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Abstract It is a standard practice to ignore the initial
kinetic term in an inflationary analysis. Here, we overrule
this practice to analyze pre-inflationary, inflationary and post-
inflationary dynamics of the original Higgs-inflation model
from a wider view. To this end, our calculations are not
restricted to slow-roll regime. Perhaps, the most interest-
ing result that we have found is the behavior of the field
trajectories which begin their way from a phantom origin,
before reaching a quasi de Sitter partial attractor. Both ana-
lytical and numerical calculations ultimately confirm that for
the original Higgs inflation scenario the mentioned de Sitter
path ends in an oscillatory phase which is the required condi-
tion for having (p)reheating. This achievement discriminates
the current research from the previous studies about the late
time phantom crossing scenarios which often end in a de Sit-
ter future world. This confirms that a phantom energy epoch
may deliver much more than has been thought earlier. In
our calculations, we have employed the dynamical system
method and explain the results both analytically and through
the plotted numerical calculations. Beside the present results,
the dynamical system approach can be used in other studies
which deal with non-minimal gravity models. Reducing the
number of dynamical variables to two enables us to enjoy the
two dimensional phase diagram which is very elusive.

1 Introduction

The attempt to modify the general relativity theory has a
long history and has begun almost simultaneously as the
general relativity inception [1]. There are almost three cat-
egories to deal with the general relativity modifications, all
are inspiring and have been remained in the mainstream of
the physics research and have even become the fundamental
idea for many other theoretical proposals. These categories
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are; assuming higher dimensions, generalizing the Hilbert–
Einstein action to an arbitrary function of Ricci scalar ( f (R)

theories) and assuming nontrivial interaction between grav-
ity and matter (non-minimal coupling).

Assuming higher dimensions which mostly includes new
spatial dimension(s) is one of the most interesting ideas and
although it has begun from the beautiful works of Kaluza
(1921) [2] and Klein (1926) [3], one may find new version
of it in pioneering and modern theories of the string theory,
the M theory, the brane models and so on. On the other hand,
adding spatial dimension(s) to our usual four dimensional
space-time, immediately results in some new terms in the
Einstein–Hilbert action which are known as Lovelock terms
[4]. Of course, one is free to keep these new terms or accept
the 4-dimensional Hilbert–Einstein Lagrangian form to out-
spread in higher dimensions. Disregarding the perspective
one chooses to consider the higher dimensional theories, one
can accommodate more ideas into the theory of gravity.

The other two modifications of the general theory of rel-
ativity ( f (R) models and non-minimal coupling between
mater and gravity) are somehow connected since one can
make the additional scalar degree of freedom of the f (R)

model to appear in the form of Brans–Dicke non-minimal
coupling theory or even Einstein–Hilbert theory using con-
formal transformations [5].

Here, we do not aim to discuss the pros and cons of the
above competitive theories. It is also out of the scope of the
present work to reopen the old dispute about the physical
equivalence of the conformally related Einstein and Jordan
frames [6]. Instead, we focus on a typical form of Higgs-
Inflation model and try to analyze it through the dynamical
system approach.

It is of much interest to unify standard model Higgs field as
the only available scalar degree of freedom in particle physics
[7–9] with inflaton scalar field as the most attractive solution
for many cosmological dilemmas [10–12]. One may even
be tempted to unify the standard model symmetry breaking
to the emergence of the inflation process. Unfortunately, the
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former idea has a serious barrier to overcome; although the
symmetry breaking mechanism is suitable enough to be an
inflationary candidate, both the vacuum energy level and the
self coupling constant values have to be much far from the
corresponding parameters in the standard model of fields and
particles [13–17]. In this regard, the energy level in which the
Higgs mechanism triggers the symmetry breaking lies con-
siderably lower than any inflationary scenario. In spite of
the above disappointing fact, there are some nontrivial mod-
els to deal with the problem [18]. The first and the most
well-known idea among others has been unifying the Higgs
and the inflaton field through a non-minimal interaction with
curvature [17,19–21]. We denote this non-minimal Higgs
inflation scenario as the “original Higgs inflation” through-
out the paper. Although the energy gap between Higgs sym-
metry breaking and inflation remains irreconcilably large in
the original Higgs inflation model, but the theory becomes
more economic since one is not required to infix a new scalar
degree of freedom in the delicate structure of the standard
model of fields and particles, and if this is not yet enough,
the next advantage is preventing the electroweak vacuum to
decay as a metastable local minimum; The quantum correc-
tions which are the consequence of assuming non-minimal
interaction between the Higgs field and the curvature com-
pensates the running of the self coupling, preventing the
model from developing another vacuum with lower energy
than the electroweak vacuum. Existence of a new stable vac-
uum makes the higher electroweak vacuum metastable [22–
25], which means that the universe which is supported by
such metastable vacuum finally decays by penetrating to the
lower minimum through the quantum true vacuum bubble
creation [26,27]. One may propose increasing the lifetime
of the metastable electroweak vacuum to exceed the lifetime
of the universe as a quick remedy for the problem, but this
proposition arises another question; why our universe has
chosen the metastable minimum instead of the stable one
during the inflation [28]? The Higgs inflation resolves the
problem by adding quantum corrections to the running of the
self coupling constant in the right way [23]. This hypothesis
does not require any new constraint on the reheating and pre-
heating processes [29,30] since it is enough for the inflaton
field to settle in a less than the GUT energy scale after the
inflation [31–33]. This is the simplest resolution, although
it seems very sensitive to yet unknown interactions. There
also exist some ideas which require the standard model to be
revised [34]. A very close idea is assuming inflaton as a new
field which interacts with the standard Higgs field [35].

Here, we try to employ the powerful dynamical system
tools to provide a wider view from inflationary and pre/post-
inflationary dynamic. In some parts, we look back to the
original equations to resolve technical stiffness and modify
the proposed dynamical system calculations. This is impor-
tant because our analysis is not restricted to slow-roll con-

ditions and therefore gives a panorama of what has been
previously considered in a much tighter frame. We also keep
the kinetic term and by this promote the scalar field from an
auxiliary one to a physical one and break the explicit dual-
ity relation between the Higgs-Inflation and the Starobinsky
f (R) model [10,36,37]. It is interesting to follow the pre-
inflationary behavior of the variables where it seems that de
Sitter attractor pulls inward the phantom trajectories [38–41].
Following observations that implied the idea of slight shift of
the cosmological equation of state into the phantom region
(w < −1), some pioneering researches showed the capa-
bility of scalar-tensor theories to yield late time attractive
property of the de Sitter expansion for the phantom trajecto-
ries [42–46] which are partly inline with the current research.
Phantom crossing at present epoch was investigated numer-
ically by Motohashi et al. [45,46] Although we will keep
the mentioned surveys as the cornerstones for our work and
even dedicate one section to compare their approaches with
ours in more details, what makes this paper taste differently,
besides trying to deliver exact results, is that we have shown
that for a phantom originated path, the de Sitter trajectory
may behave as a partial attractor which ends in an oscilla-
tory phase. This bestows the entire procedure the possibility
of being an inflationary scenario. All the above propositions
will be supported by analytical and numerical calculations
and the corresponding plots.

