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Abstract Deconfined QCD matter in heavy-ion collisions
has been a topic of paramount interest for many years.
Quarkonia suppression in heavy-ion collisions at the rela-
tivistic Heavy Ion Collider (RHIC) and Large Hadron Col-
lider (LHC) experiments indicate the quark-gluon plasma
(QGP) formation in such collisions. Recent experiments at
LHC have given indications of hot matter effect in asymmet-
ric p–Pb nuclear collisions. Here, we employ a theoretical
model to investigate the bottomonium suppression in Pb–Pb
at

√
sNN = 2.76, 5.02 TeV, and in p–Pb at

√
sNN = 5.02

TeV center-of-mass energies under a QGP formation sce-
nario. Our present formulation is based on an unified model
consisting of suppression due to color screening, gluonic dis-
sociation along with the collisional damping. Regeneration
due to correlated QQ̄ pairs has also been taken into account
in the current work. We obtain here the net bottomonium
suppression in terms of survival probability under the com-
bined effect of suppression plus regeneration in the decon-
fined QGP medium. We mainly concentrate here on the cen-
trality, Npart and transverse momentum, pT dependence of
ϒ(1S) and ϒ(2S) states suppression in Pb–Pb and p–Pb col-
lisions at mid-rapidity. We compare our model predictions for
ϒ(1S) and ϒ(2S) suppression with the corresponding exper-
imental data obtained at the LHC energies. We find that the
experimental observations on pt and Npart dependent sup-
pression agree reasonably well with our model predictions.

1 Introduction

The medium formed in heavy-ion collision experiments at
the Large Hadron Collider (LHC) at CERN and the Rela-
tivistic Heavy Ion Collider (RHIC) at Brookhaven National
Laboratory (BNL) shows collectivity and probably indicates

a e-mail: captainriturajsingh@gmail.com

the existence of deconfined QCD matter commonly known as
Quark-Gluon Plasma (QGP). Such a partonic state is consid-
ered as a phase of QCD matter at extremely high temperature
and/or baryon density [1–3]. More precisely QGP is consid-
ered as a thermalized state of quarks and gluons which are
asymptotically free inside a range which is of the order of the
strong interaction (2–3 fm). It is believed that QGP existed
in nature until a few micro seconds after the Big-bang when
hadrons began to form and that it can be recreated for a much
shorter timespan of about 10−23 s in relativistic heavy-ion
collisions at sufficiently high energy. Due to very short spa-
tial and temporal extension of the QGP in heavy-ion colli-
sions, its direct observation becomes impossible. There are,
however, many suggested observables to validate the QGP
formation in the heavy-ion collision at RHIC and LHC exper-
iments [4–9]. Quarkonium suppression is one such observ-
able of QGP formation in heavy-ion collisions experiments.
The mass scale of quarkonia (m = 3.1 GeV for J/ψ and
m = 9.46 GeV for ϒ) is of the order of, but larger than the
QCD scale (�QCD ≤ 1 GeV). In particular the measurement
of the suppression of the heavy ϒ-mesons in the quark-gluon
plasma is therefore a clean probe to investigate QGP proper-
ties. Based on the scales involved, the production of quarko-
nia is assumed to be factorized into two parts: first, quark
and anti-quark (q − q̄) production through nucleon–nucleon
collision as a perturbative process [10]. Second, the forma-
tion and evolution of bound state meson from qq̄ governed
by non-perturbative QCD. Hence, heavy quarkonia provide a
unique laboratory which enables us to explore the interplay of
perturbative and non-perturbative QCD effects. A variety of
theoretical approaches have been proposed in the literature
to calculate the heavy quarkonium production in nucleon–
nucleon collisions [11–17]. Potential non-relativistic QCD
(pNRQCD) [11,12] and fragmentation approaches [13,14]
are the theoretical frameworks based on the QCD which
are being frequently employed in many of the quarkonium
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production and suppression model calculations. Quarkonia
(J/ψ, ϒ , etc.) formed in the initial collision interact with
the partonic QGP medium. This interaction leads to the dis-
sociation of quarkonia through various mechanisms [18,19].
The theoretical study of quarkonia suppression in the QGP
medium has gone through many refinements over the past
few decades and it is still under intense investigation.

Charmonium or bottomonium suppression in heavy-ion
collision consists of two distinct processes: The first one is
the cold nuclear matter (CNM) effect and second is the hot
nuclear matter effect, commonly named as QGP effect. The
quarkonia suppression due to CNM processes gets strongly
affected by the nuclear environment [20]. There are three
kinds of CNM effects generally utilized in the calculations.
The first and dominant CNM effect in the case of quarko-
nium production is shadowing. It corresponds to the change
in parton distribution function (PDF) in the nucleus as com-
pared to its value in the nucleon which controls the initial
parton behaviour. The shadowing effect strongly depends on
the collisional kinematics, as parton distribution functions
are different in A–A collision compared to p–p and/or p–
Pb collision. Quarkonia production in A–A collision may be
suppressed due to change in nuclear parton distribution func-
tion in the small x region to that of nucleon [21]. Shadow-
ing causes the quarkonia production cross-section to become
less in A–A case to that of pure p–p collision. The Cronin
effect is another CNM contribution [22,23]. It signifies the
initial gluon multi-scattering with the neighbouring nucle-
ons presented in the nucleus prior to the hard scattering
and the quarkonia formation. This results in the broadening
of transverse momentum distribution of produced quarko-
nia. In the current model calculation, we have not incorpo-
rated the Cronin effect. Nuclear absorption [24] is another
CNM contribution to the quarkonia production. The interac-
tion between quarkonia and the primary nucleons leads to
the absorption of quarkonia in nuclear environment which
causes suppression of quarkonia in A–A collisions. It is the
dominant CNM effect at lower energies. The cross-section
for nuclear absorption decreases with the increase in energy
and hence it is negligible at LHC energies [25].

Hot matter effects on quarkonia production, include “color
screening” which was first proposed by Matsui and Satz in a
seminal work [18]. Color screening suggests more suppres-
sion of quarkonia at mid rapidity in comparison to that at for-
ward rapidity in heavy-ion collisions and more suppression at
RHIC than at SPS, but experimental data is on contrary. Glu-
onic dissiciation [19,26,27] corresponds to the absorption
of a E1 gluons (soft gluons) (where E1 is the lowest elec-
tric mode for the spin-orbital wavefunction of gluons) by a
quarkonium. This absorption induces transition of quarkonia
from color singlet state to color octet state (an unbound state
of quark anti-quark; correlated quarks pairs) [28–30]. Col-
lisional damping arises due to the inherent property of the

complex potential between (q − q̄) located inside the QCD
medium. The imaginary part of the potential in the limit of
t → ∞, represents the thermal decay width induced due
to the low frequency gauge fields that mediate interaction
between two heavy quarks [31].

Apart from the dissociation of quarkonia in the QGP,
recombination is also possible at LHC energies. There are
two ways by which quarkonia can be reproduced within the
QGP medium. The first possibility is through uncorrelated
q − q̄ pairs present in the medium. They can recombine
within the QGP medium at a later stage [32–41]. This regen-
eration process is thought to be significant for charmonium
states (J/ψ, χc, ψ

′
, etc.) at LHC energies because c − c̄

are produced just after the collisions in abundant numbers in
QGP medium. While the regeneration of bottomonium states
(ϒ(1S), ϒ(2S), etc.) due to uncorrelated b−b̄ pairs is almost
negligible because b− b̄ pairs produced in the QGP medium
are scarce even at the LHC energies.

The calculation of regeneration of quarkonia through
uncorrelated q − q̄ pair is usually based either on the sta-
tistical hadronization model [32–35], or on kinetic models
in which the production is described via dynamical melting
and regeneration over the whole temporal evolution of the
QGP [36–38,41]. Some transport calculations are also per-
formed to calculate the number of regenerated J/ψs [42,43].
The second regeneration mechanism i.e., recombination due
to correlated q− q̄ pairs is just the reverse of gluonic dissoci-
ation, in which correlated q− q̄ pairs may undergo transition
from color octet state to color singlet state in the due course
of time in QGP medium. Bottomonium as a color singlet
bound state of b− b̄ pair, with b and b̄ separated by distances
∼ 1/mbv, is smaller than 1/�QCD . Here, v ∼ αs(mbv) is
the relative velocity between q − q̄ . The size of bottomo-
nium states (ϒ(1S), ϒ(2S)) is thus smaller than the cor-
responding charmonium states (J/ψ(1S), ψ

′
(2S)). Due to

this its melting temperature or dissociation temperature, TD
(TD ∼ 670 MeV for ϒ(1S)) is large compared to the char-
monia (TD ∼ 350 MeV for J/ψ). Thus, one may think
that other suppression mechanisms such as sequential melt-
ing of bottomonia is merely possible in QGP. Although one
may observe that the melting of higher states of bottomo-
nia in QGP as their dissociation temperature is not much as
ϒ(1S) [19]. High TD of ϒ(1S) favors recombination due
to correlated b − b̄ pairs. In this scenario, regeneration of
bottomonium is also possible because of the de-excitation
of correlated b − b̄ or octet state to the singlet states. All
these dissociation and regeneration mechanisms indicate that
the quarkonia production in heavy-ion collisions is a con-
sequence of the complex interplay of various physical pro-
cesses.

