman indices run over spatial three dimensional
coordinates.

2 The spacetime structure

The Kerr–Newman-NUT solution in general involves mass
of the black hole M , rotation parameter a, electric charge Q
and NUT charge l and the spacetime metric is given by

ds2 = − �

ρ2 (dt−Pdφ)2 + sin2 θ

ρ2 {(r2 + a2 + l2)dφ−adt}2

+ ρ2

�
dr2 + ρ2dθ2. (1)
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where the quantities �, P and ρ2 have the following explicit
expressions,

� = r2 − 2Mr + a2 + Q2 − l2;
P = a sin2 θ − 2l cos θ;

ρ2 = r2 + (l + a cos θ)2. (2)

As evident for l = 0, we get back the Kerr–Newman solu-
tion, while for Q = 0 it is the Kerr-NUT solution (for a more
detailed discussion on the Kerr–Newman-NUT solution, see
[32–34]). The location of the horizons can be obtained by
solving for � = 0, which in general will have two dis-
tinct roots and this is in contrast to the one horizon of
Schwarzschild black hole. Furthermore, the curvature sin-
gularity in this context is timelike and located at ρ2 = 0.
This corresponds to a ring having r = 0 and cos θ = −�/a.
That means curvature singularity will only occur for l ≤ a
else for l > a, spacetime will be free of curvature singular-
ity. However, this does not warrant that the spacetime will
be regular everywhere. In particular, presence of the NUT
charge generates a conical singularity on its axis of symme-
try having poles at θ = 0 and θ = π . It is possible to get
rid off conical singularities by imposing a periodicity con-
dition over the time coordinate. Unfortunately, this leads to
the emergence of closed timelike curves in the spacetime.
Thus we will interpret the singularity following [35] and
shall ascribe the conical singularity to a spinning rod. This
explicitly demonstrates that for � > a one removes the cur-
vature singularity, but the conical singularity remains. Thus
the solution though devoid of curvature singularity cannot
be interpreted as a regular rotating black hole solution. Note
that it is the NUT parameter that abhors curvature singular-
ity in general, it gets tamed when rotation dominates over
it, i.e, when a ≥ l. For � = 0, we get back the ring sin-
gularity of Kerr (or, Kerr–Newman) located at r = 0 and
θ = π/2.

Curiously, there exists one subclass of the solution for
which the location of the event horizon coincides with that
of the Schwarzschild, located at r = 2M . As evident from
the expression for � it is clear that this will happen when
Q2 = l2 − a2, which in turn demands l ≥ a. Thus whenever
the NUT charge is larger than (or, equal to) the black hole
rotation parameter, a suitable choice for the electric charge
will lead to such a configuration for which either there is no
curvature singularity for l > a or if it exists (for l = a),
it would be spacelike. This is a very novel and interesting
aspect that merits consideration of its own accord. Out of
the four parameters (M, l, a, Q), the former two are gravita-
tional charge and are gravitationally attractive while the latter
two are non-gravitational and repulsive. For the prescription
Q2 + a2 = l2, they perfectly and effectively balance each
other leading to either a black hole with spacelike singularity

and horizon located at r = 2M or to a black hole solution
free of curvature singularity. Both of these are special cases
in the Kerr–Newman-NUT family. Note that out of the four
hairs, M and Q only enter in �, which characterizes the
coloumbic aspect, while in contrast, l and a in addition to
� also participate in defining the spacetime symmetry and
henceforth construct the magnetic aspect. Given its structural
simplicity and special location of the event horizon, it will
be very interesting to understand various intriguing features
this spacetime has to offer. Let us now specialize the met-
ric presented in Eq. (1) with Q2 = l2 − a2, which leads
to,

ds2 = − �

ρ2 (dt−Pdφ)2 + sin2 θ

ρ2 {(r2 + a2 + l2)dφ−adt}2

+ ρ2

�
dr2 + ρ2dθ2 (3)

with � = r2 − 2Mr . Though the horizon is only deter-
mined by the mass M , and coincides with that of the
Schwarzschild’s, yet the black hole has non-zero rotation
parameter as well as inherits both electric and NUT charges.
As Eq. (3) suggests, the above black hole geometry can be
described by essentially three hairs, namely, the black hole
mass M , rotation parametera and the NUT parameter l. How-
ever there is indeed an electric charge Q2 = l2 − a2, but is
not manifest in the metric structure. The duality between the
gravitational mass M and the gravitomagnetic mass l will
exist in this spacetime as well. The line element is still given
by Eq. (3), with only � being modified to � = r(r − 2M).
As emphasized earlier, this is in stark contrast to a generic
Kerr–Newman-NUT spacetime, since in this case there is a
single black hole horizon located at r = 2M , without any
possibility of having naked singularity for any values of a
or l whatsoever. Furthermore, the singularity associated with
the spacetime only exists for l = a at r = 0, θ = π and
is spacelike unlike the situation with general Kerr–Newman-
NUT spacetimes. Surprisingly, the curvature singularity does
not exist for l > a, as the equation cos θ = −l/a does not
have any solution for l > a. Hence the above spacetime with
Q2 = l2 − a2 with l > a represents a black hole solution,
with an event horizon, but without any curvature singularity.
As expected, the above spacetime turns out to be an exact
solution of the Einstein–Maxwell field equations, with the
Maxwell field tensor having the following form,

F =
√
l2 − a2

{
1

ρ4 {r2 + l2 − a2 cos2 θ}
(

1 + 4al cos θρ2

(r2 + l2 − a2 cos2 θ)2

)1/2
dr ∧ [dt − a sin2 θdφ]

+ 2ar sin θ cos θ

ρ4 dθ ∧ [(r2 + a2 + l2)dφ − adt]
}
.

(4)
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where, ‘∧’ is defined as the outer product. This suggests sev-
eral interesting points regarding this spacetime. First of all,
the NUT parameter cannot be set to zero, because l2 ≥ a2,
without setting a = 0, resulting into Schwarzschild space-
time. On the other hand when a = 0, we end up with the
Reisnner–Nordström-NUT black hole.

Due to presence of the rotation parameter it follows that,
the spacetime consists of an ergoregion alongside the usual
event horizon at r = 2M . The boundary surface of the ergore-
gion can be obtained by solving the equation gtt = 0, which
in this case translates into � − a2 sin2 θ = 0. This being a
quadratic equation in the radial coordinate r , yields two solu-
tions related to the outer and the inner ergoregion boundaries
respectively,

rergo−outer = M +
√
M2 + a2 sin2 θ, and

rergo−inner = M −
√
M2 + a2 sin2 θ. (5)

It is easy to see that the inner boundary is unphysical as

it is situated at r < 0 and hence we will only refer to
the outer boundary henceforth. The location of the ergore-
gion and the horizon are presented in Fig. 1. As evident,
for a = 0, the ergoregion ceases to exist and the hori-
zon is located at r = 2M . With the increase in the angu-
lar momentum of the black hole, the ergoregion starts to
surround the event horizon. The width of the ergoregion
increases with the increase of angular momentum. Note that
neither the event horizon nor the ergoregion depends on the

value of the NUT charge l because of the following relation:
Q2 + a2 = l2. In this case, the ergoregion is bounded as
2M ≤ r ≤ M(1 + √

1 + a2/M2) while for the Kerr, it is
M(1 + √

1 − a2/M2) ≤ r ≤ 2M . That is, the lower limit
for the ergoregion of a Kerr–Newman-NUT black hole with
l = a is the upper limit for the ergoregion of a Kerr black
hole.

3 Trajectory of massive and massless particles

Understanding the geometry of any spacetime requires a
thorough analysis of the trajectory of a massive as well as
massless particles. Keeping this in mind, in this section we
shall derive the basic equations describing the trajectory of a
test particle in the Kerr–Newman-NUT spacetime presented
above. In the spirit of Kerr geometry, the geodesic motion is
completely integrable in a Kerr–Newman-NUT spacetime as
well due to the presence of the Carter constant [36]. This can
be easily shown by investigating the Hamilton–Jacobi equa-
tion and hence establishing the separability of the radial and
the angular part. Due to invariance of the metric elements
under time translation and rotation with φ as the rotation
angle, we can treat the energy E and the angular momen-
tum L as conserved quantities. This demands to write down
the action associated with the motion of the particle in the
following manner,

Fig. 1 The event horizon
(black curve) and the ergoregion
is shown (red outer curve) in a
Kerr–Newman-NUT spacetime.
Event horizon is always located
at reh = 2M and it is
independent of the angular
momentum as well as
NUT parameter. The
ergoregion is a function of ‘a’
and independent of the
NUT parameter ‘l’

123



Eur. Phys. J. C (2019) 79 :161 Page 5 of 24 161

A = −Et + Lφ + Ar (r) + Aθ (θ) (6)

Here Ar (r) and Aθ (θ) correspond to the parts of the action
dependent on radial coordinate r and angular coordinate θ

respectively. Given the above structure of the action asso-
ciated with a particle moving in the Kerr–Newman-NUT
spacetime, the Hamilton–Jacobi equation becomes separa-
ble. Thus one can obtain separate equations for Ar (r) and
Aθ (θ) respectively, having the following structures,

(
dAθ

dθ

)2

+ (EP − L)2

sin2 θ
+ m2(l + a cos θ)2 = K (7)

�

(
dAr

dr

)2

+ m2r2

− 1

�
{E(r2 + a2 + l2) − aL}2 = −K (8)