The outline of the paper is as follows; first, in the next
section, we introduce a more general Lagrangian which is
able to provide the Higgs-Inflation scenario. We start from
writing the Friedmann equations and derive the correspond-
ing equation of state. In Sect. 3, we introduce a suitable set
of dynamical variables and find the dynamical equations. To
see the consequences of the proposed dynamical structure,
we have wait until Sect. 4, where by fixing the model to its
final form we close the equations with respect to the variables.
Section 5 contains a detailed discussion about the oscilla-
tory phase. Having the appropriate dynamical variables and
equations, in Sect. 6, we proceed by finding fixed points and
eigenvalues and anticipating the flow behavior. In Sect. 7,
we explain the mathematical results in a physical perspec-
tive where we focus on crossing the phantom borders toward
de Sitter attractor. In Sect. 8, we transform back to the orig-
inal variables (φ and φ̇), in order to compare our results with
those of others. Section 9 is devoted to comparison between
our results and some pre-existing works. Finally, in the last
section, we summarize the methods and the achievements of
the present work.

2 f (R, φ) as a generalized gravity theory

Since we intend to analyze the Higgs-Inflation model, the
generalized Lagrangian may be written as [47]
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L = F(φ)

2
R − gμν∂μφ∂νφ − G(φ). (1)

For the Friedmann–Robertson–Walker universe, the equa-
tions of motion will be as follows [47,48]

3(H2F + H Ḟ) = 1

2
φ̇2 + G (2)

and

F̈ − H Ḟ + 2ḢF = −φ̇2, (3)

in which dots denote time derivative. It is common to extract
the following continuity equation from (2) and (3) or alterna-
tively derive from direct variation of the action with respect
to φ. [49,50]

φ̈ + 3H φ̇ + G,φ −3F ,φ (2H2 + Ḣ) = 0. (4)

In order to cast the above relations in the form of cosmologi-
cal thermodynamics, we assume an effective perfect fluid in
the spatially flat FLRW background;

a ∝ t
2

3(1+we f f ) , (5)

or equivalently

we f f = −1 − 2

3

Ḣ

H2 . (6)

On the other hand, for any fluid to satisfy the conservation
law (ρ̇ + 3H(ρ + p) = 0) in a FLRW metric it is required
that

ρ = 3CH2 and (ρ + p) = −2C Ḣ , (7)

for any arbitrary constantCi for the fluid i . The additive prop-
erty of isotropic pressures and homogeneous energy density
allows one to write

ρe f f = 3CH2 (8)

and

ρe f f + pef f = −2C Ḣ , (9)

or equivalently

H2 = ρe f f

3C
and Ḣ = −ρe f f + pef f

2C
, (10)

We want to build two relations that include the Friedmann
equations (2) and (3) while containing the effective pressure
and density definitions in a correct manner. To do this, we
add up Eqs. (8) and (9) to the Friedmann equations (2) and
(3) to obtain

3(H2F + H Ḟ) + ρe f f = 1

2
φ̇2 + G + 3CH2 (11)

and

F̈ − H Ḟ + 2ḢF − 2C Ḣ = −φ̇2 + ρe f f + pef f . (12)

By this, one congregates the equations truthfully, but one
elaboration is still needed. The above manner of collecting
the relations alters the freedom in C , because, one expects
by setting F = 1 to recover minimal gravity-scalar theory
with ρe f f = G + 1

2 φ̇2 and ρe f f + pef f = φ̇2, therefore, C
has to be normalized to unity. The final relations for effective
density and pressure become

ρe f f = 1

2
φ̇2 + G + 3H2(1 − F) − 3H Ḟ, (13)

pef f = 1

2
φ̇2 − G + F̈ + 2H Ḟ − (1 − F)(3H2 + 2Ḣ).

(14)

Therefore, we have a consistent set of equations for the model
in the Jordan frame from which we obtain the dynamical
results. In the next section, we will apply the dynamical sys-
tem method to understand how the system evolves under
these equations.

3 Dynamical system approach

We choose the following dynamical variables

χ1 ≡ φ̇2

6FH2 , (15)

χ2 ≡ G
3FH2 , (16)

and

χ3 ≡ − Ḟ
FH

. (17)

According to the Eq. (2), this set of variables obey the
following constraint

χ1 + χ2 + χ3 = 1. (18)

The above algebraic equation lets us eliminate one of the
variables in favor of the other two. But before doing this, let
us proceed by writing the dynamical equations as

dχ1

dN
= φ̇φ̈

3FH3 − 2χ1(
Ḣ

H2 ) + χ1χ3

= −6χ1 + χ3(χ1 − 2) − Ḣ

H2 (χ3 + 2χ1) − Ġ
3FH3 ,

(19)

dχ2

dN
= Ġ

3FH3 − 2χ2(
Ḣ

H2 ) + χ2χ3 (20)

and

dχ3

dN
= − F̈

FH2 − χ3(
Ḣ

H2 )

+χ2
3 = 6χ1 + χ3 + Ḣ

H2 (2 − χ3) + χ2
3 . (21)
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where N = ln a is the e-folding. Although the choice of the
variables seems similar to [51] but as we will see, the required
calculations are very different since in this case the second
derivative of the Lagrangian with respect to R is equal to
zero. To derive the right hand side of (19) and (21), we use
(3) and (4) to obtain

φ̇φ̈

3FH3 = − Ġ
3FH3 − 6χ1 − χ3(2 + Ḣ

H2 ) (22)

and

F̈
FH2 = −6χ1 − χ3 − 2(

Ḣ

H2 ). (23)

Our set of equations seems not closed because of the appear-

ance of the terms Ġ
3FH3 and Ḣ

H2 in the equations which can
not be recasted in terms of χ1...χ3 at this stage. Of course,
one may differentiate (18) to find a new equation in order to
find Ḣ/H2 in terms of χ1...χ3

dχ1

dN
+ dχ2

dN
+ dχ3

dN
= 0. (24)

This new equation leads to

dχ1

dN
+ dχ2

dN
+ dχ3

dN
= (χ3 − 2Ḣ

H2 )(χ1 + χ2 + χ3 − 1) = 0,

(25)

Unfortunately, (25) can not be used for recasting Ḣ/H2 in
terms of χi ’s, since (25) is always valid regardless of the
Ḣ/H2 value. In the next section, we will prove that Ḣ/H2

and Ġ
3FH3 are not new degrees of freedom and can be rede-

fined in terms of χ1, χ2 and χ3 for the model considered in
the present work.