An interesting/puzzling category of collisional system is
p–A collision (asymmetric nuclear collision system). The
p–A collisions has been thought to serve as an important
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baseline for the understanding and the interpretation of the
nucleus-nucleus data. These measurements allow us to sepa-
rate out the hot nuclear matter effect from the CNM effects.
The p–A collision was used to quantify the CNM effect,
when the QGP was not expected to be formed in such a small
asymmetric collision systems. Till the last few years, the p–
A experimental data corresponding to quarkonia suppres-
sion have been effectively explained by considering CNM
effects only at various rapidity, pT and centrality [44]. For
instance, the suppression pattern obtained for charmonium
(J/ψ) in d–Au collisions at RHIC is well explained by
CNM effects. Recent experimental data for p–Pb collision
at

√
sNN = 5.02 TeV at LHC open up the possibility of

the hot matter i.e., QGP formation in such a small asymmet-
ric systems [45,46]. It may be possible since the number of
participants (Npart ) in p–Pb collision at centrality class 0–
5% is approximately equal to the Npart in Pb–Pb collision at
centrality class 80–100%. At this centrality class, there is a
finite chance of QGP formation even in p–Pb collisions at the
available LHC energies [47]. If QGP exists in such a small
system, its life-time would obviously be comparatively less
(∼ 2 − 3 fm) than the QGP life-time (∼ 6 − 9 fm) formed
in Pb–Pb collisions.

It is quite a non-trivial task to explain the quarkonia
suppression data available from various heavy-ion collision
experiments obtained at different energies and collision sys-
tems. Various models [18,19,48,49] have been employed to
explain the centrality and transverse momentum (pT ) depen-
dent suppression at mid rapidity. Moreover, only few models
are available that can explain simultaneously pT , rapidity y
and centrality dependent quarkonia suppression data in A–A
collisions [50].

Here our current formulation of gluonic dissociation and
collisional damping is based on the model that has originally
been developed (mainly for the centrality dependence sup-
pression [19]) by the Heidelberg group [19,26,72,73], but
implement refinements such as dilated formation time and
simplifications such as the neglect of the running of the strong
coupling. We have incorporated the transverse momentum
dependence in the currently used gluonic dissociation in a
different way (see Eq. 18). Regeneration of bottomonium
due to correlated b − b̄ pairs has been incorporated in the
present work. Its net effect is to reduce the effective gluonic
dissociation. We then used the formulation to analyze cen-
trality and transverse momentum (pT ) dependence data from
Pb–Pb collision at

√
sNN = 2.76 and 5.02 TeV LHC ener-

gies and p–Pb collision data at
√
sNN = 5.02 TeV have also

been analyzed in the present article.
The current work is an attempt to explain pT and central-

ity dependent suppression data obtained at LHC energies in
A–A and p–A collisions systems utilizing a modified version
of a ‘Unified Model of quarkonia suppression (UMQS)’ [51]
that has been used to mainly explain the centrality depen-

dence. The modifications in the UMQS have been carried
out in order to account for the pT dependence in the formal-
ism. The current model includes the suppression mechanisms
such as shadowing (as a CNM effect), color screening, glu-
onic dissociation and collisional damping (as a hot matter
effect) along with the regeneration of bottomonium within
QGP medium due to the correlated b − b̄ pairs.

We determine the centrality and pT dependent bottomo-
nium suppression in Pb–Pb as well as in p–Pb collisions at
mid rapidity at energies

√
sNN = 2.76 and 5.02 TeV at

CERN LHC [46,52–56]. We then compare our model pre-
dictions for ϒ(1S) and ϒ(2S) suppression with the cor-
responding experimental data. We find that the experimental
observations agree reasonably well with our model predic-
tions over a wide range of LHC energies and at different
collision systems.

The organization of the paper is as follows. In Sect. 2, the
time evolution of QGP medium and corresponding bottomo-
nium kinematics are discussed. In Sect. 3, the details of key
ingredients of UMQS model such as color screening, gluonic
dissociation, collisional damping, regeneration and shadow-
ing mechanisms are described. Their effects on ϒ(1S) and
ϒ(2S) production is also discussed in this section. In Sect. 4,
we describe our results and discussions on ϒ(1S) and ϒ(2S)

yield at mid rapidity. Finally, in Sect. 5, we summarize and
conclude our research work.

2 Time evolution of QGP and bottomonium kinematics

The formulation of the current work is based on our recent
work [51]. Here we describe the model in brief for the sake of
completeness emphasizing the modifications wherever incor-
porated.

2.1 Bottomonium transport in evolving QGP

The bottomonia production in heavy-ion collisions is gov-
erned by the kinematics of the of b− b̄ pairs in QGP medium
and evolution of the QGP. The bottomonium (ϒ(nl)) forma-
tion and dissociation can be written in terms of one master
equation based on kinetic approach whose original ingredi-
ents are given by Thews et al. [38]:

dNϒ(nl)

dτ
= �F,nl Nb Nb̄ [V (τ )]−1 − �D,nl Nϒ(nl). (1)

The first term in Eq. (1), is a formation term and sec-
ond one corresponds to the dissociation. �F,nl and �D,nl are
the recombination and dissociation rates corresponding to
the regeneration and dissociation of ϒ(nl), respectively. We
approximate that at the initial thermalization time of QGP
(τ0), the number of bottom (Nb) and anti-bottom quarks (Nb̄)
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Table 1 The values of σ NN
ϒ(nl)

and σ NN
bb̄

cross-sections at mid
rapidity [59,60]

√
sNN TeV σ NN

ϒ(1S) σ NN
χb(1P) σ NN

ϒ(2S) σ NN
ϒ(2P) σ NN

ϒ(3S) σ NN
bb̄

pp@2.76 72nb 20nb 24nb 3.67nb 0.72nb 23.28μb

pp@5.02 78nb 25nb 26nb 3.97nb 0.78nb 47.5μb

are produced equal in numbers, Nb = Nb̄ = Nbb̄. The Eq. (1) is
solvable analytically under the assumption of Nϒ(nl) < Nbb̄
at τ0 [39,40]:

Nϒ(nl)(τQGP , b, pT )

= ε(τQGP , b, pT )

[
Nϒ(nl)(τ0, b) + N 2

bb̄

×
∫ τQGP

τ0

�F,nl(τ, b, pT )[V (τ, b)ε(τ, b, pT )]−1dτ

]
.

(2)

Here, Nϒ(nl)(τQGP , b, pT ) is the net number of bottomo-
nium formed during QGP life time τQGP and Nϒ(nl)(τ0, b)
is the number of initially produced bottomonium at time τ0.
We have obtained Nϒ(nl)(τ0, b) using the expression [51]:

Nϒ(nl)(τ0, b) = σ NN
ϒ(nl) TAA(b), (3)

where, TAA(b) is the nuclear overlap function. Its values for
Pb–Pb and p–Pb collisions are taken from Refs. [45,57,58].
Similarly, we have obtained the number of bottom and anti-
bottom quarks given by, Nbb̄ = σ NN

bb̄
TAA(b). The values of

σ NN
ϒ(nl) and σ NN

bb̄
, used in the calculation, are given in Table 1:

Due to lack of the experimental data of σ NN
ϒ(nl) at 5.02

TeV in p–p collision at mid rapidity, we extracted the same
at 5.02 TeV by doing the linear interpolation between 2.76
and 7.00 TeV. We obtain σ NN

χb(1P), σ NN
ϒ(2S), σ NN

ϒ(2P) and σ NN
ϒ(3S)

by considering the feed-down fraction ∼ 28% (σ NN
χb(1P) �

1
4σ NN

ϒ(1S)), ∼ 35% (σ NN
ϒ(2S) � 1

3σ NN
ϒ(1S)), ∼ 5% and ∼ 1% of

σ NN
ϒ(1S), respectively.