In the above expressions the quantity K acts as the sepa-
ration constant and m is the mass of the orbiting particle.
Among others l is the NUT charge, a is the rotation parame-
ter and P = a sin2 θ − 2l cos θ . Since the components of the
momentum four vector of the orbiting particle correspond
to, ∂A/∂xμ, it is possible to rewrite Eqs. (7) and (8) in
a more explicit form. This involves writing the separation
constant K appearing in both Eqs. (7) and (8), such that
K = λ + (L − aE)2, with λ as the Carter constant. Thus we
obtain the following geodesic equations,

m2ρ4
(
dr

dτ

)2

= {E(r2 + a2 + l2) − aL}2

− (λ+m2r2)� − �(L − aE)2 (9)

m2ρ4 sin2 θ

(
dθ

dτ

)2

= λ sin2 θ + (L − aE)2 sin2 θ

− [EP−L]2 −m2 sin2 θ(l+a cos θ)2

(10)

where τ represents the affine parameter for a timelike
geodesic. Similar to the above case with massive particles, for
photons with zero rest mass, the geodesic equations become,

ρ4
(
dr

dν

)2

= {E(r2 + a2 + l2) − aL}2

− λ� − �(L − aE)2 (11)

ρ4 sin2 θ

(
dθ

dν

)2

=λ sin2 θ+(L − aE)2 sin2 θ−[EP − L]2

(12)

where ν stands for affine parameter along the null geodesic.
Given the above two geodesic equations one can proceed

towards solving these equations, which will ultimately lead to
the trajectory of a particle moving in the Kerr–Newman-NUT
spacetime. With the complicated structure of the geodesic
equations as presented above, it is very difficult to solve
them in general circumstances. However in some specific
situations, e.g., in the equatorial plane (located at θ = π/2)
it is indeed possible to solve the above equations analyti-
cally, which we will discuss next. Having grasped the analyt-
ical structure of the trajectory associated with the equatorial
plane, we will consider the general scenario later on.

3.1 Orbits confined on a given plane

The addition of the NUT charge will introduce nontrivial
difficulties while obtaining the orbital dynamics for a mas-
sive or even a massless particle. This can be understood by
employing the angular equations given in Eqs. (10) and (12)
respectively. For any trajectory to be confined on a particu-
lar plane θ = θ0, we bound to have θ̇ = θ̈ = 0. While the
condition θ̇ = 0 indicates a trajectory moving on a constant
plane, the additional second derivative ensures that the first
derivative remains null throughout its motion. Therefore both
of these conditions are essentials to determine any planner
orbit in the presence of a NUT charge and unlike the Kerr
black hole, this constraint would introduce stringent bound
on the particle trajectories in Kerr–Newman-NUT spacetime.
In the upcoming discussions, we shall explore any possible
scenarios in which the conditions for a planner orbit can be
satisfied in a certain ranges of parameters. Regarding that, we
first introduce the massless particles and following that, the
phenomenon involving massive particles will be addressed.

3.1.1 The massless particles

For a massless particle, the effective radial potential can be
written as

Veff(r) = {E(r2 + a2 + l2) − aL}2 − �{λ + (L − aE)2}.
(13)

Remember, the value of the Carter constant λ would only be
fixed from the angular equations, i.e, θ̇ = θ̈ = 0. Even though
for a general E and L , the angular equations are compli-
cated to solve and often subjected to numerical calculations,
we start with a simple exercise which corresponds to the
following relation between angular momentum and energy:
L = aE . In this case the impact parameter, defined as the
ratio of angular momentum and energy, turns out to be Dsp ≡
L/E = a. On other hand, the angular equations become

Veff(θ) = λ sin2 θ − {aE sin2 θ − 2El cos θ − aE}2 = 0,

Veff(θ)

dθ
= 2 sin θ cos θλ − 2{aE sin2 θ − 2El cos θ − aE}

123
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× {2aE sin θ cos θ + 2El sin θ} = 0. (14)

It can be easily noticed that the above equations has an obvi-
ous solution with λ = 0 and θ = π/2 and therefore, the parti-
cle with an impact parameter equal to the rotation parameter
of the black hole may exist on the equatorial plane. By setting
λ = 0, one can establish the following results regarding the
trajectory of the photon,

ṙ = ± E, ṫ = E(r2 + a2 + l2)

�
, φ̇ = aE

�
, (15)

where ‘dot’ defines derivative with respect to some affine
parameter ν associated with null geodesics. Note that as the
rotation parameter a vanishes, the angular momentum also
goes to zero. Thus in the case of vanishing rotation parame-
ter, the photon with the above impact parameter moves along
radial geodesics. Hence by analogy, the null geodesics in the
present context as well are dubbed as radial-like geodesics.
Further, the± sign in the expression for ṙ denotes both inward
as well as outward motion. Having dealt with this special
case, we now concentrate on a more important aspect of these
null geodesics, namely the location of circular photon orbits.

Circular photon orbits Let us now describe the structure of
photon circular orbits in the Kerr–Newman-NUT spacetime
with � = r2 −2Mr . The necessary and sufficient conditions
for the existence of a circular orbit are given by,

ṙ = Veff(r) = 0, and r̈ = 1

2

dVeff(r)

dr
= 0. (16)

Here Veff(r) corresponds to the effective potential presented
in Eq. (13). In passing, it should be carefully noted that any
solution to the above equation has to be compatible with the
angular constraint given in Eq. (14).

The presence of a nonzero Carter constant will forbid to
write the above equations as a function of the impact parame-
ter Dph = L/E and therefore we seek for general expressions
for both energy and angular momentum. We start by writing
L = aE + x and employ the circular orbit conditions as

Veff(r) = {E(r2 + l2) − ax}2 − �(x2 + λ) = 0, and

V ′
eff(r) = dVeff(r)

dr
= 4Er

{
E(r2 + l2) − ax

}

−2(r − M)(x2 + λ) = 0. (17)

From the above set of equations, the expression for energy
can be calculated by computing the expression 2rVeff(r) −

(r2 + l2)V ′
eff(r) = 0

E2 = 1

(r2 + l2)2 {a2x2 + Mr(x2 + λ)

+l2(1 − M/r)(x2 + λ)}, (18)

and further substituting the above into the equation
4rVeff(r) − (r2 + l2)V ′

eff(r) = 0, we arrive at

(x2 + λ){l4(r − M)2(x2 + λ) − 2l2r2(x2 + λ)

(3M2 − 4Mr + r2) + r4(r − 3M)2(x2 + λ)

+ 4a2x2r3(2M − r)} = 0. (19)

This is the final equation dictating the location of the circular
orbits in the presence of a NUT charge. From above, we can
have either of the possibilities

x2 + λ = 0, and (λ + x2){l4(r − M)2 − 2l2r2(r2

− 4Mr + 3M2) + r4(r − 3M)2}
+ 4a2x2r3(2M − r) = 0. (20)

In the first case with x2 + λ = 0, the expression for energy
and angular momentum become

E = ± ax

r2 + l2
, and L = x(r2 + a2 + l2)

r2 + l2
, (21)

with x = ±√|λ|. On the other hand, both the angular equa-
tions, i.e, θ̇ = θ̈ = 0 will be satisfied for the following
equality

aE sin2 θ − 2l E cos θ − L = 0, (22)

and as it can be easily supplemented with the expressions
given in Eq. (21), we arrive at either of these possibilities

aE sin2 θ − 2l E cos θ − L = − xρ2

r2 + l2
= 0,

for E = ax

r2 + l2
,

2(r2 + a2 + l2) − ρ2 = r2 + a2 sin2 θ + (l − a)2 = 0,

for E = −ax

r2 + l2
, (23)

From the above, it is easy to notice that neither of these cases
would lead to a consistent outcome. Therefore, it is unex-
pected to encounter any circular photon orbit which obeys
the condition x2 + λ = 0.

In the second case given in Eq. (20), we have the following
expressions for x ,

x2 = λ
{
r2(r − 3M) + l2(M − r)

}2

2l2r2(r2 + 3M2 − 4Mr) − r3[a2(8M − 4r) + r(r − 3M)2] − l4(r − M)2 , (24)

and as it can be easily noticed that both ‘+’ and ‘−’ values of
λ are possible with appropriate signature of the denominator.
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With the above expression, we shall now be able to express
the energy (using Eq. (18)) and momentum in terms of radial
distance and black hole’s parameters.

E2 =
(

a2(r − M)2λ

2l2r2(r2 + 3M2 − 4Mr) − r3[a2(8M − 4r) + r(r − 3M)2] − l4(r − M)2

)
,

L = ± λ1/2
{
(a2 ∓ l2)(M − r) + r2(r − 3M)

}

{2l2r2(r2 − 4Mr + 3M2) − l4(r − M)2 − r3[4a2(2M − r) + r(r − 3M)2]}1/2 . (25)

The key point to consider is that both the expressions are
proportional to the Carter constant λ and while obtaining the
angular equations, it is expected that λ would not have any
active effect. In addition, for the expression of energy, we
only consider the ‘+’ sign as that would contribute a positive
energy for circular orbits located at r > reh = 2M .

The constraint from the angular potential will lead to the
following expression,

Veff(θ) = λQ−1[Q sin2 θ + {l2(M − r) + r2(r − 3M)

+a2(r − M) + a(M − r)(a sin2 θ − 2l cos θ)}2

−{l2(M − r) + r2(r − 3M)}2 sin2 θ ] = 0, (26)

and
dVeff

d(θ)
= 0 in which,Q = l4(r−M)2−2l2r2(r2−4Mr+

3M2)+r4(r−3M)2+a2r3(8M−4r). It should be mentioned
again that the angular part is completely independent of the
Carter constant and therefore, both ‘+’ and ‘−’ values λ can
be relevant depending on the appropriate sign of the denom-
inator in Eq. (25). For example with l = a = M , the approx-
imate radius and inclination of one of the circular orbits
become rc = 4.7147M , θc = 100◦ respectively. Substituting
these values of rc and θc, we obtain the conserved quantities
as {E, L} = {0.55(−λM−2)1/2, 5.66M(−λM−2)1/2} and
needless to say λ has to be negative.