4 Higgs-inflation: the unitary case

Unifying the Higgs and the inflaton field normally starts from
considering the following non-minimal Lagrangian [23]

L = M2
p

2
R + ξH†HR − ∂μH

†∂μH − λ(H†H − ν2)2,

(26)

where H stands for the standard model Higgs doublet. We
choose to work in the unitary gauge H = h/

√
2 [33,37] and

assume h � ν for the infant universe. Then (26) simplifies
as

L ≈ R

2

(
M2

p + ξh2
)

− 1

2
∂μh∂μh − λ

4
h4. (27)

In a Friedmann–Robertson–Walker background metric, the
above Lagrangian is used to build the inflationary model, by
writing down the dynamical equations and using the method

described in the previous section.First of all, let us look how

the Ġ
3FH3 term appears in this model while one can define

F(φ) ≡ M2
p + ξφ2 (28)

and

G(φ) ≡ λ

4
φ4, (29)

where for convenience, we have renamed the Higgs scalar
degree of freedom by the real field φ, (h → φ). Then one
obtains

Ġ
3FH3 = − λφ̇φ3

144ξH3
(
M2

p + ξφ2
) = −48ξ

χ1χ2

χ3
. (30)

Therefore, our system of equations become closed and we
can write them as

dχ1

dN
= −6χ1 + χ3(χ1 − 2) − Ḣ

H2 (χ3 + 2χ1) + 48ξ
χ1χ2

χ3
,

(31)

dχ2

dN
= −48ξ

χ1χ2

χ3
− 2χ2(

Ḣ

H2 ) + χ2χ3, (32)

dχ3

dN
= 6χ1 + χ3 + Ḣ

H2 (2 − χ3) + χ2
3 (33)

One may argue that Ḣ/H2 needs to be considered as a new
dynamical variable, but here, we prove that Ḣ/H2 is not a

new degree of freedom. We start by calculating F̈
FH2 for the

Lagrangian (27).

F̈
FH2 = 2ξ(φ̇2 + φφ̈)

FH2

= 12ξχ1 + 2ξφ

FH2

(
−3H φ̇ − G,φ +3F ,φ (2H2 + Ḣ)

)

quad = 12ξχ1 + 2ξφ

FH2

(
−3H φ̇ − λφ3+6ξφ(2H2+ Ḣ)

)

= 12ξχ1 + 3χ3 − 24ξχ2+ χ2
3

2χ1
(2 + Ḣ

H2 ). (34)

Although the original equations are well-defined for φ̇ = 0
where φ̇ cancels out from the χ2

3 /2χ1 fraction, in the frame-
work of dynamical systems, χ1 appears in the denominator
and we have to be cautious aboutχ1 reaching 0. One can avoid
possible ambiguities by considering to the original relations,
as we will do in this section. To be more clear χ1 = 0 means
φ̇ = 0 which indicates the return point for the scalar field
oscillations. Using the above equation in (23) yields

Ḣ

H2 = −2
(
4χ1(χ3 − 6ξχ2) + 6(2ξ + 1)χ2

1 + χ2
3

)

4χ1 + χ2
3

, (35)

which means that our dynamical equations are closed. For
the pure f (R) models in the absence of matter sources there
is an elegant way to reduce the equations to one first-order
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equation for H as a function of R in the Jordan frame [52].
But considering the field kinetic term, it is not possible for
us to transform the equations to the matter free f (R) grav-
ity, although, we still have a chance to eliminate one of the
variables thanks to (18). Eliminating χ3 is more reasonable
since χ1 = 0 requires φ̇ = 0 and χ2 = 0 requires φ = 0
while χ3 = 0 happens to be true for both mentioned condi-
tions separately or together which makes the analysis more
complicated. In this regard, the ultimate equations will be
dχ1

dN
= −χ1

(
χ2

(
48ξ

χ1+χ2 − 1
+1

)
+χ1+ Ḣ

H2 + 3

)

+ (χ2 − 1)(
Ḣ

H2 + 2),

(36)

and

dχ2

dN
= χ2

(
χ1

(
48ξ

χ1 + χ2 − 1
− 1

)
− χ2 − 2

Ḣ

H2 + 1

)
,

(37)

in which Ḣ/H2 can be replaced by

Ḣ

H2 = −
2

(
3χ2

1 (1 + 4ξ) − 2χ1(12ξχ2+χ2 − 1)+(χ2 − 1)2
)

χ2
1 +2χ1(χ2+1)+(χ2 − 1)2

.

(38)

It should be pointed out that the point (χ1+χ2)
2+1−2(χ2−

χ1) = 0 (vanishing denominator) leads to a finite value for
Ḣ/H2. Since our choice of variables requires χ1, χ2 ≥ 0, the
only condition in which the denominator vanishes is χ1 = 0
and χ2 = 1. But this point is also the root of the numerator.
In fact, this ambiguity is not essential and has appeared as
a result of our definitions and calculations, as we have men-
tioned earlier. To see this, let us get back to (35) and write it
as

Ḣ

H2 = −2
(
4χ1(χ3 − 6ξχ2) + 6(2ξ + 1)χ2

1 + χ2
3

)

4χ1 + χ2
3

= −2
(4(χ3 − 6ξχ2) + 6χ1(2ξ + 1) + χ2

3
χ1

4 + χ2
3

χ1

. (39)

We know from the definitions of dynamical variables that

χ2
3

χ1
= 24ξ2φ2

F = 24ξ2φ2

M2
p + ξφ2 . (40)

If we substitute the above relation in (39) and evaluate it for
χ1 = χ3 = 0 and χ2 = 1, the result is

Ḣ

H2 (χ1 = 0, χ2 = 1, χ3 = 0) = −2
−24ξ + 24ξ2φ2

M2
p+ξφ2

4 + 24ξ2φ2

M2
p+ξφ2

.