In Eq. (2), ε(τQGP ) and ε(τ ) are the decay (or equivalent
suppression) factors for the meson due to gluonic dissociation
and collisional damping at QGP life-time time τQGP and
general time τ , respectively. These factors are obtained using
the following expressions:

ε(τQGP , b, pT ) = exp

[
−
∫ τQGP

τ
′
nl

�D,nl(τ, b, pT ) dτ

]
,

(4)

and

ε(τ, b, pT ) = exp

[
−
∫ τ

τ
′
nl

�D,nl(τ
′, b, pT ) dτ ′

]
. (5)

Here, �D,nl(τ, b, pT ) is the sum of collisional damping
and gluonic dissociation decay rates, discussed in Sect. 3.2.
The initial time limit (τ

′
nl = γ τnl , here γ is Lorentz factor)

is taken as the bottomonium dilated formation time where
the dissociation due to color screening becomes negligible.
In the equilibrated scenario of the QGP, these dissociation
factors strongly depends on rate of evolution of the medium.

2.2 Temperature gradient

The medium formed in the heavy-ion collision experiments
cools, expands and hadronizes very quickly. In our current
UMQS model, we treat a (1 + 1)-dimensional expansion of
the fireball in (3 + 1)-dimensional space-time using the scal-
ing solution as given in Refs. [61,62]. It uses the tempera-
ture (T (τ, b)) and volume (V (τ, b)) evolution of the medium
determined by employing the quasi-particle model (QPM)
equation of state (EoS) of the medium and density distribu-
tion of colliding nuclei. QPM EoS is used to describe the
more realistic QGP medium unlike bag model EoS, which
describes ideal QGP medium. QPM EoS considers QGP as
a viscous medium and accounts for partonic interactions as
well. It has been frequently used to analyze data. Whereas,
bag model EoS describes ideal QGP which is unable to
explain the collectivity of QGP medium formed at RHIC and
LHC energies. We use cooling law of temperature derived by
using QPM EoS. It shows a deviation from bag model EoS
based T 3τ cooling law. Temperature is taken to be propor-
tional to the cube root of the number of participants(Npart )
similar to bag model EoS based T 3τ law for QGP evolution.
It takes the following form after combining its variation with
the centrality;

T (τ, b) = Tc

(
Npart (b)

Npart (b0)

)1/3

×
⎡
⎣( τ

τQGP

)( 1
R −1

) (
1 + a

b′T 3
c

)
− a

b′T 3
c

⎤
⎦

1/3

.

(6)

From above equation, it is clear that a temperature of
QGP depends on proper time (τ ) and the centrality of the
collision (impact parameter, b). The values of parameters
a = 4.829 × 107 MeV 3 and b

′ = 16.46, are obtained from
the fit as given in Ref. [63]. Here Tc ≈ 170 MeV is the criti-
cal temperature for QGP formation and τQGP is the life-time
of QGP. Its values are given, at different center-of-mass ener-
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Table 2 We obtained the initial temperature, T0, using initial (thermalization) time (τ0) and QGP lifetime (τQGP ) for Tc = 170 MeV, corresponding

to collision system and their respective center of mass collision energy
√
sNN at most central collisions, i.e. Npart (b)

Npart (b0)
= 1

√
sNN (TeV) τ0 (fm) T0 (MeV) τQGP (fm) Ttr (τ0) (MeV) τ trqgp (fm)

PbPb@2.76 0.3 485 7.0 455 3.7

PbPb@5.02 0.13 723 10.0 620 4.3

pPb@5.02 0.3 366 3.0 342 1.63

0 1 2 3 4 5 6 7 8 9 10
τ  (fm)
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100
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T(
τ )

  (
M

eV
)

T(τ) From BM EoS
T(τ) From QPM EoS
Ttr(τ) From QPM EoS

Fig. 1 Variation of temperature with proper time (τ ) is compared in
between ideal or Bag model (BM) equation of state and quasi-particle
model (QPM) equation of state. The cooling rate of temperature cor-
responding to transverse expansion (Ttr (τ )) correction in (1 + 1)-
dimensional QPM EoS is also plotted

gies, in Table 2. The Npart (b0) is the number of participant
corresponding to the most central bin as used in our calcula-
tion and Npart (b) is the number of participant corresponding
to the bin at which the temperature is to be determined. R
is the Raynolds number, which describes the time evolution
of the QGP medium depending on the medium shear vis-
cosity (η), entropy density (s) and temperature (T ), given as;

R =
[

3
4
T τ s
η

]
[63,64]. It increases monotonically towards the

limiting case, R 
 1. If R is sufficiently large such that R−1

approaches to zero, Eq. 6 reduces to an ideal QGP (based on
bag model EoS) cooling law. For temperature, it is expressed
as [51,65]:

T (τ, b) = Tc

(
Npart (b)

Npart (b0)

)1/3 (τQGP

τ

)1/3
. (7)

In Fig. 1, we have compared the temperature cooling law
for QGP medium corresponding to the bag model (BM) and
quasi-particle model (QPM) equation of states. Initially at
τ ∼ 0.1 − 1.0 fm, QGP medium cools down with the same
rate for both, BM as well as QPM EoS based expansion.
In the due course of time, R decreases (i.e., R−1 
 0),
which leads to the faster cooling of QGP medium corre-

sponding to QPM EoS based expansion, as shown in Fig. 1.
In the case of symmetric ultra-relativistic nucleus-nucleus
collisions, (1 + 1)-dimensional Bjorken’s scaling solution
seems to give a satisfactory results. In order to get a tentative
estimate of the impact of the transverse expansion on our
results, transverse expansion can be incorporated as a cor-
rection in (1 + 1)-dimensional hydrodynamics using QPM
EoS, by assuming that transverse expansion starts at time
τtr > τ0. The τtr is estimated by considering that thermody-
namical densities are homogeneous in the transverse direc-

tion, so τtr can be written as: τtr ∼= τ + r
cs

(
√

2−1√
2

) [66,67].
Here r is the transverse distance and cs is speed of sound
in the QGP medium. Using τtr , we calculated the cooling
rate of temperature corresponding to transverse expansion
(Ttr (τ )) correction in (1 + 1)-dimensional expansion based
on QPM EoS. As expected, Fig. 1 depicts that the transverse
expansion makes the cooling of QGP medium faster as com-
pared to that in (1+1)-dimensional scaling solution case. As
a result of this, QGP life-time (τ trqgp corresponding to trans-
verse expansion correction) would be reduced as given in
Table 2.

The values of T0 at LHC energies mentioned in the
Table 2 are comparable with T0 values used to explain the
bulk observables (hadron spectra, flow coefficients, etc.) and
dynamical evolution of the QGP medium [65,68–71]. Ttr (τ0)

mentioned in the Table 2, is the temperature at τ = τ0 but
at some finite initial transverse position, r = 0.45 fm (say)
and that is why we obtained Ttr (τ0) < T0. Also the time
taken by the QGP to reach its temperature to Tc from T0 i.e.,
QGP life-time would be reduced if transverse expansion is
included in the calculation. For p–Pb collisions, T0 reached
in the most central bin are considerably higher than the tem-
perature reached in peripheral ones in Pb–Pb collisions. It
supports the idea of QGP like medium formation even in
asymmetric p–Pb collisions at

√
sNN = 5.02 TeV.

QGP possesses light and heavy quark species along with
the heavy mesons. In its evolution the heavy quark and/or
heavy mesons may not experience the same temperature
as medium does. Therefore, in the current work, we utilize
the relativistic Doppler shift caused by the relative velocity
(vr ) between medium and bottomonia to obtain an effective
temperature felt by the bottomonium. The velocities of the
medium and bottomonium are denoted by vm and vϒ(nl),
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respectively. This relativistic Doppler shift causes an angle
dependent effective temperature (Tef f ), expressed as given
in Refs. [72,73]:

Tef f (θ, |vr |) = T (τ, b)
√

1 − |vr |2
1 − |vr | cos θ

, (8)

where θ is the angle between vr and incoming light par-
tons. To calculate the relative velocity, vr , we have taken
medium velocity, vm = 0.5c ∼ 0.7c, and bottomonium
velocity vϒ(nl) = pT /ET . Here pT is transverse momen-

tum of bottomonia and ET =
√
p2
T + M2

nl is its transverse
energy, Mnl is the mass of corresponding bottomonium state.
We have averaged Eq. (8) over the solid angle and obtained
the average effective temperature given by:

Tef f (τ, b, pT ) = T (τ, b)

√
1 − |vr |2
2 |vr | ln

[
1 + |vr |
1 − |vr |

]
. (9)

In the current UMQS model, Tef f reduces the central-
ity and pT dependent suppression of bottomonium states
(ϒ(1S), ϒ(2S), etc.) at mid rapidity in heavy ion collisions.