3.1.2 The timelike geodesics

Having demonstrated the photon circular orbit in the con-
text of massless particles, let us take up the case for massive
particles. Similar to the previous occasion with massless par-
ticles, we follow the identical technique to describe the cir-
cular orbits in the Kerr–Newman-NUT black hole. We start
with the effective radial potential given as,

Veff(r) = [Ẽ(r2 + a2 + l2) − aL̃]2 − �(L̃ − aẼ)2

− �(r2 + λ). (27)

and the λ as usual will be fixed by the angular equations
θ̇ = θ̈ = 0, here the ‘dot’ defines the derivative with respect
to the proper time τ . However, before obtaining the circular

orbits for a general energy and momentum, we consider a
special case such that, L̃ = aẼ and we arrive at

ṙ = ±
√

Ẽ2 − �(r2 + λ)

(r2 + l2)2 ; ṫ = Ẽ(r2 + a2 + l2)

�
;

φ̇ = aẼ

�
. (28)

As the rotation parameter vanishes, the angular velocity will
vanish as well, which in turn depicts the motion along radial
geodesics. Following this analogy, the above trajectory of
massive particles depict radial-like geodesics. Further note
that the expression for ṙ associated with the geodesic of a
massive particle differs from the one for massless particles,
by the factor proportional to �. Thus on the black hole hori-
zon, � vanishes and hence the geodesic becomes null as
expected.

On the other hand, the angular potential would take the
form

Veff(θ) = λ̃ sin2 θ − Ẽ2{a sin2 θ − 2l cos θ − a}2

− sin2 θ(l + a cos θ)2, (29)

and for a motion confined on a given plane, we require to
have

Veff(θ) = dVeff (θ)

dθ
= 0. (30)

For a given value ofa = l = M , we obtain that the marginally
bound massive geodesics with Ẽ = 1 can be confined on a
plane given as (θc, λc) ≈ (104◦, 0.77M2).

Having described this particular case in which the impact
parameter is directly related to black hole spin, let us now
concentrate on the motion of massive particles moving in
circular orbits.

Circular orbits for timelike particles In this section, we
shall discuss the possible existence of timelike circular orbits
and hence compute the exact expressions for conserved quan-
tities associated with it. In this case as well, the conditions
for circular orbit are given by Veff = 0 and V ′

eff = 0, see Eq.
(16). To see the existence of circular orbits in this spacetime
in a direct manner, we have plotted the effective potential
Veff , rescaled by (r2 + l2)−2, for specific choices of various
constants of motion and parameters appearing in the problem
in Fig. 2. In particular, we have considered only marginally
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(a) (b)

Fig. 2 The effective potential (Veff ), rescaled using (r2 +l2)−2, is pre-
sented in the above figure for marginally bound orbits (i.e., Ẽ = 1) and
various choices of angular momentum of the black hole. We discuss two
particular cases of interest, one is L̃ = 3.6M and another corresponds

to L̃ = 3.7M . In both these plots, the NUT charge, Carter constant and
black hole rotation parameters are taken to be identical. The plots explic-
itly depict presence of circular orbits, given the existence of minima of
the potential

bound orbits, i.e., orbits with Ẽ = 1 and the situation when
the rotation parameter and NUT charge of the black hole coin-
cides, implying l = a and λ̃ = M2. As evident from Fig. 2
the effective potential indeed exhibits a minima for various
choices of the (a/M) as well as (L̃/M) ratio and hence allows
existence of stable circular orbits in the spacetime. Thus we
have explicitly demonstrated the existence of stable circular
orbits in this spacetime, which we will now explore analyti-
cally.

In order to determine the location of the circular orbits,
we need to solve for the conditions Veff = 0 and V ′

eff = 0
analytically. This can be achieved by substituting L̃ = aẼ+x
and hence computing x from the circular orbit conditions as
given above, resulting into [37],

Veff(r) = Ẽ2(r2 + l2)2 + 2Mr3 − r4 − 2aẼ(r2 + l2)x

+ a2x2 + 2Mrx2 − r2x2 − λ̃� = 0

V ′
eff(r) = 4Ẽ2r(l2 + r2) + 6Mr2 − 4r3 − 4aẼr x

+ 2Mx2 − 2r x2 − λ̃ (2M − 2r) = 0. (31)

Here, the ‘prime’ denotes a derivative with respect to the
radial coordinate and � = r2 −2Mr . Given the above equa-
tions one can easily solve for the energy Ẽ by recombining
both the above equations such that the quadratic terms can-
cel away. This can be achieved by considering the following
combination: 4rVeff(r) − (r2 + l2)V ′

eff(r) = 0. This will
yield,

Ẽ = {l2[r(2r2 + x2 + λ) − M(3r2 + x2 + λ)]
+r [2a2x2 − r2(x2 + λ) + Mr(r2 + 3x2 + 3λ)]}
{2ar(l2 + r2)x}−1 (32)

However the above expression for energy involves the
unknown quantity x , determination of which is essential for
an estimation of angular momentum as well. This can be
achieved by substituting the expression for energy as in Eq.
(32) into the equation, 2rVeff(r) − (

r2 + l2
)
V ′

eff(r) = 0.
This results into the following quartic equation for x , which
reads,

Ax4 + Bx2 + C = 0. (33)

The coefficients appearing in the above expression are func-
tions of the radial distance as well as mass angular momentum
and NUT charge of the black hole. Introducing u = 1/r , we
finally obtain,

A

u2 = M2u2(l2u2 − 3)2 + {u2l2 − 1}2 − 4la2u2

− 2Mu[3 + u2{−4a2 + l2(−4 + u2l2)}] = Z+Z−
B

2u
= u[−2a2(1 + u2λ) + (1 − l2u2)(λ − 2l2 − λu2l2)]

+ M2u(3 − l2u2)[1 − u2(3l2 − 3λ + λu2l2)]
+ M[−1 + u2(4a2 + 4a2u2λ − 6λ) + 10l2

+ u2l2(8λ − 5l2 − 2λu2l2)],
C = [u{λ − 2l2 − u2l2λ}

+ M{−1 − 3u2λ + 3u2l2 + l2u4λ}]2. (34)

In the above expression the quantity A can be written as a
product of two quantities denoted as Z± with the following
expressions for each of them,

Z± = (1 + l2u2)−1[{1 − l4u4 + Mu(l4u4 − 2l2u2 − 3)

−2a2u2(1 + λu2)} ± 2au3/2K1/2], (35)
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where,

K = M(1 + l2u2){1 + 3λu2 − 3l2u2 − λl2u4}
+u{2l2 − λ + l4u2(2 + u2λ) + a2(1 + λu2)2}, (36)

Using the above expressions for the three quantities, namely
A, B and C it is certainly possible to determine a solution for
x given Eq. (33). The solution turns out to be much simpler
by defining Gu = 1 − 2Mu, resulting into,

x2u2 = 1

Z+Z−
{(1 + l2u2)Gu Z± − Z+Z−(1 + λu2)}. (37)

It turns out that the term within square bracket can be writ-
ten in a nice form, such that the solution for x itself can be
presented in a simplified manner as,

x± = ∓ 1√
uZ±

1 + λu2

(1 + l2u2)1/2 {a√
u ∓ (1 + λu2)−1K1/2}.

(38)

Therefore we have succeeded in determining the quantity x
and hence the energy and angular momentum associated with
the circular motion can be easily obtained. In particular the
expression for energy of a particle moving in a circular orbit
of radius r = rc takes the following form,

Ẽ±
c = (1 + l2u2

c)
−1[1 + l2u2

c − 2Muc(1 + l2u2
c)

−a2u2
c(1 + λu2

c) ± au3/2
c K1/2]{Zc±(1 + l2u2

c)}−1/2.

(39)

Here all the quantities have been evaluated at the circular orbit
radius r = rc. The two signs present in the above expression
denotes energy for direct and retrograde orbits respectively.
With the given values for conserved energy and momentum,
we can now address the angular constraints appear from θ̇ =
θ̈ = 0. These two equations can be written further as

Veff (θ) = {λ + (L̃ z − aẼ)2} sin2 θ − (aẼ sin2 θ

−2Ẽl cos θ − L̃ z)
2 − sin2 θ(l + a cos θ)2,

Veff (θ) = 2 sin θ cos θ{λ̃ + (L̃ z − aẼ)2} − 4(aẼ sin2 θ

−2Ẽl cos θ − Lz)(aẼ sin θ cos θ + Ẽl sin θ),

−2 sin θ cos θ(l + a cos θ)2 + 2a sin3 θ(l + a cos θ).

(40)

By substituting the respective values for energy and momen-
tum, we can write the above equations in the following
form

Veff(θ) = I1(a, l, rc, θc, λc), and
dVeff(θ)

dθ
= I2(a, l, rc, θc, λc), (41)

with I1 and I2 are two independent functions and there
explicit forms can be both tedious and less illuminating,
therefore excluded in the text. For a black hole given with
specific NUT charge and rotation parameter, we can now
numerically solve the above equations and locate the circu-
lar orbits confined in a particular plane. In Fig. 3, we have
shown the co-rotating circular orbits for various momen-
tum parameters of the black hole while the NUT charge is
either l = a (Fig. 3a) or l = 2a (Fig. 3b). Even the nature
of figures remain identical, the deviation from the equato-
rial plane increases with the increase of the NUT charge.
In case of the counter-rotating circular orbits as depicted
in Fig. 4, the deviation from the equatorial plane is in exactly
opposite direction from the co-rotating case and the incli-
nation increases with an increase of the NUT charge. The
role played by the rotational parameter of the black hole
is also identical in both co-rotating and counter-rotating
orbits.

This finishes our discussion on trajectory of a massive as
well as massless particle confined on a given plane. We will
next take up the computation on the motion of a particle on
an arbitrary plane.