(41)

For conformal case (ξ = −1/6) this always leads to −2.
Although for any other choices of ξ the Ḣ/H2 ratio is a func-
tion of φ, if we limit ξ to be a positive integer, then Ḣ/H2 at

the discussed point also becomes a positive (phantom-like)
value which asymptotically vanishes for larger φ’s (ξφ2 �
M2

p). In Fig. 1, this property has been demonstrated in two
different scale: Fig. 1a shows that the de Sitter path appears
as an attractor for incoming trajectories. This plot does not
have enough resolution to magnify (χ1 = 0, χ2 = 1) point.
Figure 1b has an enough resolution and one can recognize
the essential role of the point (χ1 = 0, χ2 = 1) which is
the return point of oscillations. The former sub-figure con-
tains only one complete oscillation in order to help readers
to follow the subject of the current discussion. Several oscil-
lations phase diagram has been plotted in another plot (Fig.
9). From (32) we infer that for Ḣ/H2 > 0, χ2 remains a
decreasing function of time at this point and therefore the
inward trajectories are pushed to meet the other fixed point
at (χ1 = 1, χ2 = 0; Fig. 1). The latter point is a representa-
tive of Higgs field minimum since φ appears fourth power in
χ2 definition. To reach the potential minimum, the trajectory
needs to cross out the phantom boundary which is defined by

χ2 = 12χ1ξ + χ1 + 1

+
√

χ1
(
72ξ2χ1 + 6(χ1 + 2)ξ − χ1

)
.

The very important result is that every time the potential
is around its minimum, the equation of state is like matter
dominated stage and one can demand for the (p)reheating to
operate. We know that the preheating is more effective when-
ever the inflaton crosses its minimum due to the parametric
resonance phenomenon. Moreover, our numerical calcula-
tions confirm that the mentioned flipping between phantom
and ordinary regions gives w̄ ≈ 1/3 (where the bar means
average over e-folds) which is another support for being in
an oscillatory phase (Figs. 2, 3).

5 An oscillatory fate; the vindication of an inflationary
scenario

The requirement that the original Higgs inflation model
should be followed by a transient oscillatory era after the
inflationary period is an old and well-known practice. On the
other hand, there have been suggestions that there might be
phantom crossings before reaching the de Sitter destiny of the
late universe [42,43,45,46]. In this regard, it does not seem
likely to reconcile these two different ideas in a manner that
a phantom originated path reaches a de Sitter partial attractor
where enough inflationary e-folds are accomplished before
falling into an oscillatory phase. Figure 7 demonstrates the
complete evolution of χ1 and χ2 in which the motion stars
from phantom era and after approximately 1000 e-folding
ends in an oscillatory phase. The evolution of we f f for this
simulation has been plotted in Fig. 6 where one can recog-
nize the smooth phantom crossing, the de Sitter inflationary
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period and the oscillatory ultimate from the plots. It is already
known that phantom originated trajectories may exhibit many
oscillations around the de Sitter boundary, flipping between
phantom and ordinary equations of state, while these oscil-
lations never provide an end to the de Sitter main trajectory
[45,46]. Therefore, one may exclude any inflationary hypoth-
esis which has a phantom origin since it seems impossible
to find a required end of de Sitter expansion for them. In
other words, Higgs inflation like other inflationary scenarios
must possess an ordinary (non-phantom) initial condition.
Here, we intend to show that this conclusion is not gener-
ally true and at least for the original Higgs inflation scenario,
a phantom origin can evolve to an ordinary inflation with
a desired oscillatory end. Numerical simulations also con-
firm this behavior (Figs. 2, 3, 5, 6) and one can recognize
the we f f evolution from phantom region to de Sitter expan-
sion and follow its way towards ¯we f f = 1/3 during ultimate
oscillations around vacuum (Figs. 3, 6). The entire scenario
has been plotted in Fig. 6 where one can follow the history
from a phantom-like pre-inflationary start point to a quasi
de Sitter partial attractor which ends at an oscillatory phase.
We have already shown that for a typical f (R) inflationary
theory, the post-inflationary oscillations occur around R = 0
which in FLRW background R = 6Ḣ + 12H2 can be writ-
ten as Ḣ/H2 = −2 or equivalently we f f = 1/3 [53–55]. Of
course, being in the Jordan frame makes the oscillatory inter-
pretation slightly weird but one can easily infer that during an
oscillation the point (χ1 = 0, χ2 = 1) marks the return point
of the Higgs field where φ̇ vanishes and (χ1 = 1, χ2 = 0)

indicates the central point of the Higgs potential. Without
assuming higher powers of Ricci scalar in the Lagrangian,
one may not expect the system to exhibit explicit oscillations
around R = 0 which is the overall behavior of an extra scalar
degree of freedom (scalaron) in f (R) theories. In Sect. 8, we
will see that such oscillations around R = 0 exist and become
quasi sinusoidal as they lose their energy due to expansion
(Fig. 10). We also see that the oscillations occur around the
Higgs field minimum. Therefore, we witness a twofold oscil-
lation. As we have stated earlier, numerical calculations con-
firm that we f f shows flattering behavior around the average
1/3 value (see Fig. 3). Any complete oscillation needs to
meet the minimum at φ = 0 (χ1 = 1, χ2 = 0) as well as
the return point φ̇ = 0 at (χ1 = 0, χ2 = 1). In other words,
our choice of variables restrict the minimum of the χ1 and
χ2 oscillatory amplitude to be unity. It may seem weird that
in an expanding universe χ1 and χ2 oscillations do not decay
out and asymptotically reach a unit amplitude. But one has
to remember that χ1 and χ2 have nontrivial relations with R,
φ and φ̇ and as we will show, φ and φ̇ oscillations continue
to decay with time even when χ1 and χ2 oscillate with an
approximately constant amplitude (Fig. 11).

6 Fixed points and their behavior

Having the Eqs. (36) and (37), one is able to find the fixed
points. Equating these equations to zero, one obtains four
fixed points

P1 : χ1 = 0, χ2 = 0, (42)

P2 : χ1 = 0, χ2 = 5, (43)

P3 : χ1 = 1 + 12ξ + 12

√
ξ

(
ξ + 1

6

)
, χ2 = 0, (44)

and

P4 : χ1 = 1 + 12ξ − 12

√
ξ

(
ξ + 1

6

)
, χ2 = 0. (45)

One can construct the following Jacobian

J ≡
⎛
⎝∂χ1

(
dχ1
dN

)
∂χ2

(
dχ1
dN

)

∂χ1

(
dχ2
dN

)
∂χ2

(
dχ2
dN

)
⎞
⎠ (46)

and find the corresponding eigenvalues at each fixed point Pi
as below [56]

J (χ1(Pi ), χ2(Pi ))

(
χ1(Pi )
χ2(Pi )

)
= λ

(
χ1(Pi )
χ2(Pi )

)
. (47)

The above linearization recipe yields

P1 : λ1 = −1, λ2 = 5, (48)

P2 : λ1 = −5, λ2 = 4, (49)

P3 : λ1 = −12

√
ξ

(
ξ + 1

6

)
− 12ξ,

λ2 = 36

√
ξ

(
ξ + 1

6

)
+ 36ξ + 6, (50)

and

P4 : λ1 = 12

√
ξ

(
ξ + 1

6

)
− 12ξ,

λ2 = −36

√
ξ

(
ξ + 1

6

)
+ 36ξ + 6.

