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Abstract It has been pointed out that there exists a ten-
sion in σ8 − Ωm measurement between CMB and LSS
observation. In this paper we show that σ8 − Ωm observa-
tions can be used to test the dark energy theories. We study
two models, (1) Hu–Sawicki (HS) Model of f (R) gravity
and (2) Chavallier–Polarski–Linder (CPL) parametrization
of dynamical dark energy (DDE), both of which satisfy the
constraints from supernovae. We compute σ8 consistent with
the parameters of these models. We find that the well known
tension in σ8 between Planck CMB and large scale struc-
ture (LSS) observations is (1) exacerbated in the HS model
and (2) somewhat alleviated in the DDE model. We illustrate
the importance of the σ8 measurements for testing modified
gravity models. Modified gravity models change the matter
power spectrum at cluster scale which also depends upon the
neutrino mass. We present the bound on neutrino mass in the
HS and DDE model.

1 Introduction

The ΛCDM model is conventional paradigm which is
invoked to explain the observations of CMB temperature
anisotropy and matter power spectrum [1]. However it has
been pointed out [2–8] that there is some discordance
between CMB and LSS observations. Specifically, σ8, the
r.m.s. fluctuation of density perturbations at 8 h−1Mpc scale,
inferred from Planck-CMB data and that from LSS observa-
tions do not agree. There have been many generalizations
of the ΛCDM model to attempt the reconciliation between
the two sets of results. For example, it has been shown that
self interaction in dark matter-dark energy sector [9–14] and
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several other scenarios [15–21] can reconcile the σ8 tension.
There is also a tension in the inference of Hubble constant
H0 from CMB observations and that determined from LSS
observations [4]. The value of H0 is also directly measured
from Supernova-Ia (SN-Ia) observation (referred as local
H0) [22] which is also not in agreement with H0 obtained
from CMB observation (referred as local H0 tension). The
H0 discrepancy between CMB and LSS observations can be
resolved by including active massive neutrinos [4]. Whereas
addition of a sterile massive neutrino helps resolving the local
H0 tension [23]. Varying the equation of state parameter
w and effective number of relativistic degrees of freedom
Nef f freely has also been shown to resolve the local H0 ten-
sion [24–26]. Extended parameter space of ΛCDM model
have also been shown to resolve local H0 tension and σ8 ten-
sion [27,28]. It has been shown recently that both σ8 and H0

tension between CMB and LSS observations can be resolved
simultaneously by invoking a viscous dark matter [29] and
effective cosmological viscosity [30]. The bound on neutrino
mass is also different in different models of cosmology [31–
35].

The main conceptual problem with ΛCDM model is that
there is no explanation of the origin and the unusually small
value of the cosmological constant (Λ). One popular class of
models which addresses this is the f (R) gravity [36] mod-
els, in which the cosmological constant is generated dynami-
cally from the curvature. We consider the Hu–Sawicki f (R)

gravity model which also satisfies the constraints from solar
system tests [36]. One may also take a phenomenologi-
cal approach of generalizing the cosmological constant to
a dynamical variable and determine from observation how it
changes in time. An example of this is the DDE model which
avoids the problem of phantom crossing. For earlier works
on cosmological parameter estimation with DDE models and
f (R) gravity models see [28,37,38].
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In this paper we explore the aspect of structure formation
in HS Model and DDE model. In Hu–Sawicki model, we
compute the power spectrum and constrain the parameters
with Planck-CMB and LSS data. We find that the tension in
σ8 between Planck-CMB and LSS observations worsens in
the HS model compared to the ΛCDM model. The second
model we examine is DDE, non-phantom (equation of state
w ≥ −1) model of dark energy. We choose the values of two
model parameters in this model such that the non-phantom
condition is maintained and obtain σ8 from Planck-CMB and
LSS data sets. We find that in the DDE model the σ8 tension
is eased as compared to ΛCDM model.

Neutrino mass cuts the power at small length scales
due to free streaming. The cosmology bound on neutrino
mass changes in modified gravity models. We find that the
constraint on neutrino mass

∑
mν ≤ 0.157 in ΛCDM

model changes to
∑

mν ≤ 0.318 in the HS model and∑
mν ≤ 0.116 in the DDE model from CMB observa-

tions. Whereas,
∑

mν = 0.364 ± 0.095 in ΛCDM model
changes to

∑
mν = 0.333 ± 0.093 in the HS model and∑

mν = 0.275 ± 0.095 in the DDE model from LSS obser-
vations. All these bounds are at 68% c.l. All these constraints
are obtained considering that all three neutrinos have degen-
erate mass. We also check the H0 inconsistency and find that
it is being resolved on inclusion of neutrino mass in both these
models, consistent with the earlier findings [4] that neutrino
mass resolves the H0 conflict.