(a) (b)

Fig. 3 The angular dependence of the circular orbits are depicted in a Kerr–Newman-NUT black hole satisfying Q2 = l2 − a2
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(a) (b)

Fig. 4 The counter-rotating circular orbits are shown for Kerr–Newman-NUT blak hole with the horizon located at r = 2M

3.2 Non-equatorial plane

In the previous section we have described the motion of both
massive and massless particles in the equatorial plane of
a Kerr–Newman-NUT black hole. However to understand
some other subtle features associated with this spacetime it
is important that we consider motion in non-equatorial plane
as well. In this case, both for massive and massless particles
the Carter constant will be non-zero and will play a signifi-
cant role in determining various properties of the trajectory.

Due to the complicated nature of the geodesic equations
it will be worthwhile if we briefly recapitulate the non-
equatorial trajectories of a massless particle for the Kerr–
Newman black hole, which would be identical to Kerr geom-
etry. In this case, the angular equation is given by:

ρ4(Pθ )2 + cos2 θ

(
L2

sin2 θ
− a2E2

)
= λ. (42)

where λ has the usual meaning of Carter constant and Pθ =
dθ/dν is the momentum in the θ direction with ν being the
affine parameter along the null geodesic. From the above
equation, one can easily read off the potential Vang(θ) asso-
ciated with the angular motion as the second term on the left
hand side of Eq. (42). Substituting a new variable μ = cos θ ,
the angular potential can be written as [38],

Vang(μ) = μ2

1 − μ2 {L2 − a2E2(1 − μ2)}

= μ2a2E2

1 − μ2

{
μ2 −

(
1 − L2

a2E2

)}
. (43)

Note that for μ = 0, or equivalently for θ0 = π/2 the
potential Vang identically vanishes and the motion remains
on the equatorial plane. The potential can be further sub-
categorized by investigating the behaviour of the term, L/aE .

For L < aE , the above equation vanishes at

θ1 = arccos

(
−

√

1 − L2

a2E2

)
;

θ2 = arccos

(√

1 − L2

a2E2

)
(44)

along with on the equatorial plane. It turns out that the values
of θ for which the angular potential vanishes follow the order,
θ2 < θ0 < θ1. On the other hand, for L > aE , it only
vanishes on the equatorial plane. In what follows we will
consider the case for which L/aE < 1. In this case the above
result suggests to rewrite the angular equation by introducing
the two angles θ = θ1 and θ = θ2, such that,

(ρ2Pθ )2 = λ − a2E2(cos θ − cos θ0)
2

1 − cos2 θ

{(cos θ − cos θ1)(cos θ − cos θ2)} (45)

It is obvious that for the momentum to have any real solution
we must have the right hand side to be positive. With the
following redefinitions: ξ = (L/E), η = (λ/E2) and � =
ρ4{Pθ }2, we arrive at the following expression for angular
motion,
(

�

E2

)
= η − a2 cos2 θ

1 − cos2 θ
{(cos θ − cos θ1)(cos θ − cos θ2)}.

(46)

Let us now discuss three situations depending on the value
of η, i.e., redefined Carter constant. We list below these three
choices and associated physical implications.

(A) For η = 0:
The first case corresponds to a vanishing Carter constant.

Since the Carter constant identically vanishes the momentum
along the angular direction is negative of the angular poten-
tial. Thus for physical motion the angular potential should
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(a) (b)

Fig. 5 Angular potential and momentum for vanishing Carter constant (i.e., λ = 0) has been presented for the following choice of the black hole
rotation parameter: a = M

either be zero or negative. In this case the following orbits
are possible:

• Pθ vanishes for θ = θ0, θ1 and θ2 which are referred to
as the turning points in the θ direction. In addition, the
potential attains its local maximum value on the equato-
rial plane. Hence, a particle would remain on the equato-
rial plane unless acted upon by an external perturbation
(see Fig. 5a), even though it is not a stable equilibrium
point.

• Along with the confined motion on the equatorial plane,
a massless particle can have off equatorial trajectories
whenever V (θ) is negative. This is only possible if it
follows, θ2 < θ < θ0 and θ0 < θ < θ1. The particle
never reach the equator as it asymptotically approaching
the equatorial plane. This is shown in Fig. 5a.

• For ξ = (L/E) = M , one has L/aE > 1 and hence
in this case the potential has a minima and it vanishes
only on the equatorial plane. Since it never becomes neg-
ative, motion is only allowed on the equatorial plane
with vanishing momentum along the angular direction
(see Fig. 5b), i.e, Pθ = 0.

(B) For η > 0:
In this case, the Carter constant is positive and hence there
can be two possibilities as far as the angular potential is con-
cerned. These include:

• For (L/aE) < 1, the potential Vang is negative within
the region θ2 < θ < θ1. Since η > 0 it follows that
the momentum Pθ has two turning points located at θ±,
satisfying: θ− < θ2 and θ+ > θ1 respectively. As evident
from Fig. 6a the particle oscillates about the equatorial
plane.

• For (L/aE) > 1, unlike the previous case, here the parti-
cle can travel beyond the equatorial plane upto the point
where {Pθ }2 vanishes. Thus in this case the particle can
travel away from the equatorial plane. This is depicted
in Fig. 6b.

(C) For η < 0:
If the Carter constant becomes negative, then in order to
ensure that {Pθ }2 is positive one must have negative Vang.
In this case the following results are obtained:

• In this case with (L/aE) < 1, not only Vang has to be
negative, one has to ensure that |Vang| > |λ|. Thus on
the equatorial plane Vang vanishes and hence there can
be no physical motion on the equatorial plane. Thus in
this case the particle has to travel off the equatorial plane.
In particular, the particle has to obey either of these two
conditions – (a) θ2 < θ− < θ < θ−

π/2 < (π/2) or, (b)

(π/2) < θ+
π/2 < θ < θ+ < θ1, where θ±

π/2 and θ± are

the turning points of the momentum Pθ . A qualitative
description can be found in Fig. 7a.

• On the other hand, for (L/aE) > 1 it follows that Vang is
always positive. Thus in this case there is absolutely no
phase space available for the particle. Hence this corre-
sponds to a unphysical situation, as presented in Fig. 7b.

3.2.1 Massless particles in Kerr–Newman-NUT black holes

Having described the trajectories of a massless particle in
the context of Kerr–Newmann black hole as a warm up exer-
cise, let us now present the orbits of a massless particle in
the Kerr–Newman-NUT spacetime. Through this exercise we
can easily read off the differences appearing due to the pres-
ence of NUT charge in the present context. In this case, by
defining R = ρ4{Pr }2 and � = ρ4{Pθ }2, with Pr = dr/dν

123



161 Page 12 of 24 Eur. Phys. J. C (2019) 79 :161

(a) (b)

Fig. 6 The angular potential and momentum associated with the angular motion of a massless particle in Kerr–Newman spacetime has been
presented with non-zero Carter constant: λ = M2 and rotation parameter: a = M

and Pθ = dθ/dν, the following expressions for the radial
and angular equations are obtained,

(
R

E2

)
= {(r2 + a2 + l2) − aξ}2 − �(ξ − a)2 − �η,

(47)
(

�

E2

)
= η − {(a sin θ − ξ csc θ − 2l cot θ)2 − (ξ − a)2}.

(48)

Here we have introduced the following notations, namely
ξ = L/E and η = λ/E2. We will now consider the angular
part of the geodesic equation before considering the radial
part of the same.

(A) Angular motion:
Similar to the previous case with Kerr–Newman black hole,
given the angular equation one can write down the associated

potential by substituting μ = cos θ , resulting into

Vang,gen(μ) = μ

1 − μ2 {4lξ + 4l2μ + ξ2μ + 4al(μ2 − 1)

+a2μ(μ2 − 1)}. (49)

Thus the angular potential depends on quartic powers of μ.
Hence the angular coordinates where the potential vanishes
correspond to a quartic equation for μ. As evident from Eq.
(49) the solution μ = 0 (or, θ = π/2) is a trivial solution
and hence even in this context the potential in the angular
direction vanishes on the equatorial plane. Hence, one can
rewrite the angular potential as,

V (μ) = a2μ

1 − μ2 (μ − μ1)(μ − μ2)(μ − μ3). (50)

Whether all the three solutions will be real or not depends
on the choices of the parameter space spanned by a, l and ξ

(b)(a)

Fig. 7 The momentum and potential associated with the angular motion of a massless particle in the Kerr–Newman spacetime is depicted with
negative Carter constant, i.e., with λ = −0.1M2 and rotation parameter: a = M
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respectively. It turns out that one can have the two following
possibilities.

• If the rotation parameter a, NUT charge l and the spe-
cific angular momentum ξ are such that the following
condition is satisfied

G ≡ {a4 − 44a2l2 + 2a3ξ − (4l2 + ξ2)2

+a2(56l2ξ − 2ξ3)} > 0 (51)

the solutions to Eq. (49) can be written as,

μ1 = − 4l

3a
+ (3a2 + 4l2 − 3ξ2)1/2

3a
{2 cos α} (52)

μ2,3 = − 4l

3a
− (3a2 + 4l2 − 3ξ2)1/2

3a

(
cos α ∓ √

3 sin α
)

.

(53)

Here α is an angle within the range (0, 2π) and can be
explicitly written as

α = 1

3
arctan

(
3
√

3B

A

)

, (54)

with A and B defined as, A = 36a5l − 54a4lξ +
2a3(4l3 + 9lξ2) and B = a3(a − ξ)

√G. For l > 0,
the order of the solutions for the angular variables are,
θ3 > π > θ2 > θ0(= π/2) > θ1. Here, θi = cos−1(μi )

with i running from 0 to 3. Thus depending on the value
of the Carter constant, one can have different motion in
the angular direction following Eq. (48). Note that for
l = 0, one arrives at α = π/6 and hence one gets three
solutions such as, μ = 0,±√

1 − (ξ/a)2. This is con-
sistent with the corresponding result for Kerr black hole.
(Note that the angular motion is independent of the choice

Q2 = l2 −a2 and hence the results derived above will be
applicable even in the general situation. This is why we
have discussed the l = 0 limit in the context of angular
motion.)