2.3 Volume expansion

The evolution of the QGP volume depends on the centrality
of the collision and proper time τ . We consider here the isen-
tropic evolution of the QGP and use the quasi particle model
(QPM) equation of state (EoS) [63]. We have evaluated the
volume profile of the medium, V (τ, b), given as;

V (τ, b) = v0(b)
(τ0

τ

)( 1
R −1

)
. (10)

Here, v0(b) is the initial volume at time τ0, given by,
v0(b) = τ0AT (b). Here AT is the transverse overlap area.
We have calculated AT using Monte Carlo Glauber (MCG)
model package [74].

3 In-medium ϒ(1S) and ϒ(2S) production

We describe below the suppression mechanisms in brief
along with the regeneration process. In this section, CNM
effect has also been briefly discussed. The input parameters
used in the model for calculating the bottomonium suppres-
sion in QGP medium are given in Table 3.

3.1 Color screening

Free flowing partons in the QGP medium screen the color
charges in b − b̄ bound states which leads to the dissocia-
tion of bound states, or prevents to form bound states. This

Table 3 The values of mass (Mnl ), dissociation temperature (TD) and
formation time (τ f ) are taken from Refs. [19,80,81]

ϒ(1S) χb(1P) ϒ(2S) χb(2P) ϒ(3S)

Mnl (GeV) 9.46 9.99 10.02 10.26 10.36

TD (MeV) 668 206 217 185 199

τ f (fm) 0.76 2.6 1.9 3.1 2.0

screening of color charges in QGP is analogous to the screen-
ing of electric charges in the ordinary QED plasma. Color
screening of the real part of the quark-antiquark potential is
an independent suppression mechanism which dominates in
the initial phase of QGP where medium temperature is very
high. Original color screening mechanism [75] have been
modified by Mishra et al. [63,76,77] by parametrizing pres-
sure in the transverse plane instead of energy density. The
key ingredients of color screening mechanisms are the pres-
sure profile and cooling law of pressure based on the QPM
EoS. We have taken pressure profile in transverse plane as a
function of transverse distance, r . We assumed that pressure
almost vanishes at phase boundary, i.e. r = RT , where RT is
the transverse radius of cylindrical QGP. This is analogous to
the pressure variation with temperature which is maximum
at central axis and almost vanishes at T = Tc. The form of
pressure profile is given as [63,77]:

p(τ0, r) = p(τ0, 0)h(r);

h(r) =
(

1 − r2

R2
T

)β

θ(RT − r). (11)

The factor p(τ0, 0) is obtained in the Refs. [63,77]. h(r)
is the radial distribution function in transverse direction and
θ is the unit step function. The exponent β in above equation
depends on the energy deposition mechanism [76]. In Fig. 2,
we have shown that the change in the pressure profile at
τ = τ0 with respect to transverse distance (r ), corresponding
to various values of β. β = 1.0 corresponds to the hard A–A
collisions (e.g.,

√
sNN = 2.76 TeV) while values of β < 1

refers to the relatively soft collisions. As shown, in Fig. 2
pressure is maximum at the central axis and it vanishes at the
transverse boundary (r = RT ) of the cylindrically symmetric
QGP medium.

Now, the cooling law of pressure as the function of time
(τ ) is given by [63,77]:

p(τ, r) = A + B

τ q
+ C

τ
+ D

τ c
2
s

(12)

where A = -c1, B = c2c2
s , C = 4ηq

3(c2
s−1)

and D = c3, here

c1, c2, c3 are constants and have been calculated using dif-
ferent boundary conditions on energy density and pressure.
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Fig. 2 Pressure profile, p(τ0, r) is plotted against the transverse dis-
tance, r for various values of β

Other parameters are defined as; cs is speed of sound in QGP
medium, η is shear viscosity of medium and q = c2

s + 1.
Determining the pressure profile at initial time τ = τ0 and at
screening time τ = τs , we get:

p(τ0, r) = A + B

τ
q
0

+ C

τ0
+ D

τ
c2
s

0

= p(τ0, 0) h(r) (13)

p(τs, r) = A + B

τ
q
s

+ C

τs
+ D

τ
c2
s

s

= pQGP . (14)

Here, pQGP is QGP pressure inside the screening region.
Putting cooling law and pressure profile together and equat-
ing screening time to the dilated formation time t f = γ τnl
at the screening boundary, where γ is a Lorentz factor and
τnl is intrinsic formation time of bottomonia), we determined
the radius of the screening region, rs . Color screening of bot-
tomonia state strongly depends on its dissociation tempera-
ture, TD and the effective temperature, Tef f . Screening radius
define a region where effective medium temperature is more
than the quarkonia dissociation temperature (Tef f ≥ TD).
Therefore, the quarkonia formation becomes unlikely inside
the screening region. If Tef f < TD , then rs → 0 which sug-
gests that melting of the quarkonia due to color screening
would be negligible in such a situation.

The b − b̄ pairs formed inside screening region at a point
rϒ , may escape the region, if |rϒ + vϒ t f | > rs . Here
vϒ = pT /ET , is bottomonium velocity, where pT and
ET are transverse momentum and transverse energy, respec-
tively. The condition for escape of b− b̄ pair is expressed as:

cos(φ) ≥ Y ; Y = (r2
s − r2

ϒ)Mnl − τ 2
nl p

2
T /Mnl

2 rϒ pT τnl
, (15)

where, φ is azimuthal angle between the velocity (vϒ ) and
position vector (rϒ ), and m is mass of particular bottomo-
nium state.
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1 < pT < 30 GeV

Fig. 3 Corresponding to various values of parameterα, color screening
survival probability (Sc) is plotted for ϒ(1S) as the function of centrality
in Pb–Pb Collisions at

√
sNN = 2.76 TeV LHC energies

Based on Eq. (15), the allowed values of the azimuthal
angle, φmax (r) for survival of bottomonium is expressed as:

φmax (r) =

⎧⎪⎪⎨
⎪⎪⎩

π if Y ≤ −1
π − cos−1 |Y | if 0 ≥ Y ≥ −1
cos−1 |Y | if 0 ≤ Y ≤ −1
0 if Y ≥ 1

⎫⎪⎪⎬
⎪⎪⎭

.

Here r is the the radial distance at which b − b̄ pair is
formed inside the QGP medium.

The integration over φmax along with radial distance r
gives the escape probability of b− b̄ pair from the screening
region. We defined this survival probability of bottomonium
states due to color screening as Sϒ

c . The survival probability,
Sϒ
c , for a particular bottomonium state is expressed as:

Sϒ
c (pT , b) = 2(α + 1)

πR2
T

∫ RT

0
dr r φmax (r)

{
1 − r2

R2
T

}α

,

(16)

where α = 0.5, as taken in work done by Chu and Matsui and
Mishra et al. [75,76]. The transverse radius, RT is a function
of impact parameter, (b). We have calculated it using the
transverse overlap area AT as; RT (b) = √

AT /π .
The value of α is chosen in such a way that beyond the

chosen value, color screening mechanism becomes almost
independent with respect to change in its values. In Fig. 3,
suppression of ϒ(1S) almost coincides for values of α ≥ 0.5,
while it is a bit sensitive for the values of α < 0.5. Therefore,
in our current work, we have fixed α = 0.5.

In our calculation, we have found that color screening
effect for ϒ(1S) state is negligible because of its high disso-
ciation temperature while a significant color screening effect
on ϒ(2S) can be seen in Fig. 4.
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Fig. 4 Color screening for ϒ(1S) and ϒ(2S) versus NPART in Pb–Pb
Collisions at LHC energies

The centrality dependent dissociation of bottomonia in
QGP due to collisional damping and gluonic dissocia-
tion mechanisms was originally formulated by Wolschin
et al. [19,26,72,78,79]. In the present work, we modified
their gluonic dissociation and collisional damping model and
incorporated the transverse momentum dependence.