(51)

The above results show that the fixed points P1 and P2 are
always saddle points (unstable). The two remaining points
P3 and P4 coincide for minimal coupling (ξ = 0) and for
non-minimal conformal gravity ξ = −1/6, the P3/P4 split-
ting may be interpreted as the breaking of the conformal
gravity symmetry. Here, an elaboration is in order; our anal-
ysis involves the Higgs-inflaton in high energy regime where
φ2 � ν2. In this regard, in our approach, the calculations
become less accurate near the χ2 = 0 axis, although, the
oscillatory behavior can be present. This, of course, is not
an important weakness, since we are mostly interested in
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pre-inflationary and inflationary phases and the primary post-
inflationary oscillations where for all of them the high energy
conditions govern the universe. The point P1 plays the role
of the unstable local maximum in the Mexican hat scenario.
That is the reason why the origin (χ1 = 0, χ2 = 0) in χ1−χ2

phase portrait is unreachable by the trajectories. In fact this
point represents the φ = 0 and φ̇ = 0 unstable point.

7 Where does the inflation happen?

Since we ignore the electroweak vacuum energy in our high
energy regime, the fixed point (χ1 = 0, χ2 = 0) does not
develop any constant density to cause exponential expansion.
This is not important since we already know that symme-
try breaking models can not provide effective inflation for
the standard model energy scale, mostly because the self-
coupling must be much smaller during inflation to explain
why the primordial gravitational waves have no consider-
able footprint on the CMB. This means that although we use
terms like Higgs-inflation to reconcile the standard model
and inflation, but it does not mean that symmetry breaking
and inflation happen coincidentally. In fact, in such scenar-
ios the inflation is realized by assuming a very high energy
initial condition in which the potential imitates a power law
potential. In our approach, the above fact has been taken into
account by using the φ2 � ν2 regime which enables us to
keep only the quadratic potential term throughout the calcu-
lations. To find the appropriate region for de Sitter expansion,
we solve Ḣ/H2 = 0, to find

Ḣ

H2 = 0 	⇒ χ2 = ±
√

χ1
(
72ξ2χ1 + 6(χ1 + 2)ξ − χ1

)

+ 12χ1ξ + χ1 + 1. (52)

Since the choice of the variables requires χ1 ≥ 0 and χ2 ≥ 0
for the Higgs-Inflation model, the two solutions in (52) repre-
sent the boundaries of w < −1 and w > −1 regions respec-
tively (Figs. 4, 5). In an ordinary quintessence or inflationary
model (minimal scalar field theory), the phantom realization
necessitates ghost fields i.e. negative kinetic energy. Now,
one can infer that for non-minimal Higgs-inflation scenario,
the phantom conditions might be realized without having
ghost. To discuss this more clearly, let us analyze Eq. (52)
for ξ � 1 which is, in fact, the condition to have an effective
inflation. In this regime, the solutions are approximated as

χ2 = 1 + χ1

2
and χ2 = 1 + 24ξχ1, (53)

which represent two lines in the first quadrant of the χ1 −
χ2 phase portrait. For all the points between these lines w

is smaller than −1 which corresponds to phantom energy
domination while outside them w > −1 . For large ξ , the
line χ2 = 1 + 24ξχ1 almost matches with the adjacent flow

curves.The other line (χ2 = 1 + χ1
2 ) exhibits a constant 1/2

slope. The more interesting fact is that the field flow moves
from the ordinary region toward the w < −1 area crossing
the χ2 = 1 + χ1

2 line. One has to note that since there is
no fixed point for de Sitter expansion, the inflation happens
when the field flow asymptotically moves near one of the
two w = −1 boundaries. Besides the numerical portrait, it
is easy to prove that the field flow could not move tangential
to χ2 = 1 + χ1

2 , a simple explanation will be derived from

dχ1

dN (χ2=χ1/2)

= χ1
(−9χ2

1 − 96ξχ1 + 4
)

6χ1 − 4
, (54)

and

dχ2

dN (χ2=χ1/2)

= χ1(3χ1(−3χ1 + 64ξ + 12) − 20)

12χ1 − 8
, (55)

which lead to

dχ2

dχ1 (χ2=χ1/2)

= 9χ2
1 − 12χ1(16ξ + 3) + 20

2
(
9χ2

1 + 96ξχ1 − 4
) . (56)

In this case, the slope of the flow asymptotically becomes 1/2
when χ1 = 2χ2 → ∞. It means that we may expect de Sitter
expansion there. If we take into account the term linear in χ1,
then the slope is slightly less than 1/2 which means that all
trajectories which start from w > −1 ultimately cross the
phantom boundary. In a same manner, we can check the field
behavior near the other border line (χ2 = 1 + 24ξχ1). Since
we restricted ourselves to ξ � 1 and χ2 > 1, i.e. above the
fixed point (χ1 = 0, χ2 = 1), one obtains

dχ1

dN (χ2=24ξχ1)

= χ1(2χ3
1 (12ξ − 1)(24ξ + 1)(120ξ − 1)

+192χ2
1 ξ(1 − 54ξ)

−(24ξχ1 + χ1)4 + 2χ1(60ξ − 1) + 1)

/(24ξχ1 + χ1 − 1)
(
(24ξχ1 + χ1)2 + χ1(2 − 48ξ) + 1

)

≈ −24ξχ2
2 (57)

and

dχ2

dN (χ2=24ξχ1)

= 24ξχ1(12χ3
1 (24ξ + 1)

(
288ξ2 + 1

)

−2χ2
1 (72ξ(72ξ − 1) + 1)

−(24ξχ1 + χ1)
4 + χ1(432ξ − 4) − 5)

/(24ξχ1+χ1 − 1)
(
(24ξχ1+χ1)

2+χ1(2 − 48ξ)+1
)