• On the other hand if we have, G < 0 there will be two
solutions. One of them corresponds to the usual equato-
rial plane while the other one is at μ = μ′ and given
by

μ′ = − 4l

3a
+ 1

3a2

{
(A + 3

√
3B ′)1/3

+a2(3a2 + 4l2 − 3ξ2)

(A + 3
√

3B ′)1/3

}
, (55)

where, A is already mentioned earlier and B ′ is given as,
B ′ = a3(a−ξ)

√−G. Interestingly, for l = 0, μ′ become
zero with the constraint ξ > a. This matches with the
results discussed earlier in the context of Kerr–Newman
black hole.

Having determined the angular coordinates marking the van-
ishing of the angular potential Vang,gen, we can comfortably
describe the trajectories related to positive, negative and van-
ishing Carter constant. This is what we discuss next.

1. For η = 0: In the case of vanishing Carter constant, as
evident from Eq. (48), the potential Vang,gen has to be
negative. This results into the following behaviours:

• For G > 0, the angular potential can be negative only
if θ1 < θ < θ0 or, θ2 < θ < π (see Fig. 8a). On the
other hand with G < 0, one has θ ′ < θ < θ0(π/2),
where θ ′ = cos−1(μ′) (see Fig. 8b).

• Unlike the angular motion in the context of Kerr–
Newman black hole, Vang,gen has neither a maxima
nor a minima on the equatorial plane located at θ =

(a) (b)

Fig. 8 The angular potential and angular momentum for the Kerr–Newman-NUT black hole has been presented with vanishing Carter constant.
Among other relevant quantities the impact parameter is taken as L/E ≡ ξ = 0.5M and finally the rotation parameter being a = M
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(a) (b)

Fig. 9 The angular motion of a particle in Kerr–Newman-NUT spacetime has been presented with a non-zero Carter constant λ = M2, having the
impact parameter L/E = ξ = 0.5M and the rotation parameter set to black hole mass

θ0 = π/2. The motion is depicted in Fig. 8 for a
particular set of parameters.

2. For η > 0: In the case of positive Carter constant, the
potential can take both positive and negative values. In the
case of positive potential, motion along angular direction
is possible only if numerical value of Carter constant is
larger than the potential.

• For positive values of V (θ) with G > 0, the particle
has to be within the angular range: θ− < θ < θ1 or,
θ0 < θ < θ2 (see Fig. 9a). While for G < 0, orbits
with exist, provided the angular coordinate satisfy:
θ− < θ < θ ′ and θ0 < θ < θ+ (see Fig. 9b). Here
θ± are two turning points in the presence of positive
Carter constant λ.

• V (θ) can also take negative values. In this case for
G > 0, the only possibilities are: θ1 < θ < θ0 and
θ2 < θ < π (see Fig. 9a). Otherwise, with G < 0,
one must have θ ′ < θ < θ0 (see Fig. 9b).

3. For η < 0: With negative Carter constant the potential
can only be negative and also should have a magnitude
larger than the Carter constant. This results into the fol-
lowing situation:

• In this case, for G > 0, one has to ensure either θ1 <

θ− < θ < θ−
π/2 < θ0 or θ2 < θ+

π/2 < θ < π .

Here θ± and θ±
π/2 are turning points of the momentum

along the angular direction (see Fig. 10a).
• For G < 0, we need to have θ ′ < θ− < θ < θ+ <

θ0(π/2). The corresponding situation is depicted
in Fig. 10b.

(B) Radial Equation: The radial equation has already been
presented in Eq. (47) involving �. In the present context
of Kerr–Newman-NUT spacetime, the corresponding metric

elements read, � = r2 −2Mr . For the existence of a circular
photon orbit, the necessary condition being R = dR/dr = 0.
Solving for η = (λ/E2) and ξ = (L/E), we arrive at two
distinct solutions for the pair as,

ξ (1)
c = r2 + l2 + a2

a
; η(1)

c = − (r2 + l2)2

a2 . (56)

and,

ξ (2)
c = a2(M − r) + l2(M − r) + r2(r − 3M)

a(M − r)
,

η(2)
c = − 1

a2(r − M)2

{
l4(r − M)2 − 2l2r2(r2 − 4Mr + 3M2)

+ r3(r(r − 3M)2 − 4a2(r − 2M))
}
. (57)

Considering the two solutions presented above for the param-
eters ξc and ηc, one can explicitly demonstrate that in the first
case (presented in Eq. (56)) ηc + (ξc − a)2 become null and
hence the angular equation will lead to � < 0. Thus for
the first choice (ξ

(1)
c , η

(1)
c ) no angular motion is possible and

hence we shall take Eq. (57) as the parameters associated
with photon circular orbits.

3.2.2 Massive particles in Kerr–Newman-NUT black holes

(A) Angular equations: For massive particles the geodesic
equation associated with angular motion takes the following
form,
(

�m

E2

)
= η − {(a sin θ − ξ csc θ − 2l cot θ)2

+m2

E2 (l + a cos θ)2 − (ξ − a)2} (58)
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(a) (b)

Fig. 10 We have presented the potential and momentum responsible for angular motion of a massless particle with L/E ≡ ξ = 0.5M , a = M
and λ = −M2/10

Here �m = ρ4m2(dθ/dτ)2 and the various quantities
used in the above equation has the following definitions:
η ≡ λ/E2, ξ ≡ L/E , where λ is the Carter constant. Due
to complicated nature of the angular equations let us con-
sider a simple situation with E = m. This corresponds to a
marginally bound orbit and it is possible to analytically com-
pute the nature of trajectories in the angular direction. In this
context the above equation for angular motion reads,
(

�m

E2

)
= η − {(a sin θ − ξ csc θ − 2l cot θ)2

+(l + a cos θ)2 − (ξ − a)2} (59)

Similar to the case for massless particles, there can be two
possibilities, which will be discussed below.

• In the first case, where we have all the solutions for θ

originating from setting �m = 0 in Eq. (59), it is nec-
essary that the parameters associated with the black hole
satisfies the following identity,

F = {16a4l2 − 96a3l2ξ − 3(l2 − ξ2)(3l2 + ξ2)2

+ a2(−72l4 + 180l2ξ2 + ξ4)

+ 4a(18l4ξ − 29l2ξ3 − ξ5)} > 0 (60)

Unlike the case for massless particles, in the present con-
text the angular potential does not vanish at θ = π/2,
as evident from Eq. (59). However the angular potential
being a cubic expression in terms of cos θ ≡ μ, there
will be at most three solutions for which the potential
vanishes. The first solution takes the following form,

μ1 = −3l2 + ξ2

6al
+ χ

3al
cos β. (61)

where χ2 ≡ 12a2l2 − 24al2ξ + (3l2 + ξ2)2 and β is
an angle taking values within the range (0, 2π) whose
explicit expression can be given by,

β = 1

3
arctan

(
6
√

3D
C

)
, (62)

Here D and C are mathematical quantities having the
following expressions,

C = −27l6 − 27l4ξ2 − 9l2ξ4 − ξ6 + 36al2ξ(3l2 + ξ2)

−18a2l2(6l2 + ξ2), and D = al2
√
F . (63)

The equation �m = 0 is a cubic equation for μ = cos θ

and there should be three independent solutions at most.
One of the solution is given above by μ = μ1, while the
other two solutions take the following form,

μ2,3 = −3l2 + ξ2

6al
− χ

6al

(
cos β ± √

3 sin β
)

. (64)

The parameters introduced above have their usual mean-
ings.

• The other possibility corresponds to F < 0. In this
case two of the three solutions does not exist as they
become complex. The only angular coordinate θ ′, where
the potential associated with angular motion of a geodesic
vanishes corresponds to,

cos θ ′ ≡ μ′ = −3l2 + ξ2

6al
− 1

6al

{(
C + 6

√
3D′)1/3

+12a2l2 − 24al2ξ + (3l2 + ξ2)2

(C + 6
√

3D′)1/3

}
(65)
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The quantity C appearing in the above equation has
already been defined while, D′ = al2(−F)1/2. Thus in
this case there is only a single angular coordinate where
the potential vanishes. This is certainly different from the
corresponding situation in Kerr–Newman spacetime.

In passing, we would like to point out that for l = 0 and E =
m, the timelike geodesic has a vanishing angular potential
only in the equatorial plane of a Kerr–Newman black hole.
However, in our context with l = 0, we have β = (π/3) and
substituting it back into Eq. (61), we easily get μ1 = 0. On
the other hand, solutions like μ2, μ3 and μ′ are only possible
for a nonzero NUT charge and are discerning features of the
Kerr–Newman-NUT spacetime.

