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Abstract In this paper we first address four point functions
of string amplitudes in both type IIA and IIB string theories.
Making use of non-BPS scattering amplitudes, we explore
not only several Bianchi identities that hold in both trans-
verse and world volume directions of the brane, but also we
reveal various new couplings. These couplings can just be
found by taking into account the mixed pull-back and Taylor
couplings where their all order alpha-prime higher derivative
corrections have been derived as well. For the first time, we
also explore the complete form of a six point non-BPS ampli-
tude, involving three open string tachyons, a scalar field and
a Ramond–Ramond closed string in both IIA, IIB. In a spe-
cial limit of the amplitude and using the proper expansion we
obtain an infinite number of bulk singularities that are being
constructed in the effective field theory. Finally, using new
couplings we construct all the other massless and tachyon sin-
gularities in type IIA, IIB string theories. All higher derivative
corrections to these new couplings to all orders in α′ and new
restricted Bianchi identities have also been obtained.

1 Introduction

Among several goals of theoretical physicists and in particu-
lar string theorists, we may point out two common interests
in uncovering more information: about how the supersym-
metry gets broken as well as working out new couplings/
interactions on time dependent backgrounds. If we try to deal
with non-supersymmetric (unstable) branes, then one may be
able to properly address some of the open questions and also
might be able to deepen insight in many properties of various
different string theories [1–9]. Since the duality transforma-
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tion is not promising in this context anymore, one needs to
be aware of the fact that for non-BPS branes just scattering
amplitudes and Conformal Field Theory (CFT) methods [10]
would exactly determine corrections to all orders in α′ of the
effective actions of string theory.

Making use of non-supersymmetric branes, the so-called
Sakai–Sugimoto model [11,12] and the symmetry breaking
for holographic QCD models have become known [13,14].
Tachyons do play a crucial role in the instability of the afore-
mentioned systems so it would be important to consider
tachyons and try to obtain their effective actions in both type
IIA and IIB string theories and also explore their new cou-
plings in Effective Field Theory (EFT).

The leading order non-BPS effective actions including
tachyonic modes were proposed in [15,16], where some
of their properties such as their decays and tachyon con-
densation have also been clarified in detail [17]. Follow-
ing [8,9], one reveals how to embed non-BPS branes in the
effective actions. We studied D-brane–anti-D-brane systems
[19,20]. Recently, the generalization of effective actions of
D-brane–anti-D-brane system to all orders in alpha-prime
for both Chern–Simons and Dirac–Born–Infeld (DBI) effec-
tive actions was discovered [21]. Another example would be
related to tachyon condensation that has been investigated
in [22] in detail. For the D-brane–anti-D-brane system, once
the distance between brane and anti-brane becomes smaller
than the string length scale, two real tachyonic strings would
appear. They are related to strings stretched from D-brane to
anti-D-brane and vice versa.

Here we would like to deal with N coincident non-BPS
branes and try to embed tachyonic modes and their correc-
tions in EFT. We take the non-BPS scattering amplitude for-
malism as a theoretical framework or laboratory to discover
their effective actions, including their corrections to all order
in α′ in string theory in an efficient and consistent way of
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matching string results with EFT. To deal with the dynam-
ics of unstable branes, we highlight the recent work done by
Polchinski et al. [23] where various explanations within the
context of the brane ’s effective actions through EFT have
been discussed. Not only brane production [24–31], but also
inflation in string theory in the procedure of KKLT [32–34]
can be mentioned. To observe a review of open strings and
their features we point out to [35–41]. For reviews see [42, 43]

In this paper we deal with a non-BPS four point function
and explore some Bianchi identities and new EFT couplings
that come from the mixed pull-back formalism and Taylor
expansion and then try to use the lower point functions to
exactly build for the first time a non-BPS six point function.
Having used the scattering amplitude methods, we would
also fix some of the ambiguities of the corrections in string
theory and reveal new string couplings in both type II string
theories.1

One can try to relate some of the new couplings to the
AdS/CFT correspondence [45,46]. It is also worth making
a remark on the D-brane–anti-D-brane systems, as they do
affect not only the problem of stability of KKLT model but
also string compactifications [47,48] and in particular the so-
called large volume scenario. The relation between D-branes
and Ramond–Ramond (RR) charges is well established [49],
where one could also take into account some brane’s bound
states [50]. All the EFT methods of deriving the Wess–
Zumino (WZ) and DBI effective actions are given in [51,52].