The structure of this paper is as follows. In Sect. 2 we
briefly discuss the Hu–Sawicki f (R) model and the mod-
ification in the evolution equations. In Sect. 3 we describe
the phenomenological parametrization of DDE model. We
describe the role of massive neutrinos in cosmology and their
evolution equations in Sect. 4. In Sect. 5 matter power spec-
trum and it’s relation to σ8 has been discussed briefly. We also
explain the effect of HS, DDE model parameters and mas-
sive neutrinos on the matter power spectrum in this section
followed by the description of data sets used and analyses
done in Sect. 6. We conclude with discussion in Sect. 7.

2 f(R) theory: Hu–Sawicki model

Scalar-tensor theories are generalized Brans–Dicke [39] the-
ories. The general action for scalar-tensor theories is

Sst =
∫

d4x
√−g̃

( R̃

16πG
− 1

2
g̃μν∂μφ∂νφ − V (φ)

)

+ Sm(gμν, ψ),

(1)

where Sm(gμν, ψ) is the action for the matter fields, gμν

is Jordan frame metric and g̃μν is Einstein frame metric
which are related by the conformal transformation gμν =
A2(φ)g̃μν , and φ is the scalar field which couples to Einstein

metric as well as to matter fields ψ . The scalar field brings in
an additional gravitational interaction between matter fields
and the net force on a test particle modifies to

F = −∇Ψ − d ln A(φ)

dφ
∇φ , (2)

and the dynamics is governed by the effective potential

Veff(φ) = V (φ) + (A(φ) − 1)ρ, (3)

where Ψ is Newtonian potential and ρ is density.
The fact that scalar field couples to the matter fields

would result in violations of the Einstein Equivalence Prin-
ciple [40] and signatures of this coupling would appear in
non-gravitational experiments based on universality of free
fall and local Lorentz symmetry [41] in the matter sector.
These experiments severely constrain the presence of a scalar
field and can be satisfied if either the coupling of the scalar
field with the matter field is always very small or there is
some mechanism to hide this interaction in the dense envi-
ronments. One such mechanism is called chameleon mech-
anism [42] in which V (φ) and A(φ) are chosen in such
forms that Vef f (φ) has density dependent minimum, i.e.,
Vef f (φ)min = Vef f (φ(ρ)). The required screening will be
achieved if either the coupling is very small at the minimum
of Vef f (φ) or the mass of the scalar field is extremely large.

If the scalar field stays at its density dependent minimum,
φ(ρ), the theory can be parametrized into two functions, the
mass function m(ρ) and the coupling β(ρ) at the minimum
of the potential [43,44]

φ(ρ) − φc

mPl
= 1

m2
Pl

∫ ρc

ρ

dρ
β(ρ)

m2(ρ)
, (4)

where mPl is the Planck mass and mass of the scalar field
m(ρ) and the coupling parameter β(ρ) are respectively given
as

m2(ρ) = d2Veff

dφ2 |φ=φ(ρ), (5)

β(ρ) = mPl
d ln A

dφ
|φ=φ(ρ). (6)

Simplest modified gravity model is the f (R) gravity [45–
47]. In general relativity (GR) Lagrangian density is given
by Ricci scalar R, whereas it is a non linear function of R
in the f (R) gravity. Hence the action for an f (R) theory is
given as

S = 1

16πG

∫

d4x
√−g ( f (R)) + Sm(gμν, ψ), (7)

where f (R) is a non linear function of R. The scalar degree
of freedom in the f (R) theories has been utilized as the
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quintessence field to explain DE. It has been shown [46,48]
that f (R) theory is the equivalent to a scalar-tensor theory
with an equivalence relation

fR = e−2β0φR/mPl , (8)

and potential corresponding to extra scalar degree of freedom

V (φR) = m2
Pl

2

R fR − f (R)

f 2
R

, (9)

where fR = ∂ f/∂R. In this paper, we consider the Hu–
Sawicki model, which explains DE while evading the strin-
gent tests from solar system observations. In HS model the
modification in the action is given as

f (R) = R − 2Λ − fR0

n

Rn+1
0

Rn
, (10)

where R ≥ R0 and R0 is the curvature at present. Here
fR0 and n are the free parameters of the HS model. Using
equivalence relation 8 and Eq. 9, we find that