(B) Radial equations: In the case of radial orbits for mas-
sive particle, the corresponding equation is given by Eq. (9),
which can also be written in the following form,

(
R

E2

)
= {(r2 + a2 + l2) − aξ}2

−
(

η + m2

E2 r
2
)

� − �(ξ − a)2 (66)

In the above expression we have R = m2ρ4(dr/dτ)2 and
rest of the quantities have their usual meaning. Alike the case
for a massless particle, the motion of a massive particle also
involves circular orbits, which can be obtained by setting
both R and its radial derivative to zero. This leads to the
following choices for the impact parameter ξ ≡ L/E = ξc

and the effective Carter constant η ≡ λ/E2 = ηc, such that
for a marginally bound orbit with E = m, we arrive at

ξc = 1

a(M − r)

{

M(r2 − a2) + a2r + l2(r − M) ± r�

√
M

r

}

,

ηca
2(r − M)2 = {Mr2a2(r − 3M) − [Mr3(r2 − 3Mr

+ 4M2) + 2Mr2l2(r − M) + l4(r − M)2]}.
∓ 2�

√
Mr [Mr2 + l2(r − M)] ∓ 2a2r�

√
Mr . (67)

In the above expressions for ξc and ηc, the radial coordinate
appearing on the right hand side corresponds to the loca-
tion of circular orbits. For vanishing Carter constant, one can
solve the equation involving ηc to write down the energy in
terms of radius of the circular orbit. This result when used
in the expression for impact parameter ξc will also help in
expressing the angular momentum in terms of the radius of
circular orbits. Thus circular orbit on the non-equatorial plane
can exist for a given radius r and given energy Ec, provided
the effective Carter constant ηc and impact parameter ξc are
given by the above expressions.

4 Energy extraction from Kerr–Newman-NUT black
hole

The origin of high energy particles in the universe is a long
standing problem. Even though, there have been several
explorations to model such phenomena [39,40], it can be
theoretically intriguing if it has its roots back to some exotic
objects, such as black hole or neutron star. Historically, many
high energetic events in the universe has their connections
one way or another into black hole or stars, such as forma-
tion of jets from rotating objects as a result of gamma ray
burst [41] or active galactic nuclei [42]. More recently, it
has been proposed that black holes could also be used as a
system to accelerate particles, giving rise to arbitrary large
energy Debris [43–45], which in principle dictates a modi-
fied version of the Penrose process. This idea was originally
suggested by Penrose and Floyed in the late seventies [26],
concerning energy extraction from a black hole in the pres-
ence of a ergoregion. Since then, many investigations have
been carried out in many aspects to examine the implications
of Penrose process in various astrophysical domains [46–56].

In the present context, we would reconsider the possibil-
ities of energy extraction from a Kerr–Newman-NUT black
hole constrained with � = r2 − 2Mr and Q2 = l2 −a2. We
start with the original Penrose process and study the bounds
from Wald inequality. Afterward, we investigate the impli-
cation of collisional Penrose process followed by a survey of
recent Bañados–Silk–West effect regarding the divergence
of collisional energy in the center of mass frame. Finally,
we will address the superradiance phenomenon in the Kerr–
Newman-NUT black hole and discuss the advantages over
other spacetimes such as Kerr or Kerr–Newman.

4.1 The original Penrose process

In the original Penrose process, the idea is to send a particle
that breaks up into two in the ergoregion, one of which crosses
the horizon with a negative energy while the other comes out
with energy more than the initial energies. By this means,
rotational energy of a black hole could be extracted. For this
purpose, the energy of the initial particle plays a crucial role.
Thus we would like to write the energy of the particle in terms
of angular momentum. This can be achieved by setting either
Pr = 0 or by substituting all the momentum components in
the on-shell condition, i.e., PμPμ = −m2. They both should
give identical result. Thus substitutingdr/dτ = 0, we arrived
at

E2(r2 + a2 + l2)2 + a2L2 − 2aEL(r2 + a2 + l2)

− (λ + m2r2)� − �(L2 + a2E2 − 2aEL) = 0. (68)
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Choosing � = r2 − 2Mr , the above algebraic equation can
be reduced to,

E2(r4 + a4 + l4 + r2a2 + 2r2l2 + 2a2l2 + 2Mra2)

− L2(r2 − 2Mr − a2) − 2aEL(a2 + l2 + 2Mr)

− �(m2r2 + λ) = 0. (69)

From which one can solve for the energy per unit mass Ẽ
in terms of the angular momentum per unit mass L̃ , Carter
constant per unit mass λ̃ and radius r as,

Ẽ = {(r2 + l2)2 + a4 + a2(r2 + 2Mr + 2l2)}−1

[a(a2 + l2 + 2Mr)L̃ ±
√

(r2 − 2Mr){(r2 + λ̃)

(a4 + (r2 + l2)2 + a2(r2 + 2Mr + 2l2))

+ L̃2(r2 + l2)2}1/2 (70)

From the above equation, we only consider the expression
with ‘+’ sign. This is because, in the r → ∞ limit, only
the positive sign produces Ẽ = 1, while the other gives
Ẽ = −1. So, if we consider a timelike particle arriving from
spatial infinity, only the positive sign suits the present analy-
sis. Along identical lines, the expression of angular momen-
tum can also be derived from Eq. (69) in terms of energy and
radial distance,

L̃ = {a2 − (r2 − 2Mr)}−1[aẼ(a2 + l2 + 2Mr)

∓
√

(r2 − 2Mr){Ẽ2(r2 + l2)2

− (r2 − 2Mr − a2)(r2 + λ̃)}1/2] (71)

In this case, both the ‘∓’ sign are allowed and they cor-
responds to co-rotating and counter-rotating orbits respec-
tively. Following an identical pathway as for the massive
particle, the angular momentum for the massless particle can
be also be written down, which takes the following form,

L = E{a2 − (r2 − 2Mr)}−1[a(a2 + l2 + 2Mr)

∓
√

(r2 − 2Mr){(r2 + l2)2− λ

E2 (r2−2Mr−a2)}1/2].
(72)

As evident this is directly proportional to energy. Given the
above ingredients one consider a variant of the Penrose pro-
cess, where a massive particle arrives from infinity at the
equatorial plane and then decays to two massless particles.
One of them, with negative energy, falls into the black hole
while the other one escapes to infinity. Since the decay pro-
cess is assumed to be taking place on the equatorial plane,
the Carter constant for the massive particle takes the value
λ̃ = l2, while the produced photons have the following val-
ues of Carter constants, λ1 = 0 = λ2. Note that this does not

require the timelike geodesic to be confined on the equato-
rial plane, rather it is expected that the massive particle has
arrived from a different angular plane at infinity, as θ̈ �= 0.
To simplify the process further, we will assume that the pro-
duced photons along with the decaying massive particle have
vanishing radial and angular momentum.

If we assume that the massive particle coming from infin-
ity has vanishing initial velocity, it follows that its energy is
given by E = m. As this particle subsequently breaks up
into two parts, the amount of energy extracted in the process
becomes,

Eext = 1

2

⎡

⎣

√
(a2 + 2Mr + l2)

r2 + l2
− 1

⎤

⎦ (73)

The amount of extracted energy will be higher if the decay
into two massless particle happens close to the event horizon.
Thus in the r → 2M limit, we end up getting the following
expression for extracted energy

Eext = 1

2

⎡

⎣

√

1 + a2

l2 + 4M2 − 1

⎤

⎦ (74)

It is interesting to note that by fixing the NUT charge l to
its minimum value, i.e., l = a, there is no upper bound on
the rotation parameter a, while the electric charge parameter
identically vanishes. This way, extracted energy become

Eext = 1

2

⎡

⎣

√

1 + a2

a2 + 4M2 − 1

⎤

⎦ (75)

For a large momentum parameter, Eext reaches a similar
bound as the Kerr black hole, otherwise it is always less than
that. This clearly suggests that the original Penrose process
in a Kerr–Newman-NUT spacetime is less efficient than its
Kerr counterpart.

Table 1 The numerical value of the minimum velocity |Vmin| intro-
duced above is of importance to the energy extraction process. In this
table we have provided numerical estimates for the minimum velocity
|Vmin| with l = a and various choices of the ratio a/M . As evident
for larger values of a/M , the minimum velocity decreases from being
unity

Angular momentum (a/M) |Vmin|
1.0 0.912871

3.0 0.768706

5.0 0.732828

7.0 0.720838

9.0 0.715575
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Having discussed the maximum amount of energy
extracted from a variant of the original Penrose process in a
Kerr–Newman-NUT spacetime, let us now provide an upper
bound on the extracted energy in the form of Wald inequality
[57,58]. This inequality explicitly depends on the geometry
of the spacetime as well as the velocity components of the
fragments. If a particle with initial energy ‘E’ and four veloc-
ity Ua breaks into two parts and one of them having negative
energy falls into the event horizon, while the other escapes
to infinity extracts energy from the black hole. Considering
the energy of the particle falling into the horizon as E with
spatial velocity V , the Lorentz factor is given as,

γ = 1
√

1 − |V|2 . (76)

Thus following [37] one immediately arrives at the following
constraint on the energy,

γ
(
E − |V|(E2 + gtt)

1/2) < E < γ
(
E − |V|(E2 + gtt)

1/2) .

(77)

(Note the difference in sign of gtt from Ref. [37] due to oppo-
site sign convention) For any process of energy extraction to
take place, we must have E < 0, which suggests

|V| >
E

(E2 + gtt)1/2 = 1

(1 + E−2gtt)1/2 . (78)

Thus for a given initial particle of energy E , the velocity of
the in-falling particle will be minimum (implying maximum
energy extraction by the out-going particle) whenever gtt is
maximum, since it appears in the denominator. In the present
context for Kerr–Newman-NUT black hole the ‘tt’ compo-
nent of the metric on the equatorial plane (assuming that the
decay is happening on the equatorial plane) is given as

gtt = a2 − �

r2 + l2
. (79)

As evident from the above expression gtt will attain its max-
imum possible value when � vanishes, i.e., on the event
horizon, where its value is given by,

gmax
tt = a2

4M2 + l2
. (80)

Thus given Eq. (80) one can easily determine the minimum
value of the velocity Vmin. This will certainly depend on the
specific angular momentum a/M , following which we have
presented the quantity |Vmin| in Table 1 for a several choices
of the specific angular momentum. As evident from Table 1,
the minimum velocity decreases with increase in the value
of the specific rotation parameter, but still this requires the
velocity of the in-falling particle to be ∼ 0.72c. Contrast-
ing this with the case of Kerr black, where Vmin ∼ 0.5c,
we observe that energy extraction through Penrose process

is more difficult in the context of Kerr–Newman-NUT space-
time.