The paper is organized as follows. First we study a four
point function including a closed string RR and a trans-
verse scalar field and a real tachyon on the world volume
of non-BPS branes; an RR and two tachyons have been fully
addressed in [53]. Then we build all order α′ higher derivative
corrections to it and explore a pattern from this calculation
to reconstruct all singularity structures of the higher point
functions of non-BPS branes.

Our notations for indices are summarized by the follow-
ing.

μ, ν = 0, 1, . . . , 9 represent the whole ten dimensional
space-time, a, b, c = 0, 1, . . . , p show the world volume
indices, and finally for transverse directions of the brane
i, j = p + 1, . . . , 9 are taken accordingly.

We establish a new coupling among RR, the tachyon field
living on the world volume of a non-BPS brane and one
massless scalar field representing a transverse direction of
the brane.

This new mixed WZ-Taylor expansion is given by

2iβ ′μ′
p

(p)! (2πα′)2
∫

�p+1

εa0...apCia0...sap−2 Dap−1T Dapφ
i (1)

1 To work with some higher point functions and for their corrections
we just highlight [35–40] and [41–44] accordingly.

where μ′
p is the RR charge of the brane and β ′ is the WZ

normalization constant.
Note that the integration should be taken on (p+1) world

volume directions and in order to cover the whole world
volume indices we extract the coupling and write it as (1).
We also explore its corrections to all orders in the higher
derivatives too.

Having set all lower point functions of the non-BPS
branes, we would clarify more hidden symmetries in a non-
BPS context. Hence we make use of all the CFT tech-
niques to a six point correlation of an RR, a scalar field
and three tachyons. We first find the entire correlators of
< VC−1Vφ−1VT 0VT 0VT 0 > in type IIA (IIB) and then we
just illustrate the final result in a different picture of the scalar
field. Basically we explore < VC−1Vφ0VT−1VT 0VT 0 > and
argue that using this particular case we would be able to
precisely obtain all bulk singularity structures that are not
present in the other picture. Using selection rules [54] for the
non-BPS amplitudes, EFT and in a particular soft limit, we
discover the ultimate answer for the S-matrix. Having set all
symmetries of the S-matrix, we explore the expansion of the
S-matrix. Using the soft limit we generate not only all the
infinite massless singularities, but also an infinite number of
u-channel bulk singularity structures can be precisely recon-
structed in an EFT and we arrive at a perfect match between
the string amplitudes and the EFT counterparts. Finally, we
use all the higher derivative corrections of two tachyon–two
scalar couplings to be able to produce an infinite number of
the scalar field singularities as well. It is worth to emphasize
that, since there is no coupling between two tachyons and a
scalar field, the amplitude (as can be seen from the ultimate
result of the S-matrix) has no singularity in the t, s, v chan-
nels at all. The DBI part of the effective action for non-BPS
branes is

SDBI ∼
∫

d p+1σSTr

(
V (T i T i )

√
1 + 1

2
[T i , T j ][T j , T i ])

×
√

− det
(
ηab + 2πα′Fab + 2πα′DaT i

(
Q−1

)i j
DbT j

))
,

(2)

where V (T i T i ) = e−πT i T i /2, and

Qi j = I δi j − i[T i , T j ], (3)

i, j = 1, 2, i.e., T 1 = Tσ1, T 2 = Tσ2. The DBI part of the
D-brane–anti-D-brane is given in [21]. If we make the kinetic
terms symmetrized, find the traces and then use the ordi-
nary trace, the action will get replaced by Sen’s action [55].
However, in [56,57] by direct CFT computations and scat-
tering amplitudes we have shown that Sen’s effective action
does not provide a result consistent with the string ampli-
tudes. The expansion of the S-matrices is consistent with the
tachyon’s potential V (|T |) = eπα′m2|T |2 , which comes from
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BSFT [58–60]. On the other hand, the WZ action is given by

SWZ = μ′
p

∫
�(p+1)

C ∧ Str ei2πα′F . (4)

To consider interactions with tachyons, one can make contact
with the super connection of the non-commutative geometry
[61–63], where the curvature is

iF =
(
i F − β ′2T 2 β ′DT,

β ′DT i F − β ′2T 2.