V (φR) = Λ + n + 1

n
fR0 R0

(−2β0φR

mPl fR0

)n/(n+1)

(11)

The coupling function β(a) is constant for all the f (R)

models i.e β(a) = 1√
6

, whereas the mass function is a
model dependent quantity [43,44,49]. In particular for the
HS model, for which form of f (R) is given by Eq. 10, we
have mass function

m(a) = m0

(
4ΩΛ + Ωma−3

4ΩΛ + Ωm

)(n+2)/2

, (12)

with

m0 = H0

√
4ΩΛ + Ωm

(n + 1) fR0

, (13)

These parameters contains all the information of the model,
where ΩΛ and Ωm are the matter density fraction for dark
energy and matter today. In the next subsection, we will
derive the evolution equations in terms of these parameters.

2.1 Evolution equations

In GR the evolution of metric perturbation potentials and
density perturbations is given by the following linearized
equations,

k2Φ = −4πGa2ρδ, (14)

k2(Φ − Ψ ) = 12πGa2(ρ + P)σ, (15)

δ′′ + H δ′ − 4πGa2ρδ = 0, (16)

where ′ denotes the derivative with respect to the conformal
time, δ is the co-moving density contrast and Φ and Ψ are
the space-time dependent perturbations to the FRW metric,

ds2 = −(1 + 2Φ)dt2 + a2(t)(1 − 2Ψ )δi j dx
i dx j . (17)

In the modified gravity models and other dark energy mod-
els these relation can be different. To incorporate the pos-
sible deviations from ΛCDM evolution there are several
parametrization [50–54] present in the literature. We use the
following parametrization which was introduced in [50]

k2Ψ = −4πGa2μ(k, a)ρδ, (18)
Φ

Ψ
= γ (k, a), (19)

where μ(k, a) and γ (k, a) are two scale and time depen-
dent functions introduced to incorporate any modified the-
ory of gravity. Note the appearance of Ψ instead of Φ in the
first equation. In the quasi-static approximation μ(k, a) and
γ (k, a) can be expressed as [43]

μ(k, a) = A2(φ)(1 + ε(k, a)), (20)

γ (k, a) = 1 − ε(k, a)

1 + ε(k, a)
, (21)

where

ε(k, a) = 2β2(a)

1 + m2(a) a
2

k2

. (22)

Modification in the evolution of Ψ and Φ in turn modifies
the evolution of matter perturbation to as

δ′′ + H δ′ − 3

2
ΩmH

2μ(k, a)δ = 0 (23)

where H = a′/a.

3 Dynamical dark energy model

The current measurements of cosmic expansion [55–57],
indicate that the present Universe is dominated by dark
energy (DE). The most common dark energy candidate is
cosmological constant Λ representing a constant energy den-
sity occupying the space homogeneously. The equation of
state parameter for DE in cosmological constant model is
wDE = PDE

ρDE
= −1. However a constant Λ makes the near

coincidence of ΩΛ and Ωm in the present epoch hard to
explain naturally. This gives way for other models of DE
such as quintessence [58–60], interacting dark energy [61]
and phenomenological parametrization of DE such as DDE
[62–66]. In the phenomenological DE models the equation
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of state parameter is taken to be a variable, dependent on the
scale factor (equivalently redshift), i.e.,

w(z) =
∑

n

wnx(z), (24)

where wn are parameters fixed by observations and x(z)
is function of redshift. The most commonly followed w(z)
dependence are phantom fields(w(z) < −1) and non phan-
tom field(−1 ≤ w(z) ≤ 1). In this paper we use the
Chavallier–Polarski–Linder (CPL) [62,63] parametrization
of DDE. The equation of state parameter for DE in CPL
parametrization is

wDE(z) = w0 + wa
z

z + 1
, (25)

where w0 and wa are the CPL parameters. This parametriza-
tion describes a non phantom field when wa +w0 ≥ −1 and
w0 ≥ −1. Choosing w0 = −1 and wa = 0 Eq. 25 gives
back the ΛCDM model. As a result of this parametrization
the evolution of DE density fraction is given by the equation

ΩDE(z) = ΩDE,0(1 + z)3(1+wo+wa)e−3wa
z

z+1 , (26)

where ΩDE,0 is the DE density at present.