3.2 Collisional damping

We determine the bottomonium dissociation due to colli-
sional damping by taking the help of effective potential mod-
els. We utilized here the singlet potential for b−b̄ bound state
in the QGP medium, which is given as [19,31,82]:

V (r,mD)

= σ

mD
(1 − e−mD r ) − αe f f

(
mD + e−mD r

r

)

−iαe f f Te f f

∫ ∞

0

2 z dz

(1 + z2)2

(
1 − sin(mD r z)

mD r z

)
, (17)

In Eq. (17), first and second term in the right hand side is
the string and the coulombic terms, respectively. The third
term in the right hand side is the imaginary part of the
heavy-quark potential responsible for the collisional damp-
ing. Details of the parameters used in Eq. (17) is as following:

• σ is the string tension constant between bb̄ bound state,
given as σ = 0.192 GeV2.

• mD is Debye mass, mD = Tef f

√
4παT

s

(
Nc
3 + N f

6

)
, and

αT
s is coupling constant at hard scale, as it should be

αT
s = αs(2πT ) ≤ 0.50. We have taken αT

s � 0.4430.
Nc = 3, N f = 3.

• αe f f is effective coupling constant, depending on the
strong coupling constant at soft scale αs

s = αs(mbαs/2)

� 0.48, given as αe f f = 4
3αs

s .

Using the imaginary part of the complex potential, we
obtain the bottomonium dissociation factor in terms of decay
rate due to collisional damping, �damp,nl . It is calculated
using first order perturbation, by folding of imaginary part
of the potential with the radial wave function and given by:

�damp,nl(τ, pT , b) =
∫

[gnl(r)† [Im(V )] gnl(r)]dr, (18)

where, gnl(r) is the bottomonia singlet wave function. Corre-
sponding to different values of n and l (here n and l has there
usual meanings), we have obtained the wave functions by
solving the Schrödinger equation for ϒ(1S), ϒ(2S), χb(1P),
χb(2P) and ϒ(3S).

3.3 Gluonic dissociation

Gluonic dissociation mechanism is based on the excitation
of singlet state to octet state as a result of absorption of E1
gluons (soft gluons) by a singlet state. It is seen that the glu-
onic dissociation of bottomonia is significant at mid rapidity
due to high enough gluon density in this region. The glu-
onic dissociation triggered by soft gluons which leads to the
dissociation of singlet state. The gluonic dissociation cross-
section is given as [19]:

σd,nl(Eg) = π2αu
s Eg

N 2
c

√
mb

Eg + Enl

×
(
l|Jq,l−1

nl |2 + (l + 1)|Jq,l+1
nl |2

2l + 1

)
, (19)

where, Jql
′

nl is the probability density obtained by using the
singlet and octet wave functions as follows:

Jql
′

nl =
∫ ∞

0
dr r g∗

nl(r) hql ′(r) (20)

and

• mb = 4.89 GeV, is the mass of bottom quark.
• αu

s � 0.59 [19], is coupling constant, scaled as αu
s =

αs(αsm2
b/2).

• Enl is energy eigen values corresponding to the bottomo-
nia wave function, gnl(r).

• the octet wave function hql ′(r) has been obtained by
solving the Schrödinger equation with the octet poten-
tial V8 = αe f f /8r . The value of q is determined using
conservation of energy, q = √

mb(Eg + Enl).
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The Schrödinger wave equation has been solved by taking
a 104 point logarithmically spaced finite spatial grid and solv-
ing the resulting matrix eigen value equations [80,81]. For
the octet modeling, the potential is repulsive, which implies
that the quark and anti-quark can be far away from each other.
To account for this, the finite spatial grid is taken over a very
large distance, namely 102, as an approximation for infin-
ity. The octet wave function corresponding to large b − b̄
distance have negligible contribution to the gluonic dissoci-
ation cross-section.

To obtain the gluonic dissociation decay rate, �gd,nl of
a bottomonium moving with speed vϒ , we have calculated
the mean of gluonic dissociation cross-section by taking its
thermal average over the modified Bose–Einstein distribution
function for gluons in the rest frame of bottomonium, as
suggested in [26]. The modified gluon distribution function
is given as, fg = 1/(exp[ γ Eg

Tef f
(1+vϒ cos θ)]−1), where γ is

a Lorentz factor and θ is the angle between vϒ and incoming
gluon with energy Eg .

Thus the gluonic dissociation decay rate can be written as:

�gd,nl(τ, pT , b)

= gd
4π2

∫ ∞

0

∫ π

0

dpg dθ sin θ p2
gσd,nl(Eg)

e

{
γ Eg
Te f f

(1+vϒ cos θ)

}
− 1

, (21)

where pT is the transverse momentum of the bottomonium
and gd = 16 is the number of gluonic degrees of freedom.

Now summing the decay rates corresponding to the colli-
sional damping and the gluonic dissociation, one obtains the
combined effect in terms of total dissociation decay width
denoted by, �D,nl(τ, pT , b) and is given by [19]:

�D,nl = �damp,nl + �gd,nl . (22)

The total decay width for ϒ(1S) is a monotonically
increasing function of effective temperature as shown in
Fig. 5, but a non-monotonic behaviour is observed for ϒ(2S)

as shown in the same figure. For ϒ(2S), boost in �D around
Tef f ≈ 200 MeV, is due to the Debye mass (MD) which is
also a function of Tef f . The Debye mass initiates the sequen-
tial melting of ϒ(2S) near its dissociation temperature and
dissociate it completely at Tef f > TD .

3.4 Regeneration factor

In order to account for the regeneration via correlated b − b̄
pairs in our current UMQS model, we considered the de-
excitation of octet state to singlet state via emitting a gluon.
We calculated this de-excitation in terms of recombination
cross-section σ f,nl for bottomonium in QGP by using the
detailed balance from the gluonic dissociation cross-section
σd,nl [51]:

0 0.1 0.2 0.3 0.4 0.5
Teff  (GeV)

0

0.1

0.2

0.3

0.4

Γ D
 (G
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)

ΓD for Y(1S)
ΓD for Y(2S)

pT < 30 GeV

|y| < 2.4

Fig. 5 Variation of ϒ(1S) and ϒ(2S) total decay width along with its
components i.e., gluonic dissociation and collisional damping versus
effective temperature

σ f,nl = 48

36
σd,nl

(s − M2
nl)

2

s(s − 4 m2
b)

. (23)

Here, s is the Mandelstam variable, related with the center-
of-mass energy of b−b̄ pair, given as; s = (pb + pb̄)

2, where
pb and pb̄ are four momentum of b and b̄, respectively.

Now, we calculate the recombination factor, defined by
�F,nl =< σ f,nl vrel >pb , by taking the thermal average of
product of recombination cross-section and relative velocity
vrel between b and b̄ using modified Fermi-Dirac distribution
function for bottom quark and anti-bottom quark at temper-
ature Tef f . It is given by [41]:

�F,nl =
∫ pb,max
pb,min

∫ pb̄,max
pb̄,min

dpb dpb̄ p2
b p2

b̄
fb fb̄ σ f,nl vrel∫ pb,max

pb,min

∫ pb̄,max
pb̄,min

dpb dpb̄ p2
b p2

b̄
fb fb̄

,

(24)

where, pb and pb̄ are 3-momentum of bottom and anti-
bottom quark, respectively. The fb,b̄ is the modified Fermi–
Dirac distribution function of bottom, anti-bottom quark and
expressed as; fb,b̄ = λb,b̄/(e

Eb,b̄/Tef f + 1). Here Eb,b̄ =√
p2
b,b̄

+ m2
b,b̄

is the energy of bottom and anti-bottom quark,

in medium and λb,b̄ is their respective fugacity terms [83]. We
have calculated the relative velocity of b− b̄ pair in medium
given by:

vrel =
√√√√ (pμ

b pb̄μ)2 − m4
b

p2
b p2

b̄
+ m2

b(p
2
b + p2

b̄
+ m2

b)
. (25)

Since gluonic dissociation increases with the increase in
temperature, it leads to the production of significant number
of b − b̄ octet states in central collision where temperature
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Fig. 6 Variation of ϒ(1S) recombination factor (�F ) versus transverse
momentum (pT ) plotted for Tef f = 200 MeV and 400 MeV

is found more than 300 MeV. Such that the de-excitation of
b − b̄ octet states to ϒ(1S) enhance the the regeneration of
ϒ(1S) in central collisions as compared with the peripheral
collisions. This can be seen in the Fig. 6, where the value
of �F is higher at Tef f = 400 MeV as compared with at
Tef f = 200 MeV. From the same figure, it is also clear that the
recombination due to correlated b− b̄ pair is more significant
at high pT . This is because the gluonic excitation decreases
at high pT , so the de-excitation of b − b̄ octet state into
ϒ(1S) become more probable with increasing pT . Moreover,
regeneration due to un-correlated q−q̄ pair dominates at low
pT and decreases rapidly at high pT [59,84]. Thus, quarkonia
regeneration due to correlated q − q̄ pair is on the contrary
with the regeneration due to un-correlated q − q̄ pairs.