4.2 Bañados–Silk–West process

It is recently proposed by Bañados et al. that the colli-
sional energy between two particles computed in the cen-
ter of mass frame, Ecm, can diverge in a rotating spacetime
[29]. Since then, this proposal has been investigated in many
aspects along with different models, which only strength-
ened its validity as a more general phenomenon [59,60]. In
the present purpose, we investigate the same in the Kerr–
Newman-NUT spacetime with � = r2 − 2Mr . Without
going into details of the analysis, the computed energy in
the center of mass frame, namely Ecm turns out to be,

E2
cm = 2m2

0

(r2 + l2)
[{(r2 − a2 + l2) − L1L2 + a(L1 + L2)}

+ 1

2

{
(r2 + a2 + l2) − aL2

}

{
(r2 + a2 + l2) − aL1

}

{(r2 + a2 + l2) − 2aL1 + L2
1}

+ 1

2

{
(r2 + a2 + l2) − aL1

}

{
(r2 + a2 + l2) − aL2

}

{(r2 + a2 + l2) − 2aL2 + L2
2}] (81)

It is straightforward to note that Ecm diverges, whenever one
of the colliding particle has an angular momentum L , equal
to L1,2 ≡ (r2

H +a2 + l2)/a. We would like to emphasize that
in our case, the black hole horizon is located at rH = 2M ,
independent of the rotation parameter or the NUT charge.
Thus, unlike the case for Kerr black hole, in this situation the
spectrum of angular momentum related to divergent center-
of-mass energy, Ecm is wider, which may lead to not-so-rare
occurrence of this ultra-high energy particle accelerator in
the context of Kerr–Newman-NUT black hole.

4.3 Superradiance in Kerr–Newman-NUT spacetime

Superradiance is another way of extracting energy from a
rotating object originally proposed by Zel’dovich in the early
seventies. He suggested that in a particular limit, the ampli-
tude of the reflected wave scattered by a rotating object can
be larger than the amplitude of the incident wave. How-
ever, this rotating object has to have a well defined boundary
and Zel’dovich had conducted his experiment with a rotat-
ing cylinder [27]. Afterwards, the idea to include the model
of a black hole spacetime to explain the superradiance was
investigated in Refs. [61–63] and investigated by many others
[64–67]. In the present context, we use the Kerr–Newman-
NUT spacetime with � = r2 − 2Mr and explore the possi-
bilities of energy extraction via superradiance.
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To complete the task, we shall assume a scalar field �

defined as,

�� = 1√−g
∂μ

(√−ggμν∂ν�
) = 0 (82)

We consider that the incident wave is scattered by the event
horizon and a part of this gets transmitted across the horizon,
while the other is reflected and travels to spatial infinity. Fol-
lowing the standard text books formalism with assuming an
ansatz given as,

� = e−iωt eimφ�(θ)R(r) (83)

we arrive at the flux of energy through the horizon,

dE

dt
= ω(ω − m�H)

(
r2

H + a2 + l2
) ∫

dθdφρ2
H sin2 θ

�2

ρ2
H

= ω (ω − m�H) (2MrH + a2 + l2) constant (84)

where �H is the angular velocity of the horizon and given
as �H = a(r2 + a2 + l2)−1. At this outset we would like
to make a few remarks, which will help to understand the
implications of the above expression for energy loss due to
superradiance. Firstly, with ω < m�H, the energy flux has
a negative sign which essentially indicates that there is a
nonzero amount of energy carried out to infinity and super-
radiance is possible. On the other hand, for ω > m�H, the
rate of energy loss is positive and hence superradiance does
not take place. Secondly, in a Kerr and Kerr–Newman space-
time, the pre-factor of the above equation becomes 2MrH and
2MrH − Q2 respectively, which is smaller compared to the
Kerr–Newman-NUT black hole discussed in the present con-
text. However the value of �H is less in the context of Kerr–
Newman-NUT black hole and hence the frequency range
up to which super-radiance can occur is smaller. Thus the
total energy radiated by the superradiant modes in the present
Kerr–Newman-NUT black hole is smaller compared to the
Kerr or more general Kerr–Newman-NUT black holes.

5 Astrophysical signatures of Kerr–Newman-NUT
black hole: quasi-periodic oscillations

Having addressed most of the energy extraction processes
associated with the Kerr–Newman-NUT black hole, for com-
pleteness let us also mention one astrophysical implication
of the same. There exist several possibilities to be explored,
including luminosity from a black hole in the Kerr–Newman-
NUT family and iron-line spectroscopy of the radiation orig-
inating from accretion disc around a Kerr–Newman-NUT
black hole. However, in this work we will concentrate on the
quasi-periodic oscillation from a accreting black hole which

is described by the Kerr–Newman-NUT spacetime. Quasi-
periodic oscillations (henceforth QPO) are related to very
fast flux variability associated with matter accreting onto a
black hole located very close to the innermost stable cir-
cular orbit. These QPOs are essentially believed to probe
the geodesic motion of a particle in the strong field regime
[68–70]. Till now, there are several black hole candidates,
varying from stellar mass black hole to a supermassive one
[71,72] for which such QPOs were observed. The frequen-
cies of these QPOs are related to the fundamental frequen-
cies associated with the motion of accreting matter in the
strong gravity regime [68,73,74] and may probe the pres-
ence of a NUT charge if the background is given by Kerr–
Newman-NUT spacetime. Further using the relativistic pre-
cession model, one can indeed predict correct values of black
hole hairs (namely mass and angular momentum in the con-
text of Kerr black hole) starting from the observations of
QPOs [72,75]. Thus it is important to ask, whether it is pos-
sible to test the NUT hair as well using QPOs. In this section
we will describe how the frequencies of QPOs depend on the
NUT charge, while a numerical estimation by invoking real
measurements will be done elsewhere [76].

We will work exclusively within the framework of rel-
ativistic precession model, which can explain the low fre-
quency QPOs appearing in low mass X-ray binaries. In this
model, the observed frequencies are very much related to the
epicyclic frequencies associated with the radial, azimuthal
and vertical motion. In the present context of Kerr–Newman-
NUT black hole, due to its stationary and axisymmetric
nature we can have two conserved quantities, namely the
energy E and angular momentum L . Using these two we can
construct the following ratio � = L/E , in terms of which the
effective potential takes the following form,

Veff(r, θ) = gtt − 2�gtφ + �2gφφ

= 1

�ρ2 sin2 θ
[�(P − �)2 − sin2 θ

× {(r2 + a2 + l2) − a�}2] (85)

Using the above expression for effective potential the radial
equation of motion in the equatorial plane reads,

ṙ2 = − 1

grr

{
1 + E2Veff

(
r,

π

2

)}

= − �

r2 + l2

[
1 + E2

�
(
r2 + l2

)

× {�(a − �)2 −
(
r2 + a2 + l2 − a�

)2}
]

(86)

The azimuthal epicyclic frequency can be expressed as νφ =
�/2π , where � corresponds to the angular velocity of cir-
cular motion in the spacetime on equatorial plane. The angu-
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lar velocity � can be solved starting from the following
quadratic equation,

∂r gtt + 2
(
∂r gtφ

)
� + (

∂r gφφ

)
�2 = 0 (87)

which in the present context reads,

− {2Mr2 − 2Ml2 + 2r
(
a2 + l2

)
}

− 2{2Mar2 + 2Mal2 − 2ar
(
a2 + l2

)
}�

+ {2r
(
r2 + l2

)2 + 2a2 (M − r)
(
r2 + l2

)

− 2a2r
(
a2 − r2 + 2Mr

)
}�2 = 0 (88)

which can be solved to yield the azimuthal frequency νφ

through �.
The radial and vertical epicyclic frequencies are obtained

by considering small perturbations from the circular motion,
such that r = rc + δr and θ = (π/2) + δθ , where rc is
the radius of circular orbit. The perturbations are assumed
to be oscillating such that, δr ∼ exp(2π iνr t) and δθ ∼
exp(2π iνθ t), where νr and νθ are the desired frequencies. It
is indeed possible to express these frequencies in terms of
the metric elements of Kerr–Newman-NUT spacetime, such
that,

ν2
r =

(
gtt + �gtφ

)2

2 (2π)2 grr

∂2Veff

∂r2

(
rc,

π

2

)

= 1

2 (2π)2

�

r2 + l2

(
−� − a2

r2 + l2

−�
a

(
a2 + l2 + 2Mr

)

r2 + l2

)2
1

�3(r2 + l2)3

×
[

− 8r2�2(r2 + l2)2 + �3 (a − �)2 (−10r2 − 2l2)

+ (
r2 + a2 + l2 − a�

) {
− 4�2 (

r2 + l2
)2

+ 8r�∂r�
(
r2 + l2

)2 + 16�2r2 (
r2 + l2

) }

+ (
r2 + a2 + l2 − a�

)2
{

− 8r2�2 + 2�2 (
r2 + l2

)

− 4r�∂r�
(
r2 + l2

) + 2
(
r2 + l2

)2 (
� − ∂r�

2)
}]

(89)

ν2
θ =

(
gtt + �gtφ

)2

2 (2π)2 gθθ

∂2Veff

∂θ2

(
rc,

π

2

)

= 1

2 (2π)2

1
(
r2 + l2

)

(

−� − a2

r2 + l2
− �

a
(
a2 + l2 + 2Mr

)

r2 + l2

)2

× 1

�

1
(
r2 + l2

)3

[ (
r2 + l2

)2
{

8�l2 − 4a�(a − �)

+ 2(r2 + a2 + l2 − a�)2
}

+ (r2 + l2)

×
{

16al2�(a − �) + 2(r2 + l2 + a2)

× [
�(a − �)2 − (r2 + a2 + l2 − a�)2]

}

+ 8a2l2
{
�(a − �)2 − (r2 + a2 + l2 − a�)2

}]
(90)

As evident both νr and νθ depends explicitly on the NUT
parameter l and hence these epicyclic frequencies indeed
inherits the NUT charge as an additional hair. Thus the QPO
frequencies will be affected (or, modified) by the presence of
NUT charge and may lead to some interesting bound on the
same when compared to observational measurements. This
provides one of the astrophysical grounds to test the existence
of the NUT parameter on black holes within the the Kerr–
Newman-NUT family (for an attempt in a similar direction,
see [77]). Besides, the special structure of � appearing in the
situation under consideration modifies the QPO frequencies
in a significant manner, compared to the other members of
the Kerr–Newman-NUT family. Furthermore, the fact that
neither rotation nor NUT parameter is restricted within any
upper boundary (i.e., they can both be greater than unity) sug-
gests that a wider range of parameter space can be accessed.
This in principle can be useful to shed light on the possible
existence of the NUT charge in nature in a more efficient
way.