4 Massive neutrino in cosmology

Neutrinos play an important role in the evolution of the Uni-
verse. Several neutrino oscillation experiments have estab-
lished that neutrinos are massive [67,68]. Massive neutri-
nos can affect the background as well as matter perturbation
which in turn can leave its imprint on cosmological obser-
vations. In the early universe, neutrinos are relativistic and
interact weakly with other particles. As the temperature of the
Universe decreases, the weak interaction rate becomes less
than the Hubble expansion rate of the Universe and neutrinos
decouple from rest of the plasma. Since neutrinos are rela-
tivistic, their energy density after decoupling is given [69,70]

ρν =
[

7

8

(
4

11

)4/3

Neff

]

ργ , (27)

where ργ is the photon energy density. Neff is the effective
number of relativistic neutrinos at early times which is theo-
retically predicted to be 3.045 [71] and estimated from CMB
observation to be 2.99 ± 0.17 [72]. When the temperature of
the Universe goes below the mass of the neutrinos, they turn
into non-relativistic particles.The energy density fraction of
neutrinos in the present universe depends on the sum of their
masses and is given as

Ων =
∑

mν

eV

1

93.1h2 , (28)

where
∑

mν is the sum of neutrino masses. Neutrinos in the
present Universe contribute a very small fraction of energy
density however they can affect the formation of structure at
large scales.

After neutrinos decouple, they behave as collisionless
fluid with individual particles streaming freely. The free
streaming length is equal to the Hubble radius for the rel-
ativistic neutrinos, whereas non-relativistic neutrinos stream
freely on the scales k > kfs, where kfs is the neutrino free-
streaming scale. On the scales k > kfs, the free-streaming of
the neutrinos damp the neutrino density fluctuations and sup-
press the power in the matter power spectrum. On the other
hand neutrinos behave like cold dark matter perturbations on
the scales k < kfs [69,70].

4.1 Evolution equations for massive neutrinos

Massive neutrinos obey the collisionless Boltzmann equa-
tion, therefore we solve the Boltzmann equation for the neu-
trinos to get their evolution equations. The energy momentum
tensor for neutrinos is given as

Tμν =
∫

dP1dP2dP3(−g)−1/2 PμPν

P0 f (xi , Pj , τ ), (29)

where f (xi , Pj , τ ) and Pμ are the distribution function and
the four momentum of neutrinos respectively. We expand
the distribution function around the zeroth-order distribution
function f0 as

f (xi , Pj , τ ) = f0(q)[1 + χ(xi , Pj , τ )], (30)

where χ is the perturbation in the distribution function. Using
Eqs. 29 in 30 and equating the zeroth order terms, we get the
unperturbed energy density and pressure for neutrinos

ρ̄ = 4π a−4
∫

q2dqε f0(q), P̄=4πa−4

3

∫

q2dq
q2

ε
f0(q).

(31)

Similarly, We get the perturbed quantities by equating the
first order terms

δρ = 4π a−4
∫

q2dqε f0(q)χ,

δP = 4πa−4

3

∫

q2dq
q2

ε
f0(q)χ.

δT 0
i = 4π a−4

∫

q2dqqni f0(q)χ,

δΣ i
j = 4πa−4

3

∫

q2dq
q2

ε

(

nin j − 1

3
δi j

)

f0(q)χ,

(32)
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where qi = qni is the co-moving momentum and ε =
ε(q, τ ) = √

q2 + m2
νa

2. It is clear from eq. 32 that we can
not simply integrate out the q dependence as ε is the func-
tion of both τ and q. Hence, we will use the Legendre series
expansion of the perturbation χ to get the perturbed evo-
lution equations for the massive neutrino. Legendre series
expansion of the perturbation χ is given as

χ(k, n̂, q, τ ) =
∞∑

l=0

(−i)l(2l + 1) χl(k, q, τ )Pl(k̂.n̂). (33)

Using Eq. 33 in the Eq. 32, we get the perturbed evolution
equations for the massive neutrino [73]

δρh = 4πa−4
∫

q2dqε f0(q)χ0,

δPh = 4π

3
a−4

∫

q2dq
q2

ε
f0(q)χ0,

(ρ̄h + P̄h)θh = 4πka−4
∫

q2dqq f0(q)χ1,

(ρ̄h + P̄h)σh = 8π

3
a−4

∫

q2dq
q2

ε
f0(q)χ2, (34)

where the Boltzmann equation governs the evolution of χl . In
the Newtonian gauge Boltzmann equations for χl are given
as