3.5 Cold nuclear matter effect

We have already discussed shadowing, absorption and
Cronin effect as the three main nuclear effects on the char-
monium production. Only shadowing has been incorporated
in the current work since it is the dominant CNM effect.

We have used the EPS09 parametrization to obtain the
shadowing for nuclei, with atomic mass number A, momen-
tum fraction x , and scale μ, Si (A, x, μ) [85,86]. The spatial
variation of shadowing can be given in terms of shadowing
and the nucleon density ρA(r, z) as follows:

Siρ(A, x, μ, r, z) = 1 + Nρ[Si (A, x, μ) − 1]
∫
dz ρA(r, z)∫
dz ρA(0, z)

,

(26)

where Nρ is determined by the following normalization con-
dition [80,81];

1

A

∫
d2rdz ρA(s) Siρ(A, x, μ, r, z) = Si (A, x, μ). (27)

The suppression factor due to shadowing is defined as:

Ssh(pT , b) = dσAA/dy

TAA dσpp/dy
(28)

As mentioned in Ref. [87], the color evaporation model
gives, σAA and σpp, as follows:

σAA =
∫

dz1 dz2 d2r dx1 dx2 [ f ig(A, x1, μ, r, z1)

× f j
g (A, x2, μ, b − r, z2) σgg→QQ(x1, x2, μ)].

(29)

The momentum fractions x1 and x2 are given as x1 =
MT /[e−y√sNN ] and x2 = MT /[ey√sNN ], where MT =√
M2

ϒ + p2
T .

σpp =
∫

dx1 dx2 [ fg(p, x1, μ) fg(p, x2, μ)

σgg→QQ(x1, x2, μ)]. (30)

Here, x1 and x2 are the momentum fraction of the gluons
in the two nuclei and they are related to the rapidity [80,81].
The superscripts i and j refer to the projectile and target
nuclei, respectively.

The function f ig(A, x, μ, r, z1) is determined from the
gluon distribution function in a proton fg(p, x, μ) by using
the following relations:

• f ig(A, x1, μ, r, z1) = ρA(s)Si (A, x1, μ, r, z) fg
(p, x1, μ).

• f j
g (A, x2, μ, b − r, z2) = ρA(s)S j (A, x2, μ, b −

r, z) fg(p, x2, μ).

The value of the gluon distribution function fg(p, x, μ)

in a proton (indicated by label p) has been estimated by using
CTEQ6 [88].

In Fig. 7, initial suppression of ϒ(1S) due to shadow-
ing effect is plotted as the function of transverse momen-
tum pT , it shows effective shadowing effect at low pT
which decreases with increasing pT . The suppression of
ϒ(1S) due to shadowing is more in same collision system
at

√
sNN = 5.02 TeV as compared with

√
sNN = 2.76

TeV, indicates that the medium formed in Pb–Pb collision
at

√
sNN = 5.02 TeV is much hot and dense. The same

explains the shadowing pattern of ϒ(1S) in p–Pb collision
at

√
sNN = 5.02 TeV.

3.6 Final yield

Net production of bottomonium states in A–A and p-A col-
lisions is obtained after taking into account the hot and cold
nuclear matter effects. As CNM effects suppress the initial
production of quarkonia, we have replaced the Nϒ(nl)(τ0, b)
in Eq. (2) by initial number of suppressed bottomonia given
as:
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Ni
ϒ(nl)(τ0, pT , b) = Nϒ(nl)(τ0, b) Ssh(pT , b). (31)

Now Eq. (2) can be re-written as:

N f
ϒ(nl)(pT , b)

= ε(τQGP , b, pT )

[
Ni

ϒ(nl)(τ0, pT , b) + N 2
bb̄

×
∫ τQGP

τ0

�F,nl(τ, b, pT )[V (τ, b)ε(τ, b, pT )]−1dτ

]
.

(32)

The survival probability of bottomonium in A–A and/or
p–A collisions due to shadowing, gluonic dissociation along
with collisional damping is defined as Sϒ

sgc:

Sϒ
sgc(pT , b) = N f

ϒ(nl)(pT , b)

Nϒ(nl)(τ0, b)
. (33)

We have assumed here that at the initial thermalization
time of QGP, color screening is the most dominating mecha-
nism and would not allow for the bottomonium to be formed.

However, as QGP cools down, its effect on quarkonia sup-
pression decreases and becomes insignificant at the time
of formation of bottomonium state. We have incorporated
the color screening in the model as an independent mech-
anism with the other suppression mechanisms of QGP. We
expressed the net yield in terms of survival probability, which
is given by:

SP (pT , b) = Sϒ
sgc(pT , b) Sϒ

c (pT , b). (34)

Accounting of the feed-down of higher bottomonium
states into ϒ(1S), is advocated in many articles. In present
work, feed-down of χb(1P) and ϒ(2S) into ϒ(1S) is incor-
porated using mechanism adopted from Refs. [19,51]. We
include χb(2P) and ϒ(3S) in feed-down, although the con-
tribution of χb(2P) and ϒ(3S) into ϒ(1S) is found to be
very less as compare with χb(1P) and ϒ(2S). While feed-
down of χb(2P) and ϒ(3S) into ϒ(2S), effectively suppress
its production. Feed-down fractions for ϒ(2S), we have con-
sidered that ∼ 65% of ϒ(2S) come up by direct production
whereas ∼ 30% is from the decay of χb(2P) and ∼ 5% is
from the decay of ϒ(3S). Similarly, feed-down for ϒ(1S)

is obtained by considering that ∼ 68% of ϒ(1S) come up
by direct production whereas ∼ 17% is from the decay of
χb(1P) and ∼ 9% is from the decay of ϒ(2S). The feed-
down of χb(2P) and ϒ(3S) into ϒ(1S) is taken as ∼ 5%
and ∼ 1%, respectively. The ϒ(1S) yield of a mixed system
after incorporating feed-down correction is expressed as;

S f
P

= 0.68 Nϒ(1S) S
ϒ(1S)
P + 0.17 Nχb(1P)S

χb(1P)
P + 0.086 Nϒ(2S) S

ϒ(2S)
P + 0.051 Nχb(2P)S

χb(2P)
P + 0.01 Nϒ(3S) S

ϒ(3S)
P

0.65 Nϒ(1S) + 0.15 Nχb(1P) + 0.20 Nϒ(2S) + 0.051 Nχb(2P) + 0.01 Nϒ(3S)

(35)

4 Results and discussions

In the present work, we have compared our model predic-
tions on bottomonium suppression with the corresponding
experimental results obtained at LHC energies. Our UMQS
model determines the pT and centrality dependent survival
probability of bottomonium states at mid rapidity in Pb–Pb
collisions at

√
sNN = 2.76 and 5.02 TeV [52,89–91] and

in p–Pb collisions at
√
sNN = 5.02 TeV [92]. We have also

calculated the Sϒ(2S)/ϒ(1S)
P = Sϒ(2S)

P /Sϒ(1S)
P yield ratio and

compared with the available double ratio of nuclear modi-
fication factor, Rϒ(2S)

AA /Rϒ(1S)
AA . The abbreviation “FD” used

in all the figures stands for feed-down correction. The results
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Fig. 8 Survival probability of ϒ(nS) versus pT is compared with
ϒ(nS) nuclear modification factor RAA [89] in Pb–Pb collisions at√
sNN = 2.76 TeV

are compared to the respective experimental data with and
without feed-down correction, as mentioned in the figures.

4.1 pT Dependent suppression

Bottomonium transverse momentum (pT ) dependent nuclear
modification factor, Rϒ(nS)

AA data sets are available corre-
sponding to minimum bias (0–100% centrality). Therefore,
we have calculated the pT dependent survival probability,
(SP ) at minimum bias via taking the weighted average over all
centrality bins and compared with the corresponding Rϒ(nS)

AA
data. The weighted average for SP is given as;

SP (pT ) =
∑

i SP (pT , 〈bi 〉)Wi∑
i Wi

(36)

here i = 1, 2, 3, . . ., indicate the centrality bins. The weight
function Wi is given as, Wi = ∫ bi max

bi min
Ncoll(b)π b db. The

number of binary collision Ncoll is calculated using Monte
Carlo Glauber (MCG) model package [74] for corresponding
collision system.