)

One can find different types of WZ couplings from the
above actions to generate a consistent result between the
string amplitudes and the EFT, such as

C ∧ STr iF = 2β ′μ′
p(2πα′)Cp ∧ DT

C ∧ STr iF ∧ iF = β ′μ′
p(2πα′)2

×
(
Cp−1 ∧ DT ∧ (DT) + Cp−2 ∧ F ∧ DT

)
. (5)

2 All order α′ corrections to < VC−2VT0Vφ0 >

In order to actually address the entire form of a four point
function of an RR, a real tachyon and a scalar field in both
type IIA and IIB string theories, one must apply conformal
field theory methods to the complete S-matrix elements and
explore whether or not there are some bulk singularity struc-
tures and also one should see how one might be able to find all
order contact interactions. To obtain all the correlation func-
tions, one needs to know the vertex operators where their
complete forms are shown by

V (0)
T (x) = α′ik1·ψ(x)eα′ik1.·X (x)λ ⊗ σ1,

V (−1)
T (x) = e−φ(x)eα′ik1·X (x)λ ⊗ σ2,

V (−1)
φ (x) = e−φ(x)ξ1iψ

i (x)eα′iq·X (x)λ ⊗ σ3,

V (0)
φ (x) = ξ1i (∂

i X (x) + iα′q.ψψ i (x))eα′iq.X (x)λ ⊗ I,

V

(
− 3

2 ,− 1
2

)
C (z, z̄) = (P−C/ (n−1)Mp)

αβe−3φ(z)/2

× Sα(z)ei
α′
2 p·X (z)e−φ(z̄)/2Sβ(z̄)ei

α′
2 p·D·X (z̄) ⊗ σ1,

V

(
− 1

2 ,− 1
2

)
C (z, z̄) = (P−H/ (n)Mp)

αβe−φ(z)/2

× Sα(z)ei
α′
2 p·X (z)e−φ(z̄)/2Sβ(z̄)ei

α′
2 p·D·X (z̄) ⊗ σ3σ1.

σi is a Pauli matrix. λ is the external Chan–Paton matrix for
the U(N) gauge group. The vertex operators of non-BPS D-
branes should accompany the internal degrees of freedom,
given the fact that, if we send the tachyon to zero, one should
recover the WZ action of the BPS branes. For more informa-
tion we recommend Sect. 2 of [64].

This four point function at disk level can be computed if
one takes into account the following on-shell conditions:

q2 = p2 = 0, k2
1 = 1/4, q.ξ1 = 0.

The projection operator and the closed string RR field
strength are defined by

P− = 1
2

(
1 − γ 11

)
, H/ (n) = an

n! Hμ1...μnγ
μ1 . . . γ μn .

The spinor notation is given by (P−H/ (n))
αβ =

Cαδ(P−H/ (n))δ
β where C is the charge conjugation matrix

and for IIA (IIB) we pick up n = 2, 4, an = i (n = 1, 3, 5,
an = 1), accordingly. If we employ the doubling trick, then
one is able to just work with the holomorphic parts of the
fields. Thus we apply the the following change of variables
to our field content:

X̃μ(z̄) → Dμ
ν X

ν(z̄),

ψ̃μ(z̄) → Dμ
ν ψν(z̄),

φ̃(z̄) → φ(z̄), and S̃α(z̄) → Mα
β Sβ(z̄),

with

D =
(−19−p 0

0 1p+1

)
,

and Mp =
{ ±i

(p+1)!γ
i1γ i2 . . . γ i p+1εi1...i p+1 for p even,

±1
(p+1)!γ

i1γ i2 . . . γ i p+1γ11εi1...i p+1 for p odd.