χ̇0 = −qk

ε
χ1 − Φ̇

d ln f0
d ln q

,

χ̇1 = qk

3ε
(χ0 − 2χ2) − εk

3q
Ψ
d ln f0
d ln q

,

χ̇l = qk

(2l + 1)ε
[lχl−1 − (l + 1)χl+1], for, l ≥ 2. (35)

5 Matter power spectrum and σ8

In this section we discuss the effect of massive neutrinos, HS
model parameters and DDE model parameters on the mat-
ter power spectrum and σ8. Matter power spectrum is a scale
dependent quantity defined as the two-point correlation func-
tion of matter density, P(k) = kns T 2(k)D2(a). Where T (k)
is the matter transfer function, D(a) is the linear growth fac-
tor and ns is the tilt of the primordial power spectrum. Also,
the r.m.s. fluctuation of density perturbations in a sphere of
radius r is defined as

σ(r, z) =
[

1

2π2

∫ ∞

0
dkk2P(k, z)|W (kr)|2

]1/2

, (36)

where r is related to mass by r = (3M/4πρm(z = 0))1/3

with ρm(z = 0) being the matter density of the Universe at
present epoch. Here W (kr) = 3(sin kr − kr cos kr)/(kr)3

is the filter function. This is a scale dependent quantity. The

r.m.s. fluctuation of density perturbations on scale 8 h−1Mpc
is called σ8(z).

We use CAMB [74] to generate the matter power spectrum
for DDE model, whereas we use MGCAMB [50,51] to obtain
the matter power spectrum for HS model. In order to see the
effect of modified gravity models and massive neutrinos we
plot matter power spectrum for some bench mark values of∑

mν , HS model parameters and DDE model parameters.
The power spectra are shown in Fig. 1.

• As we discussed in Sect. 4, massive neutrinos stream
freely on the scales k > kfs and they can escape out of the
high density regions on those scales. The perturbations on
length scales smaller than neutrino free streaming length
will be washed out and therefore power spectrum gets
suppress on these scales. Neutrino mass cuts the power
at length scales even larger than the 8 h−1Mpc which
requires a large Ωm which in turn disfavors the compat-
ibility of σ8 − Ωm between the two observations.

Fig. 1 Matter power spectrum in HS, DDE and ΛCDM model

Table 1 Parameters with flat prios are listed in this table

Parameters Planck + BAO LSS

Ωch2 [0.001, 0.99] [0.001, 0.99]

Ωbh2 [0.005, 0.1] [0.005, 0.1]

τreio [0.01, 0.8]

100ΘMC [0.5, 10] [0.5, 10]

ln(1010As) [2, 4] [2, 4]

ns [0.8, 1.2] [0.8, 1.2]
∑

Mν [0, 5.0] [0, 5.0]

log10 fR0 [−9.0, 10] [−9.0, 10]
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Λ ledoMSHDDE ModelMDC

Fig. 2 The 1-σ and 2-σ contours in σ8 − Ωm parameter space for ΛCDM, DDE and HS model with
∑

mν = 0.06 eV are shown here. It is shown
that the σ8 discrepancy worsens in the HS model whereas in DDE model the descrepancy is somewhat relieved

Fig. 3 Parameter space for w0 and wa allowed by Planck + BAO and
LSS data. Blue and Blue dashed lines correspond to w0 +wa = −1 and
w0 = −1 respectively. The region above these lines is the non-phantom
region

• DDE cuts the power spectrum at all length scales. Since,
in the DDE model, dark energy density increases with
the redshift, therefore, in the early time when the dark
energy density is large, the power cut is more prominent
at small scales.

• On the other hand, the power spectrum gets affected in
an opposite manner for HS model as the power increases
slightly on small length scales.

6 Datasets and analysis

As discussed in Sect. 1 there is a discrepancy in the values
of H0 and σ8 reported by the large scale surveys and Planck
CMB observations. In this paper we analyse ΛCDM, HS

Table 2 The best fit values with 1-σ error for all the parameters with fixed
∑

mν , obtained from the MCMC analyses for all the models considered
are listed here

Parameter ΛCDM DDE HS

Planck + BAO LSS Planck + BAO LSS Planck + BAO LSS

Ωbh2 0.02227 ± 0.00020 0.02274 ± 0.00081 0.02236 ± 0.00020 0.02292 ± 0.00080 0.02243 ± 0.00022 0.02225 ± 0.00070

Ωch2 0.1190 ± 0.0013 0.1159 ± 0.0016 0.1178 ± 0.0013 0.1146 ± 0.0016 0.1185 ± 0.0013 0.1153 ± 0.0015