Figure 8, shows pT dependent suppression in terms of
survival probability of ϒ(1S) and ϒ(2S) in minimum bias
condition at mid-rapidity. It suggests that ϒ(1S) suppression
is a slowly varying function of transverse momentum pT
(remains almost flat with pT ) in comparison with ϒ(2S) in
the QGP medium. In Fig. 8, ϒ(2S) suppression at low pT
is mainly caused by color screening which is almost absent
for ϒ(1S) at

√
sNN = 2.76 TeV. However, in the high

pT range, ϒ(2S) suppression varies very slowly with the
increase in pT values. This variation is mainly due to gluonic
dissociation and collisional damping mechanisms which also
suppress the ϒ(nS) production at low pT like color screening
suppression mechanism.
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|y| < 2.4

Fig. 9 Survival probability of ϒ(nS) versus pT is compared with
ϒ(nS) nuclear modification factor RAA [90] in Pb–Pb collisions at√
sNN = 5.02 TeV

Figure 9 depicts the suppression for Pb–Pb collision at√
sNN = 5.02 TeV, else it is very similar to what is shown

in Fig. 8. Above plot shows that 2S suppression and its vari-
ation with pT is very much similar to what was observed
at

√
sNN = 2.76 TeV energy. But 1S is more suppressed

in the whole pT range as compared to the corresponding
suppression at

√
sNN = 2.76 TeV energy. This enhance-

ment in the suppression of 1S is due to the combined effects
of color screening and gluonic dissociation along with the
collisional damping. Energy deposited in Pb–Pb collisions
at

√
sNN = 5.02 TeV generates the initial temperature,

T0 ∼ 700 MeV, which enables dissociation of ϒ(1S) due to
color screening.

Figure 10 depicts our calculated pT dependent double
yield ratio of bottomonium states in Pb–Pb collisions at√
sNN = 5.02 TeV LHC center-of-mass energy. We have

also shown the pT variation of experimentally observed dou-
ble ratio of bottomonium states in Pb − Pb collision at
the same LHC energy for comparison. Double ratio repre-
sents the production of ϒ(2S) over ϒ(1S) and quantify the
medium effects since shadowing effect is the almost same
for all bottomonium states [85]. Thus suppression in yield
ratio is purely due to QGP medium effect. It is clear from
the Fig. 10 that except the first data point (with a sizable
error bar), our calculated pT variation agrees well with the
measured double ratio of bottomonium states.

In Fig. 11, we have plotted our model predictions in terms
of survival probability of ϒ(1S) and ϒ(2S) versus pT along
with a small suppression in ϒ(1S) at low pT and a bit
enhancement or almost no suppression at high pT observed
in central rapidity region in p − Pb collision at 5.02 TeV
energy. Our model calculation showing small suppression of
ϒ(1S) at low pT which decreases at high pT is consistent
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Fig. 10 The predicted yield ratio of ϒ(2S) to ϒ(1S) is compared with
the observed double ratio, ϒ(2S) to ϒ(1S) in Pb − Pb collision [90]
at 5.02 TeV LHC energy
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Fig. 11 Survival probability of ϒ(1S) versus pT is compared with
ϒ(1S) nuclear modification factor RAA [92] in p–Pb collisions at√
sNN = 5.02 TeV. SP of ϒ(2S) is predicted for same collision system

with the observed suppression data. The less suppression in
bottomonia in p–Pb as compared to Pb–Pb collisions is due
to the short life span of QGP in such a small collision system.
Dissociation mechanisms depend on the bottomonium veloc-
ity vϒ in the QGP medium, so the low pT mesons take more
time to traverse through medium as compared to high pT at
the same QGP medium velocity. Thus, high pT bottomonium
would be less suppressed as observed in p − Pb collision at
LHC energy. Feed down of higher states into 1S boost the
suppression at pT range 1–3 GeV which suggest that higher
resonances are much more suppressed than ϒ(1S) at very
low pT while at mid and high pT they are only bit more sup-
press than 1S. Our model predictions for ϒ(2S) depicts more
suppression at very low pT while a bit more suppression in
the high pT regions as compared to the ϒ(1S) predicted sup-

pression. After taking feed down of ϒ(3S) and χb(2P) into
ϒ(2S), suppression of ϒ(2S) increases but follow the sup-
pression pattern of 2S plotted without feed down. It shows
that all the higher resonances are highly suppressed at very
low pT and at high pT their suppression remains invariant
with pT . Direct ϒ(2S) suppression versus pT data in p−Pb
collisions are needed in order to do a better comparison with
our model prediction for ϒ(2S) correction.

In Figs. 8, 9 feed down correction to ϒ(1S) rises the
suppression at low pT regime which suggest, higher reso-
nances are more suppressed at low pT and their suppression
decreases with increasing pT . For ϒ(2S) suppression, feed
down correction is less significant at very low pT because
ϒ(2S), χb(2P) and ϒ(3S) are almost equally suppressed
at very low pT . The differences in suppression of higher
resonances can be observed at high pT regime through the
feed-down correction to ϒ(2S). Feed down correction for
double ratio plotted in Fig. 10 shows much suppression at
very low pT which is decreasing with increasing pT but
still it predicts over suppression for double ratio. The above
plot shows that our model predictions for ϒ(1S) and ϒ(2S)

matches reasonably well with the experimentally observed
pT dependent suppression data at mid rapidity in Pb–Pb and
p–Pb collisions at LHC energies.

4.2 Centrality dependent suppression

We obtained the centrality dependent survival probability for
ϒ(1S) and ϒ(2S) by averaging over pT . For integrating over
pT we have used the distribution function 1/E4

T as given
in Ref. [50]. Now the pT integrated centrality dependent
survival probability is calculated by integrating Eq. (34) over
pT , as shown below;

SP (b) =
∫ pTmax
pTmin

dpT SP (pT , b)/(p2
T + M2

nl)∫ pTmax
pTmin

dpT /(p2
T + M2

nl)
(37)

In our model calculations, we have used number of par-
ticipants NPART to relate the centrality of collisions to the
measured relative yield in terms of RAA. The pT integrated
survival probability as calculated by our current model is
plotted against NPART in Figs. 12 and 13. Two sets of exper-
imental data are used here for comparison with our results.
First one corresponds to high pT range (5–30 GeV) for Pb–
Pb collisions at

√
sNN = 2.76 TeV and shown in Fig. 12. The

high pT data set is labeled as ‘CMS Result Set I’. Second one
corresponds to the comparatively low pT range (2–20 GeV)
for Pb− Pb collision at the same center-of-mass energy and
shown in Fig. 13. It is labeled by ‘CMS Result Set II’. In
Fig. 12, the calculated bottomonia yields are compared with
the ‘CMS Result Set I’. Figure 13 is the same as Fig. 12
except that later one corresponds to the comparison of our
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Fig. 12 The pT integrated survival probability of ϒ(nS) is com-
pared with RAA versus centrality in Pb-Pb collisions at

√
sNN = 2.76

TeV [52] at pT range: 5 < pT < 30 GeV
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Fig. 13 The pT integrated survival probability of ϒ(nS) is com-
pared with RAA versus centrality in Pb-Pb collisions at

√
sNN = 2.76

TeV [89] at pT range: 2 < pT < 20 GeV

results with the ‘CMS Result Set II’. Our predicted results
for low and high pT , show that ϒ(1S) is less suppressed at
low pT as compared to high pT in the most peripheral colli-
sions. This happens due to a small regeneration of ϒ(1S) at
pT ≈ 1 ∼ 2.5 GeV in the less dense region. While suppres-
sion of ϒ(1S) and ϒ(2S) both at low and high pT becomes
almost identical in the most central collisions, which can be
seen in both the sets of results. In Figs. 12 and 13, our model
results show less suppression for ϒ(2S) at the most periph-
eral collision in comparison with the most central one. The
deposited energy in the most peripheral collision is not high
enough to cause the color screening of ϒ(2S).