≈ −576ξ2χ2
1 . (58)

It is straightforward to find that

dχ2

dχ1 (χ2=24ξχ1)

≈ 24ξ (ξ � 1 and χ2 > 1). (59)
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From a mathematical point of view, this de Sitter line appears
as an attractor for all the phantom trajectories. Of course, the
viability of having a successful inflation also depends on hav-
ing enough e-folds which means the trajectories must have a
sufficient asymptotic motion before reaching the oscillatory
phase. It is important that the field flow reaches a region that
violates the inflationary conditions and put an end to the infla-
tionary period. It is obvious that for our choice of independent
variables i.e. χ1 ≡ φ̇2/6FH2 and χ2 ≡ λφ4/12FH2, the
oscillations lie in the χ1 > 0 & χ2 > 0 quadrant and always
meet the return point at χ1 = 0 and χ2 = 1. As it was stated
earlier, the mentioned return point is near the de Sitter partial
attractors but not part of it since as we have already shown,
Ḣ/H2 > 0 at this point. One has to note that the horizon exit
must happen in we f f � −1 region to support the observed
spectral index on the CMB. Therefore the horizon exit hap-
pens before entering the phantom era or just after leaving
it.

Note 1; Without considering the electroweak vacuum
expectation value, the potential minimum becomes negative
since the central local maximum is zero (V (φ = 0) = 0).
This Point, of course, reduces the level of generality for the
calculations and the plotted simulations. But since we are
interested in high energy behavior of the field dynamics and
concentrate on the effect of non trivial kinetic energy, all the
discussions remain valid with very good accuracy.

Note 2; In our model, we expect the big bang singularity
(if any) to occur at χ1 = χ2 = 0, since at BB, a → 0 and
H → ∞. Numerical results (especially Fig. 1) show that
χ1 = χ2 = 0 is an unstable fixed point and the behavior
of trajectories is more consistent with a bouncing universe.
This point is essentially unreachable in our approach since
it requires χ1 = χ2 = χ3 = 0 which is in contradiction to
the χ1 +χ2 +χ3 = 1 constraint. The repelling characteristic
of the χ1 = χ2 = 0 point physically stems from tachyonic
instability at the origin (Fig. 6).

8 Return to the original variables

So far we have discussed how a trajectory may move from
phantom region to the de Sitter asymptote and then start
oscillating. Our analysis has exploited the dynamical system
method and the standard rules of this method. Particularly,
we have found ‘sink’, ‘source’ and ‘saddle’ points according
to the dynamical system terminology and used their behavior
as the corner stones for our conclusions. In this section, we
will concrete the previous results by delivering supportive
numerical analysis and corresponding plots. of course, the
dynamical variables χ1 and χ2 are the best choice for testify-
ing the previous analysis through numerical simulation. Fig-
ure 7 shows the behavior of χ1 and χ2 for the entire proposed
scenario: The both initiate from large values inside the phan-

(a)

(b)

Fig. 1 a The thick line indicates χ2 =
+

√
χ1

(
72ξ2χ1 + 6(χ1 + 2)ξ − χ1

) + 12χ1ξ + χ1 + 1. We have
mentioned that this curve corresponds to the we f f = −1 boundary. As
the calculations show, the field flow asymptotically becomes tangent to
this line. This graph confirms the de Sitter as a transient attractor path
for phantoms. b The smaller scales of χ1 and χ2 phase portrait with
more resolution in numerical calculations reveals more details. The
flows depart from the de Sitter line which ends at (χ1 = 0, χ2 = 1)

entering ordinary region then passing the local maximum at φ = 0
(χ2 = 0). Afterwards, another oscillation begins conducting the
trajectory towards the return point (χ1 = 0, χ2 = 1). In simulations
one can achieve more oscillations by cascading several numerical
calculations, assuming the higher derivatives or approximating the
vicinity of extrema. Without the (p)reheating outgoing energy channel,
we do not expect the oscillations to imitate the early universe behavior
completely, although it is enough for our purpose to distinguish
oscillatory phase at the end of the de Sitter expansion
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Fig. 2 The red trajectory shows a typical path to realize the inflation.
One may interpret the semi-spiral trajectories as oscillations around
the potential minimum. In the absence of matter and (p)reheating after
the inflation, the simulation deviates from the standard early universe
models but mathematically, one observes phantom crossings during the
oscillatory phase

tom region (χ1(N = 0) = 100, χ2(N = 0) = 10) and after
some quasi-static e-folds start oscillating. The amplitude of
the oscillations for both χ1 and χ2 converge toward unity as
has been previously discussed. In order to obtain more phys-
ical insight about the oscillations, one may analyze the φ, φ̇

and Ricci scalar behavior. To achieve the above, first we have
to recast the mentioned parameters in terms of the dynamical
variables χ1 and χ2. Using (40) one infers

φ2 = Mp
2χ3

2

ξ(24ξχ1 − χ3
2)

= Mp
2(1 − χ1 − χ2)

2

ξ
(
24ξχ1 − (1 − χ1 − χ2)2

) ,

(60)

where in the last stage we have usedχ1+χ2+χ3 = 1. Plotting
the result shows how the field φ decreases with time and one
can see that φ tend to decay with the cosmic expansion. It
would be constructive to see the φ̇ behavior. To do this, one
may start from

χ1

χ2
= 4φ̇2

λφ4 . (61)

The above relation in combination with (60) straightfor-
wardly yields

φ̇2 = λχ1

4χ2

(
Mp

2(1 − χ1 − χ2)
2

ξ
(
24ξχ1 − (1 − χ1 − χ2)2

)
)2

, (62)

which has been plotted with respect to e-folds in Fig. 8. It
would be constructive to cancel out the time (e-fold) depen-
dency between χ1 and χ2 to see their implicit behavior with
respect to each other. Figure 9 demonstrates this immedi-
ate relation which is in complete accord with Figs. 1 and 2
in which only one of the oscillations has been shown. One
has to note that all the spins in Fig. 9 is the sequence of

(a)

(b)