100θMC 1.04098 ± 0.00042 1.0425 ± 0.0011 1.04116 ± 0.00042 1.0427 ± 0.0011 1.04108 ± 0.00043 1.0419 ± 0.0010

τreio 0.081 ± 0.018 0.08 0.086 ± 0.018 0.086 0.063 ± 0.020 0.65

ln(1010As) 3.094 ± 0.035 3.080 ± 0.012 3.101 ± 0.036 3.095 ± 0.011 3.058 ± 0.041 3.053 ± 0.011

ns 0.9673 ± 0.0044 0.905 ± 0.019 0.9701 ± 0.0045 0.910 ± 0.019 0.9691 ± 0.0047 0.941 ± 0.011

H0 67.65 ± 0.57 69.81+0.73
−0.82 66.02 ± 0.52 67.98 ± 0.72 68.00 ± 0.61 69.26 ± 0.72

Ωm 0.3102 ± 0.0077 0.2862 ± 0.0071 0.3230 ± 0.0077 0.2991 ± 0.0073 0.3062 ± 0.0079 0.2882 ± 0.0071

σ8 0.829 ± 0.015 0.7917 ± 0.0074 0.808 ± 0.015 0.7745 ± 0.0074 1.10+0.12
−0.030 0.7948 ± 0.0068

S8 0.840 ± 0.018 0.7732+0.0139
−0.0119 0.834 ± 0.018 0.7732+0.0141

−0.0122 1.105+0.110
−0.020 0.7790+0.0137

−0.0119
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Λ ledoMSHDDE ModelMDC

Fig. 4 The 1-σ and 2-σ contours in σ8 − Ωm parameter space for ΛCDM, DDE and HS model with varying
∑

mν are shown here. It is shown
that the σ8 discrepancy worsens in the HS model whereas in DDE model the descrepancy is somewhat relieved

Table 3 The best fit values with 1-σ error for all the parameters with varying
∑

mν , obtained from the MCMC analyses for all the models
considered are listed here

Parameter ΛCDM DDE HS

Planck + BAO LSS Planck + BAO LSS Planck + BAO LSS

Ωbh2 0.02228 ± 0.00020 0.02277 ± 0.00080 0.02236 ± 0.00020 0.02283 ± 0.00081 0.02254 ± 0.00025 0.02216+0.00064
−0.00073

Ωch2 0.1188+0.0015
−0.0014 0.1141 ± 0.0018 0.1177 ± 0.0014 0.1134 ± 0.0017 0.1172+0.0020

−0.0017 0.1139 ± 0.0017

100θMC 1.04097 ± 0.00042 1.0430 ± 0.0011 1.04114 ± 0.00042 1.0431 ± 0.0011 1.04120 ± 0.00045 1.0434 ± 0.0010

τreio 0.082+0.018
−0.020 0.082 0.086 ± 0.018 0.086 0.065 ± 0.021 0.065

ln(1010As) 3.096 ± 0.037 3.114 ± 0.015 3.101 ± 0.036 3.117 ± 0.015 3.058 ± 0.042 3.085 ± 0.014

ns 0.9676+0.0045
−0.0050 0.911 ± 0.019 0.9702 ± 0.0047 0.913 ± 0.019 0.9723+0.0053

−0.0060 0.943 ± 0.011

H0 67.56 ± 0.65 67.80 ± 0.99 66.05 ± 0.57 66.65 ± 0.97 67.64 ± 0.74 67.45 ± 0.96

Ωm 0.3112 ± 0.0082 0.306 ± 0.010 0.3227 ± 0.0079 0.314 ± 0.011 0.3096 ± 0.0089 0.307 ± 0.010

σ8 0.826+0.022
−0.017 0.735 ± 0.028 0.809+0.019

−0.016 0.735 ± 0.020 1.115+0.091
−0.034 0.743 ± 0.020

Σmν < 0.157 0.364 ± 0.095 < 0.116 0.275 ± 0.095 < 0.318 0.333 ± 0.093

S8 0.838 ± 0.022 0.7431+0.0201
−0.0181 0.835 ± 0.020 0.7522+0.0201

−0.0172 1.127+0.089
−0.031 0.7522+0.0201

−0.0175

and DDE model. For analyzing these models, we use Planck
CMB observations [1] for temperature anisotropy power
spectrum over the multipole range � ∼ 2 − 2500 and Planck
CMB polarization data for low � only. We refer to these data
sets combined as Planck data. We also use the baryon acoustic
oscillations(BAO) data from 6dF Galaxy Survey [75], BOSS
DR11 [76,77] and SDSS DR7 Main Galaxy Sample [78]. In
addition we use the cluster count data from Planck SZ sur-
vey [79], lensing data from Canada France Hawaii Telescope
Lensing Survey (CFHTLens) [80,81] and CMB lensing data
from Planck lensing survey [82] and South Pole Telescope
(SPT) [83,84]. We also use the data for Redshift space dis-