QGP medium effects over bottomonium states are observed
in Pb–Pb collision in terms of an yield ratio of ϒ(2S) to
ϒ(1S), commonly named as ‘double ratio’. Our theoreti-
cally determined yield ratio is compared with the measured
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Fig. 14 Double ratio versus centrality corresponding to CMS Data Set
I is compared with ϒ(2S) to ϒ(1S) yield ratio
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Fig. 15 The pT integrated survival probability of ϒ(nS) is compared
with the measured RAA versus centrality in Pb–Pb collisions at

√
sNN =

5.02 TeV [90] in pT range: 1 < pT < 30 GeV

values of double ratio in Pb–Pb collision at
√
sNN = 2.76

TeV [52] in Fig. 14. Except at the first data point which
corresponds to the most peripheral collisions, our results on
double ratio versus centrality show good agreement with the
measured double ratio of ϒ(2S) to ϒ(1S). The feed-down
at

√
sNN = 2.76 TeV energy increases the suppression of

ϒ(1S) and ϒ(2S) a bit, even though agreement with the
data is reasonably good.

Figure 15 shows the comparison of our UMQS results on
pT integrated survival probability in Pb–Pb collision in mid-
rapidity region at

√
sNN = 5.02 TeV with the corresponding

measured RAA values versus centrality. It is obvious from
the above plot that our ϒ(1S) and ϒ(2S) survival probability
variation with Npart matches well with the experimental data.
The ϒ(2S) suppression got reduced in the most peripheral
collision as shown by the CMS data in Fig. 15. It agrees with
our expectation of reduced ϒ(2S) suppression in the most
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Fig. 16 The centrality variation of our calculated yield ratio of ϒ(2S)

to ϒ(1S) is compared with the measured double ratio as a function
of centrality in Pb–Pb collisions obtained from CMS experiment at√
sNN = 5.02 TeV [91]

peripheral collisions. The yield ratio of ϒ(2S) to ϒ(1S) is
compared with double ratio as plotted in the Fig. 16 and it is
consistent with our model prediction for ϒ(1S) and ϒ(2S)

suppression in Pb–Pb collision at 5.02 TeV LHC energy. A
significant effect of feed-down is seen at

√
sNN = 5.02 TeV

energy over the most peripheral to most central collision.
After taking the feed-down our predicted results for ϒ(1S)

yield is showing good agreement with data, while it predicts
over suppression for ϒ(2S) at mid central region.

Our predicted pT integrated survival probability of ϒ(1S)

in p–Pb collision at center-of-mass energy
√
sNN = 5.02

TeV is compared with the respective ATLAS experimental
data in Fig. 17. The available experimental data is plotted
in Ref. [92] in the form of ϒ(1S) to Z boson yield ratio,
RZ
pPb as the function of centrality range. As we are using

NPART to define centrality, we calculated NPART for the
respective centrality range and plotted all the results against
NPART in Fig. 17. For comparison with experimental data,
SP to Z boson yield ratio, SZ

P , is calculated and plotted in
Fig. 17. From the ϒ(1S) experimental data, it is not very clear
whether QGP is formed in p–Pb collisions or not. However
our UMQS results for ϒ(1S) yield suggests a small suppres-
sion in the most central collision but within the experimental
uncertainty. Feed down enhances the suppression from mid
to most central region for both ϒ(1S) and ϒ(2S) while at
low centrality feed down effect is not much significant for
ϒ(1S).

However, indirect ϒ(2S) suppression in terms of double
ratio is plotted in the Fig. 18. The comparison of calculated
yield ratio and the measured double ratio in Fig. 18, clearly
supports our prediction of ϒ(2S) suppression in p–Pb colli-
sions at

√
sNN = 5.02 TeV as shown in Fig 17. Feed-down

in p–Pb collisions at
√
sNN = 5.02 TeV is more significant
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Fig. 17 The centrality variation of pT integrated survival probability
of ϒ(1S) to Z boson yield ratio (SZ

P (1S)) for with and with out feed
down correction is compared with the measured ϒ(1S) to Z boson yield
ratio (RZ

pPb) versus centrality in p–Pb collisions from ATLAS exper-
iment at

√
sNN = 5.02 TeV [92]. Prediction for centrality variation

of pT integrated survival probability of ϒ(2S) to Z boson yield ratio
(SZ

P (2S)) in p–Pb collision at
√
sNN = 5.02 TeV is also plotted for

with and without feed down correction
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Fig. 18 The centrality variation of our calculated yield ratio of ϒ(2S)

to ϒ(1S) is compared with the measured double ratio as a function
of centrality in p–Pb collisions obtained from ATLAS experiment at√
sNN = 5.02 TeV [92]

because these are higher resonances which give rise the sup-
pression of ϒ(1S) since all its alone it is very little suppressed
in p–Pb collisions. Feed down to the ϒ(2S) enhances its sup-
pression and that is the reason in Fig. 18 double ratio with
feed-down agrees well with the ϒ(2S) to ϒ(1S) yield ratio.
Since yield ratio quantifies QGP medium effects, our UMQS
results compared with ATLAS data advocates the formation
of QGP medium at the mid to most central collisions in such
a small asymmetric system.

123



147 Page 16 of 17 Eur. Phys. J. C (2019) 79 :147

5 Conclusions

We have employed our Unified Model of Quarkonia Sup-
pression (UMQS) in order to analyze the ϒ suppression data
obtained from Pb–Pb and p–Pb collisions at

√
sNN = 2.76

and 5.02 TeV LHC energies. Outcomes of UMQS model
show that the bottomonium suppression is the combined
effect of hot and cold nuclear matters. We have observed that
color screening effect is almost insignificant to suppress the
ϒ(1S) production since it only gives suppression in Pb–Pb
central collision at

√
sNN = 5.02 TeV. While ϒ(2S) pro-

duction is suppressed in Pb–Pb and p–Pb collisions at all the
LHC energies. The gluonic dissociation along with the colli-
sional damping mechanisms play an important role in ϒ(1S)

dissociation as they suppress the ϒ(1S) production at less
number of participants in Pb–Pb and p–Pb collisions. Our
model suggests an effective regeneration of ϒ(1S) in suffi-
ciently hot and dense medium formed at much higher colli-
sion energies e.g., Pb–Pb at

√
sNN = 5.02 TeV. This regen-

eration reduces the ϒ(1S) suppression in Pb–Pb collisions at√
sNN = 2.76 and 5.02 TeV energies, while the regeneration

for ϒ(2S) is found almost negligible for all the collision sys-
tems. We found that the UMQS results for ϒ(1S) and ϒ(2S)

yields of bottomonium states agree well with the centrality
and pT dependent ϒ(1S) and ϒ(2S) experimental results
in Pb–Pb collisions at

√
sNN = 2.76 and 5.02 TeV. Based

on the above suppression results, the UMQS model strongly
supports the QGP formation in Pb–Pb collisions. QGP for-
mation in p–Pb collision may not be clearly explained by
bottomonium suppression, because experimental results for
ϒ(1S) suppression are around unity with large uncertainty
and no direct experimental results are available for ϒ(2S)

suppression. However, an indirect experimental information
of ϒ(2S) suppression is available in the form of double ratio.
The UMQS model predicted the ϒ(2S) suppression in p–Pb
collisions. The experimental results for ϒ(2S) to ϒ(1S) dou-
ble ratio support our prediction since observed yield ratio of
ϒ(2S) to ϒ(1S) agrees quite well with our model predic-
tions. Based on the above facts, it can be concluded that
UMQS model advocates the formation of QGP like medium
in p–Pb collisions at

√
sNN = 5.02 TeV. Here, it is worth-

while to note that in our UMQS model, not even a single
parameter is varied freely in order to explain the suppression
data. Although there are few parameters in the model, yet
their values have been taken from the works done by the ear-
lier researchers. It is also to be noted here that more precise
calculation should use the (3+1)-dimensional hydrodynam-
ical expansion contrary to the (1+1)-dimensional expansion
employed in the current work. Although transverse expansion
in the (3+1)-dimensional expansion would slightly enhance
the cooling rate and therefore finally affect the dissociation
as well as regeneration rate yet not very significantly.

Furthermore, work on additional observables is required
to better constrain theoretical models and study the inter-
play between suppression and regeneration mechanisms.
The elliptic flow pattern of charmonium observed in ultra-
relativistic heavy-ion collisions at LHC energies is one such
observable. It is important to test the degree of thermalization
of heavy quarks. It is also of paramount interest in discrimi-
nating between quarkonium production from initial hard col-
lisions and from recombination in the QGP medium. In our
future work, we will attempt to concentrate on the above
mentioned issue.
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