Fig. 3 Both plots above are results of the numerical calculation with
ξ = 100000, χ1(0) = 100 and χ2(0) = 100 such that the implied steps
pushes out the field from the vicinity of the (χ1 = 0, χ2 = 1) point
and the numerical calculation successfully conducts the first oscillation.
a One complete oscillation has been plotted; One has to note that the
motion starts from χ1(0) = 100 and χ2(0) = 100 but the starting
part has been ignored to obtain a more clear picture. b The evolution
of we f f has been plotted. As one expects for an oscillatory phase, the
time average (e-folds average) of we f f is positive and according to the
numerical integration over a period it is approximately equal to 1/3.
The dominance of the positive we f f area with respect to the negative
area is obvious

one curve and we have deliberately cut the smaller oscil-
lations to respect the plot resolution. One obviously recog-
nizes that all the oscillations pass through the potential min-
imum at (χ1 = 1, χ2 = 0) (φ = 0) and the return point at
(χ1 = 0, χ2 = 1) (φ̇ = 0). It is also worth to see the we f f
behavior. One has note that in each simulation in order to
clarifying one part of the trajectory history, we have cho-
sen different initial condition and the situation is almost the
same about the ξ parameter. The main idea is to devoted more
numerical resolution to the part which is under analysis. For
example to focus on the oscillatory phase the initial condi-
tions should be selected in manner that the oscillation starts
shortly after the onset of the oscillation which optimizes the
resolution and the calculation time. One can also proceed to
find Hubble Parameter and Ricci scalar dynamics. From the
definition (15) one readily infers
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Fig. 4 Demonstrating the phantom boundaries in some differ-
ent regions and scales. The blue curve corresponds to χ2 =
−

√
χ1

(
72ξ2χ1 + 6(χ1 + 2)ξ − χ1

) + 12χ1ξ +χ1 + 1 and the orange

curve to χ2 =
√

χ1
(
72ξ2χ1 + 6(χ1 + 2)ξ − χ1

) + 12χ1ξ + χ1 + 1

which are the roots of Ḣ = 0. As we have discussed in the text, although
the point (χ1 = 0, χ2 = 1) is a branching point for the above curves

but since it makes Ḣ
H2 ambiguous, it requires an independent treatment.

This care is also required at the vicinity of this point

H2 = φ̇2

6Fχ1
= φ̇2

6(M2
p + ξφ2)χ1

. (63)

Since we have already derived φ2 and φ̇2 in terms of χ1,2 (60
and 62), the above relation can be written as bellow

H2 = λM2
P(1 − χ1 − χ2)

4

576ξ3χ1χ2
(
24ξχ1 − (1 − χ1 − χ2)2

) . (64)

From the above relation in combination with (38) one can
derive a relation for Ḣ as bellow

Ḣ = λM2
p(1−χ1−χ2)

4
(
(1−χ2)

2+3(1+4ξ)χ2
1 +2(1−χ2−12ξχ2)

)

288ξ3χ1χ2
(
χ2

1 +(1−χ2)2+2χ1(1+χ2)(1−χ1−χ2)2−24ξχ1
) (65)

and using R = 12H2 + 6Ḣ one ultimately obtains

R = M2
Pλ(1+6ξ)(χ1−2χ2)(1−χ1−2χ2)

4

24ξ3χ2((1−χ1−2χ2)2−24ξχ1)
(
χ2

1 +(χ2−1)2+2χ1(1+χ2)
) . (66)

The last relation can be consider as the extractive of all the
research analysis since it has interconnectedly employed all
the definitions and assumptions of the proposed scenario. In
other words, any mistake or deviation must be amplified in
calculating the Ricci scalar. Figure 10 shows the result of
calculating the Ricci scalar. One easily recognize two facts:
first R is oscillating around R = 0. Second: the oscillations
imitate a damping sinusoidal as time passes. Both the above
results are in complete accord with the analysis of the scalar-
tensor inflationary models in low energy limit ([53–55]).

As it has already been stated all the oscillations have to
pass through the point (χ1 = 1, χ2 = 0) and the return point
(χ1 = 0, χ2 = 1). In this regard, the trajectories wrap around
the χ2 = 1−χ1 line segment (Fig. 9). As the oscillations lose
their energy, the trajectories become closer to the χ2 = 1−χ1

(a)

(b)

Fig. 5 These two plots show the phase portrait of the dynamical vari-
ables χ1,2 at two different scales. The Phantom and ordinary regions
have been indicated by colors

line segment but never reach it. That is because moving on the
χ2 = 1 −χ1 line segment means that χ3 vanishes constantly
throughout the path and according to χ3 definition, it means φ

or φ̇ or both must be zero. In other words, the deviation from
the χ2 = 1 − χ1 line segment is determined by the χ3 value
which in general, only vanishes for the (χ1 = 1, χ2 = 0)

and (χ1 = 0, χ2 = 1) points. As one can infer from the
numerical calculations and plots particularly Fig. 8, around
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(a)

(b)

Fig. 6 Both the above plots have been taken from one numerical sim-
ulation but for different ranges of N . This simulation has been initiated
with χ1(N = 0) = 1 and χ2(N = 0) = 100 with ξ = 400, Mp = 1
and λ = 1. This set of initial conditions along with the parameters
choice corresponds to we f f [N = 0] ≈ −127. a The phantom energy
exponentially increases toward de Sitter (we f f = −1). This part of the
simulation confirms that de Sitter is a transient attractor path for phan-
tom originated trajectories. As one recognizes, the deeper in the phan-
tom region, the faster (less e-folds) motion toward de Sitter attractor.
b we f f asymptotically approaches the de Sitter expansion for enough
e-folds before encountering the oscillations. As it is shown in Fig. 3 the
average we f f for each complete oscillation is about 1/3

the potential central point, φ̇ is still much smaller than φ

and χ3 remains near unit unless for very close vicinity when
φ becomes vanishingly small (Figs. 9, 11). That is why the
trajectory has a pyriform.

9 Comparison with some pioneering researches

The idea that scalar-tensor gravity modifications may real-
ize the smooth phantom crossing without the necessity of
ghosts originated from an inspiring research published in
2000 [42]. The main motivation to hypothesize such an idea
stemmed from finding a justification for the clues of the late
time (low redshift) phantom behavior of the dominant con-
stituent of the energy of the universe. As a late time universe

(a)

(b)

Fig. 7 Both the above plots have been initiated from χ1 = 1, χ2 = 100
with ξ = 400, Mp=1 and λ = 1. a The deeper in the phantom region
the faster motion toward the de Sitter attractor. Both variables then
demonstrate very slow motion near the point (χ1 = 0, χ2 = 1). b
Oscillatory behavior appears after approximately 1000 e-folds. Both
the χ1 and χ2 oscillations tend to reach unit amplitude, asymptotically

idea, the authors have tried to establish the conditions that
scalar–tensor theories respect the post-Newtonian solar sys-
tem and cosmological tests. In the more detailed paper [43]
by recasting the dynamical equations through the redshift z
and considering the solar system measurement and the dust-
like perturbations in longitudinal gauge and adiabatic scale,
the authors have provided general conditions for constructing
such late time scalar–tensor models. Although we employ the
same idea about the smooth phantom crossing capability of
scalar–tensor models, we mostly concentrate on early time,
high energy and particularly the original Higgs inflation the-
ory. Therefore, the constraints we have respected also stem
from the standard model of fields and particles as well as the
inflationary footprints on the CMB. A very interesting point
explored in [43] is that while the vanishing of G(φ) (see Eq.
1) is excluded due to the singular behavior at low redshift
(z < 0.66), the constancy of G is also ruled out because of
producing singularity for larger redshifts (although it works
well for z ≤ 2). It seems that for obtaining a non-singular
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(a)