tortions (RSD) from BOSS DR11 RSD measurements [85].
We combine Planck SZ data, CFHTLens data, Planck lens-
ing data, SPT lensing data and RSD data and refer them as
LSS data. We perform Markov Chain Monte Carlo(MCMC)
analysis for ΛCDM, HS and DDE model with both Planck
+ BAO and LSS data. We use CosmoMC [86] to perform
the MCMC analysis for ΛCDM and DDE model and add
MGCosmoMC patch [50,51] to it for HS model. MGCos-
moMC patch includes the μ(k, a) and γ (k, a) parametriza-
tion discussed in Sect. 2.

In our analysis for ΛCDM model we have total six
free parameter which are standard cosmological parameters
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Fig. 5 The triangle plot showing 1-σ and 2-σ contours of all the parameters for ΛCDM model with
∑

mν = 0.06eV is shown here

namely, density parameters for cold dark matter(CDM) Ωc

and baryonic matter Ωb, optical depth to re-ionization τreio,
angular acoustic scale ΘMC, amplitude As and tilt ns of the
primordial power spectrum. We fix

∑
mν = 0.06eV to sat-

isfy the neutrino oscillation experiments results. We also have
two derived parameters H0 and σ8. First we perform MCMC
analysis with Planck + BAO data with these parameters and

get constraints for each parameter. Next, we run the MCMC
analysis with LSS data for ΛCDM model. Since τreio does
not affects the LSS observation therefore we also use the best
fit value of τreio = 0.08, obtained from analysis with Planck
+ BAO data, as fixed prior. We have listed all the parameters
with flat in Table 1. These analyses give σ8 = 0.829 ± 0.015
for the Planck + BAO data and σ8 = 0.7917 ± 0.0074 and
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Fig. 6 The triangle plot showing 1-σ and 2-σ contours of all the parameters for DDE model with
∑

mν = 0.06 eV is shown here

for LSS data. We plot the parameter space σ8 −Ωm , obtained
from two different analysis (Fig. 2). It is clear from the Fig.
2 that there is a mismatch between the values of σ8 inferred
from Planck + BAO data and that from LSS data.

In our analysis for HS model we have total eight free
parameter of which six are standard cosmological param-
eters, two are HS model parameters namely, fR0 and n as
defined in Sect. 2. Here we fix n = 1 and allowed fR0 to

vary in the range [10−9, 10]. We repeat the whole procedure
to do the analysis with Planck + BAO and LSS data for HS
model and obtain constraints for each parameter. Similar to
the analysis for ΛCDM model, in the analysis of this model
with LSS data, we fixed the τreio = 0.065. The best fit values
for σ8 in this analysis are 1.10+0.12

−0.030 with Planck + BAO data
and 0.7948 ± 0.0068 with LSS data. We plot the parameter
space σ8 − Ωm , obtained from analysis with two different
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Fig. 7 The triangle plot showing 1-σ and 2-σ contours of all the parameters for HS model with
∑

mν = 0.06 eV is shown here

data sets, see Fig. 2. We found that tension between the val-
ues of σ8 inferred from Planck + BAO data and that from
LSS data is increases.

Next we do the analysis for DDE model. In our analysis
for DDE model, in addition to the six standard parameters,
we have two model parameters w0 and wa as defined in Sect.
3 making a total of eight parameters. First we do the MCMC

analysis for both the data sets keeping wa and w0 as free
parameters and get the 2-σ allowed ranges which are shown
in Fig. 3. Next we put the non-phantom constraints repre-
sented by region above blue and dashed blue lines in Fig.
3. We see that the region allowed by both the data sets and
also satisfies the non phantom conditions wa + w0 ≥ −1
and w0 ≥ −1 is very small and close to w0 = −0.9 and
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Fig. 8 The triangle plot showing 1-σ and 2-σ contours of all the parameters for ΛCDM model with
∑

mν as free parameter is shown here

wa = −0.1. Therefore we choose these values for our fur-
ther analysis, and do MCMC analysis scan over the remain-
ing six parameters. We repeat the same procedure as we did
for ΛCDM and HS model. First we do analysis with Planck
+ BAO data and get constraints on all the free parameters.
In the analysis with LSS data, we fix τreio = 0.086 (This
value is obtained in the analysis with Planck + BAO data).
We plot the parameter space σ8−Ωm , obtained from analysis

with two different data sets, see Fig. 2. We find that tension
between the values of σ8 values inferred from Planck + BAO
data and that from LSS data is somewhat alleviated in the
DDE model. Constraints on σ8, H0, and other parameters for
each model are listed in Table 2.