6 Thermodynamics of Kerr–Newman-NUT black hole

In this section, we will try to understand some thermodynam-
ical aspects of the Kerr–Newman-NUT black hole. The first
in the list corresponds to the computation of area associated
with the black hole horizon, which can be obtained by setting
� → 0. This leads to,

AreaH =
∫ π

0
dθ

∫ 2π

0
dφ

√
hθθhφφ

=
∫ π

0
dθ

∫ 2π

0
dφ sin θ(r2

H + a2 + l2),

= 4π(r2
H + a2 + l2). (91)

From the above expression, the entropy of the horizon can
be written as,

SH = AreaH

4
= π(r2

H + a2 + l2). (92)

The other most important thing corresponds to the surface
gravity, or the temperature associated with the black hole
[78]. This originates from the Killing vector field,

ξμ = tμ + �Hφμ (93)
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where, tμ = (∂/∂t)μ = (1, 0, 0, 0) is the Killing vector
ensuring stationarity and φμ = (∂/∂φ)μ = (0, 0, 0, 1) is the
Killing vector from axi-symmetry. Thus norm of the vector
ξμ yields,

ξμξμ = gμν

(
tμ + �Hφμ

) (
tν + �Hφν

)

= gtt + 2�Hgtφ + �2
Hgφφ (94)

Substituting for the metric elements as one approaches the
horizon along with the angular velocity �H at the horizon,
the norm turns out to be,

ξμξμ = − � sin2 θ
{
aP − (

r2 + a2 + l2
)}2

ρ2{sin2 θ
(
r2 + a2 + l2

)2 − �P2}
(95)

where the symbols have been introduced earlier, see e.g.,
Eq. (2). Since we are interested in the � → 0 limit, the
derivative of Eq. (95) will be proportional to the radial deriva-
tive of �. Thus the surface gravity can be read off from the
result ∇α(ξμξμ) = −2κξα , as,

κ = rH − M
(
r2

H + a2 + l2
) (96)

For � = r2
H − 2MrH = 0, we obtain the associated temper-

ature to be,

T = κ

2π
= M

2π
(
2MrH + a2 + l2

) (97)

It is interesting to note one particular difference from the
usual Kerr black hole regarding the extremal condition, i.e,
at a = M limit. Even though surface gravity or temperature
identically vanishes in this limit for a Kerr spacetime, in the
present context with � = r2 − 2Mr , both of them have
nonzero contribution.

7 Concluding remarks

The duality between gravitational mass and NUT charge
makes the Kerr–Newman-NUT spacetime an interesting
testbed to understand gravitational physics. It has been shown
in [9,10] that Kerr-NUT metric is invariant under the duality
transformation: M ↔ il, r ↔ i(l+a cos θ), exhibiting dual-
ity between gravoelectric (M) and gravomagnetic (l) charge
[12], and correspondingly between radial and angular coordi-
nates. In the Kerr–Newman-NUT metric, (M, Q) are gravo-
electric charges (which are purely coloumbic in nature in the
sense that they appear only in �) while (l, a) are gravomag-
netic, which in addition to � (since energy in any form must
gravitate) also appear in the metric defining the geometric
symmetry of the spacetime.

In generic situations the Kerr–Newman-NUT spacetime
inherits two horizons and a timelike singularity. However,
for a particular choice of the charge parameter, namely,
Q2 + a2 = l2, where l and a are the NUT charge and the
black hole rotation parameter respectively, the horizon sits
at r = 2M . This particular relation between the black hole
hairs, namely the electric charge Q, NUT charge l and rota-
tion parameter a ensures that the amount of repulsion offered
by a and Q is being exactly balanced by the attraction due to
the NUT charge and hence as a consequence the horizon is
located at a position as if none of these hairs are present. Note
that the horizon can appear at r = 2M even for l = a, Q = 0,
a particular case of the Kerr-NUT spacetime, where the two
magnetic hairs l and a are equal. Interestingly, for l = a
the curvature singularity is spacelike in stark contrast to the
generic Kerr–Newman-NUT spacetimes. The radical alter-
ation in casual structure due to the above choice is intriguing
and has remained unnoticed in the literature. On the other
hand, for l2 > a2 it follows that r2 + (l + a cos θ)2 �= 0
for any real value of r and hence remarkably the solution
presents a black hole solution free of any curvature singu-
larity. The above prescription squarely balances coloumbic
gravitational effects of charge, rotation and NUT parameter
leaving mass alone to determine the horizon and the nature
of curvature singularity. However l and a have not been fully
eliminated as they also occur in the metric in their magnetic
role as in ρ2. It is their magnetic role which is very interesting
and would require a separate detailed and deeper investiga-
tion. However the key fact derived here corresponds to the
result that when NUT parameter is dominant over rotation,
singularity is avoided. That means magnetic contribution of l
anda dominates over coloumbic contribution due to mass. On
the other hand, when l ≤ a, mass dominates and a spacelike
singularity arises. Since location of horizon is free of NUT,
rotation and charge parameters, they could have any value,
even greater than unity. For the generic Kerr–Newman-NUT
family, one of the interesting extremal configuration could
be equality of gravoelectric and gravomagnetic charges, i.e.,
M = Q, l = a, separately. It should be interesting to study
this kind of extremal Kerr–Newman-NUT black hole in an
extensive scale.

Given all these distinguishing features associated with the
above black hole spacetime, we have studied the trajecto-
ries of massive as well as massless particles in this space-
time. As we have explicitly demonstrated, in general circular
geodesics cannot be confined to the equatorial plane. Follow-
ing which we have determined the conditions on the angle θ

for which circular geodesics are possible and it turns out that
non-zero Carter constant plays a very important role in this
respect. Besides we have also discussed geodesic motion on
non-equatorial planes to understand its physical properties in
a more comprehensive manner. In particular, we have studied
the photon circular orbits as well as circular orbits for massive
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particles on a fixed θ = constant plane and have determined
the possible conditions on the energy for their existence. The
results obtained thereafter explicitly demonstrate the depar-
ture of the present context from the usual Kerr–Newman-
NUT scenario, e.g., the innermost stable circular orbits are
located at a completely different angular plane and also at
different location compared to the corresponding radius in
Schwarzschild spacetime. This may have interesting astro-
physical implications, e.g., this will affect the structure of
accretion disk around the black hole, which in turn will affect
the observed luminosity from the accretion disk. Besides the
above, we have also studied various energy extraction pro-
cesses in this spacetime. It turns out that in both the Penrose
process and super-radiance the amount of energy extracted is
less in comparison to the corresponding situation with Kerr
black hole. On the other hand, in the black hole spacetime
under consideration, the center of mass energy of a pair of
colliding particles can be very large (the Banados–Silk–West
effect) for a much wider class of angular momentum of the
incoming particles. This is also in sharp contrast with the
corresponding scenario for Kerr spacetime. In addition, the
fundamental QPO frequencies for a geodesic trajectory orbit-
ing in nearly circular orbits on the equatorial plane are also
carried out in detail pointing out its astrophysical signifi-
cance. It is also stressed that the domain of the black hole
parameters l and a leads to a much large parameter space,
which could be spanned to look for any signature of the NUT
charge in astrophysical scenarios. This may provide a better
scope for estimating the parameters in order to match with the
observational data. Further we have also commented on the
thermodynamical aspects, in which case unlike the general
Kerr–Newman-NUT spacetime, the black hole temperature
does not vanish for any parameter space of the NUT charge
and the rotation parameter. We would like to emphasize that
the results derived in this work are qualitatively different
from the results presented in the earlier literature, see [32–
34]. Since the case � = a with Q = 0 has not been studied
extensively earlier in the literature, the results presented in
this work has possibly shed some light into this parameter
space of the Kerr–Newman-NUT solution and has filled a gap
in the literature. However in certain arenas, e.g., study of pho-
ton circular orbits, one can use the results derived in [33] to
immediately observe that our claim regarding non-equatorial
motion are in direct consonance with earlier literatures. This
provides yet another verification of our result presented in
this work.

Finally, we would like to point out that for this particu-
lar relation among black hole hairs, namely, Q2 + a2 = l2,
the ratio (a/M) is completely free and can even take val-
ues larger than unity, while at the same time if l > a, the
black hole will be free of any curvature singularity. Thus any
observational evidence that indicates a possibility of having
a super-rotating black hole with (a/M) > 1, need not neces-

sarily be a signature of naked singularity but instead it could
as well be a case of black hole having a NUT charge. This,
as well as all other features mentioned above would indeed
make a good case for studying the role of NUT parameter in
high energy astrophysical setting and phenomena.
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