(b)

Fig. 8 The typical behavior of φ2 and φ̇2. One has to note that before
the onset of the oscillations, φ̇ is approximately constant which implies
φ̈ ≈ 0. This is in complete accord with slow-roll approximation. φ̇

increases rather gradually when φ reaches the minimum but it decreases
more abruptly as φ leaves the minimum towards the return point. This
phenomena stems from the dissipative characteristic of the oscillations
and results in decaying amplitude

behavior which satisfies the phantom behavior in low red-
shifts, the potential has to possess implicit redshift (time)
dependency (G(φ(t))). The mentioned results for small red-
shifts have been generally based on the viability of small z
expansion of the cosmic scale parameters. We can not use
redshift functionality in our work since this method loses
its applicability beyond the last scattering surface. But the
Higgs inflation automatically admits the required conditions
and remains well-defined in all energy intervals of our inter-
est. There is another work about phantom crossing in scalar–
tensor theories which raises more interests with respect to our
research. The 2011 paper [45,46] has proposed the idea of
late time oscillations around de Sitter attractor. The authors
have analyzed their proposal by perturbing the equations
around de Sitter fixed point concluding that the oscillations
may be separated to decaying and oscillatory parts and the
latter may lead to several phantom crossings. The above idea
has assumed the de Sitter stability and they have also men-

Fig. 9 Numerical simulation for χ1(N = 0) = 100 and χ2(N = 0) =
100 initial conditions with ξ = 100, Mp=1 and λ = 1. The above initial
conditions guarantee the smallness of de Sitter expansion and provide
the simulation to have more resolution on the oscillations. One has to
note that all the spiral trajectory is one curve in the 3.3585 < N <

3.4500 interval. All the oscillations contain the potential central point
at φ = 0 (χ1 = 1, χ2 = 0) and the return point φ̇ = 0 (χ1 = 0, χ2 = 1)

Fig. 10 The evolution of Ricci scalar during the oscillatory period.
The oscillations tend to be damping sinusoidal for smaller amplitudes

tioned that this is not a general behavior. Our research, at first
glance, may demonstrate a sort of periodic phantom-passing
motion as has already been predicted by [45,46]. Although,
the present research exploits the smooth phantom crossing
(Figs. 5, 6), The difference between our results and phan-
tom crossings due to oscillations around de Sitter boundary
is that we are finding an oscillatory regime after a transient
de Sitter phase which can be an appropriate condition for
(p)reheating. Our claim is supported in two ways: analyti-
cally, we have shown that the trajectories, finally, leave de Sit-
ter partial asymptote towards the Higgs field minimum out-
side the phantom region and begin to oscillate. Numerically,
the time average of we f f during this post-inflationary stage
is approximately 1/3 which is an indicator of the oscillatory
phase. As it has been mentioned earlier, χ1 = 0 and χ2 = 1
marks the return point of the scalar field oscillations which
qualitatively resembles bounded oscillation under viral con-
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(a)

(b)

(c)

(d)

Fig. 11 From top to down: χ1,2, φ2, φ̇2 and Ricci scalar. The initial
conditions are χ1(N = 0) = 100, χ2(N = 0) = 100 with ξ = 1000,
Mp = 1 and λ = 1. This set of initial conditions has been chosen such
that the de Sitter expansion has ignorable e-fold duration. By this, the
numerical simulation leads to more resolution on the oscillations. To
have more clear perspective, the range of the e-folds N has been chosen
in an interval where the amplitudes of oscillations are comparable

ditions. Therefore, we recognize an oscillatory phase which
one expects to proceed by (p)reheating and this is why our
approach may become suitable for an early universe possibil-
ity of phantom crossing. Moreover, the oscillations also show
flipping between phantom and ordinary regions crossing the
de Sitter boundary, but as has been stated earlier, this is not
a bounce around the de Sitter attractor since the oscillations
contain the scalar field minimum and ¯we f f ≈ 1/3 during the
oscillations. The other difference between this research and
the late time studies is that for late time approaches it is nec-
essary to add a matter (or radiation) term to the Lagrangian
and let the classical evolution of the cosmic perfect fluid gov-
ern the scene. Instead, the matter source in pre-inflationary
and inflationary phase is usually ignored. In fact, this has
been the original reason to hypothesize more complicated
quantum procedures for (p)reheating [29,30].

10 Conclusion

We managed to reduce the dynamical equations of the origi-
nal Higgs-Inflation scenario to two first order, coupled equa-
tions. The supportive numerical calculations have been deliv-

ered in the form of elusive two dimensional phase portrait
plots. We then used the dynamical system approach to ana-
lyze the original Higgs-Inflation scenario in a broader scope.
This mathematical tool lets us to be more accurate and extend
the analysis to pre-inflationary and post-inflationary peri-
ods, where one can not use the slow-roll approximation. We
included the kinetic term in our calculation. By this, we have
followed two goals; first considering how the kinetic term
breaks the auxiliary field relation between Higgs-Inflation
and the Starobinsky model and second, although one expects
the kinetic term to be trivially small during inflation, but if
this smallness appears as a kind of attractor path, the picture
becomes more compelling. This is indeed the case in our
survey; the inflationary period emerges as an attractor which
makes the process more natural. Perhaps, the more interesting
achievement is that this de Sitter partial attractor pulls inward
the phantom trajectories. The phantom trajectories which are
trapped by de Sitter attraction may evolve a very smooth and
familiar path after leaving the de Sitter attractor path which is
an indication of the oscillations around the minimum, where
the reheating or preheating processes take place. Therefore,
one may talk about phantom region as the birthplace for the
universes like what we live in. If one combines the results of
this research with the fact that our universe is probably falling
into a phantom era [57–63], then it is appealing to talk about
the birth and the fate of the universe both in phantom era.
This revives the cyclic universe hypothesis in an astonishing
manner [64].
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