Next, we use sum of massive neutrino
∑

mν as a free
parameter and allow it to vary in the range [0, 5] eV in our
analysis for all three models. We repeat the whole procedure

123



141 Page 12 of 16 Eur. Phys. J. C (2019) 79 :141

Fig. 9 The triangle plot showing 1-σ and 2-σ contours of all the parameters for DDE model with
∑

mν as free parameter is shown here

and obtain constraints for each parameter. We plot the param-
eter space σ8 −Ωm for each model, see Fig. 4. Constraints on
∑

Mν , σ8, H0 and other parameters for each model are listed
in Table 3. The triangle plots for all the three models with
∑

mν = 0.06eV are shown Figs. 5, 6 and 7. The triangle
plots for all the three models with

∑
mν as free parameter

are shown Figs. 8, 9 and 10. The corresponding 1σ and 2σ

contours for
∑

Mν are shown in Fig. 11.

7 Discussion and conclusion

Galaxy surveys and CMB lensing measure the parameter
σ8Ω

α
m , where Ωα

m represents a model dependent growth
function. In ΛCDM α = 0.5 but it could be different for
other DM-DE models. In CMB measurement of temperature
anisotropy spectrum Cl and BAO determine Ωm . The dis-
crepancy between the CMB and LSS measurement is deter-
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Fig. 10 The triangle plot showing 1-σ and 2-σ contours of all the parameters for HS model with
∑

mν as free parameter is shown here

mined by the model dependent growth function Ωα
m . The

growth function can thus be used for testing theories of grav-
ity and dynamical DE. In the present paper we tested HS
and DDE models in the context of σ8 − Ωm observations.
We find that in the HS model the σ8 − Ωm tension worsens
compared to the ΛCDM model. On the other hand in the
DDE model there is slight improvement in the concordance

between the two data sets. The discrepancy levels between
values inferred from Planck + BAO and LSS data for ΛCDM,
DDE and HS model are listed in Table 4. We also find that
adding active massive neutrinos allow us to have larger value
of Ωm . H(z) in H(z) = H0

√
Ωm(1 + z)3 + ΩΛ is deter-

mined by the observation, therefore a larger value of Ωm

brings down the H0 value to satisfy the observation. Thus,

123



141 Page 14 of 16 Eur. Phys. J. C (2019) 79 :141

Fig. 11 Bounds on the
Neutrino mass in DDE, HS and
ΛCDM models with Planck and
LSS data

Table 4 The descrepancy level between the σ8 values inferred from
Planck + BAO and LSS data for ΛCDM, DDE and HS model are listed
here

ΛCDM DDE HS

With fixed
∑

Mν 1.722σ 1.522σ 1.793σ

With varying
∑

Mν 1.960σ 1.796σ 2.273σ

we find that the H0 tension between CMB and LSS obser-
vations is resolved by using active massive neutrinos. How-
ever, this increases the mismatch between H0 values obtained
from LSS and SN-Ia observations. In all three models, the ns
values obtained in the analysis with LSS data is smaller as
compared to ns value obtained from Planck + BAO. Which
gives rise to another tension between the two data sets. The
tilt of the primordial spectrum is calculated at a particular
pivot scale(k∗). In our analysis the pivot scale is 0.05 Mpc−1.
The ns discrepancy may be due to the fact that Planck data
and LSS data have different pivot scale which can be a sig-
nature of running tilt of the primordial spectrum. This can
be checked in future works. The bounds on neutrino mass
become more stringent in the DDE model. In the HS model
there is a loosening in the analysis with Planck data and not
much effect in the analysis with the LSS data. In conclusion
we see that σ8 measurement from CMB and LSS experiments
can be used as a probe of modified gravity or quintessence
models. Future observations of CMB and LSS may shrink
the parameter space for σ8 − Ωm and then help in selecting
the correct f (R) and DDE theory.
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