Having carried the trick out, we would use the following
propagators for all Xμ,ψμ, φ fields:

〈Xμ(z)Xν(w)〉 = −α′

2
ημν log(z − w),

〈ψμ(z)ψν(w)〉 = −α′

2
ημν(z − w)−1,

〈φ(z)φ(w)〉 = − log(z − w). (6)

Hence, our amplitude in the asymmetric picture of RR is
found to be

AC−2T 0φ0 =
∫

dx1dx2dx4dx5

×(P−C/ (n−1)Mp)
αβ(2iα′k1aξ2i )(x45)

−3/4(I1 + I2)

×|x12|α′2k1.k2 |x14x15| α′2
2 k1.p|x24x25| α′2

2 k2.p|x45| α′2
4 p.D.p

with x4 = z = x + iy, x5 = z̄ and

I1 = −i pi
(

x45

x24x25

)
2−1/2(x14x15)

−1/2(x45)
−3/4(γ aC−1)αβ .

(7)

To obtain the other correlation function including two

spinors, a current and a fermion field

(
I2 = 2ik2b <:

Sα(x4) : Sβ(x5) : ψa(x1) : ψbψ i (x2) :>
)

we use the

so-called Wick-like formula [65] to get
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I2 =
(

(�ibaC−1)αβ − 2ηab(γ iC−1)αβ

2Re[x14x25]
x12x45

)

×2ik2b2−3/2(x24x25)
−1(x14x15)

−1/2(x45)
1/4.

One could precisely show that now the amplitude is SL(2, R)

invariant and to remove the volume of conformal Killing
group we do gauge fixing as (x1, x2, z, z̄) = (x,−x, i,−i)
with the Jacobian J = −2i(1+ x2). Setting the above gauge
fixing, we see that the second term of I2 does not have any
contribution to the final result of the amplitude due to the fact
that the integrand is odd, while the moduli space is covered on
the entire space-time or due to having a symmetric interval.
u = −α′

2 (k1 + k2)
2 is introduced and the amplitude results,

AC−2T 0φ0 =
∫ ∞

−∞
dx(2x)−2u−1/2(1 + x2)−1/2+2u

×
(
piTr (P−C/ (n−1)Mpγ

a)

+ik2bTr (P−C/ (n−1)Mp�
iba)

)
k1aξ2i .

The ultimate result of the amplitude is given by

AC−2T 0φ0 =
(
piTr (P−C/ (n−1)Mpγ

a)

+ ik2bTr (P−C/ (n−1)Mp�
iba)

)
k1aξ2i

×(πβ ′μ′
p)2

√
π

�[−u + 1/4]
�[3/4 − u] . (8)

μ′
p We have the RR charge of the brane. All the traces are

nonzero for the p + 1 = n case and can be calculated as

Tr

(
C/ (n−1)Mp(k1.γ )

)
= ±32

p! ε
a0...ap−1aCa0...ap−1k1a

Tr

(
C/ (n−1)Mp(ξ.γ )(k2.γ )(k1.γ )

)

= ±32

p! ε
a0...ap−2baCa0...ap−2k1ak2bξ1i .

The correct expansion of the amplitude can be found by
dealing with either massless or tachyon poles of the ampli-
tude. From a three point function including an RR and a
real tachyon and using its momentum conservation along the
world volume of the brane, k2 = pa pa = 1

4 [66], one realizes
that this constraint holds for the CTφ amplitude and indeed
the proper momentum expansion can be read off as follows:

u = −pa pa → −1

4
,

√
π

�[−u + 1/4]
�[3/4 − u] = π

∞∑
n=−1

cn(u + 1/4)n+1,

where the first three coefficients are

c−1 = 1, c0 = 2ln(2), c1 = 1

6
(π2 + 12ln(2)2).

The first term in (8) can be produced by using the follow-
ing Chern–Simons coupling, where the scalar field has been
taken from the Taylor expansion:

S1 = 2iβ ′μ′
p

p! (2πα′)2
∫

�p+1

∂iCp ∧ DTφi . (9)

Note that the second term of (8) can just be produced
if one introduces a new coupling where this time a scalar
field comes from the pull-back of the brane and the covariant
derivative of the tachyon appears to cover the entire (p + 1)

world volume direction. Hence the second term of (8) can be
regenerated by the following new mixed WZ and pull-back
coupling:

S2 = 2iβ ′μ′
p

(p)! (2πα′)2
∫

�p+1

εa0..apCia0...ap−2 Dap−1T Dapφ
i .

(10)

As we have seen, the expansion of the amplitude has an
infinite contact interaction and all those contact interaction
terms related to the first term of (8) can be produced in the
EFT by applying all infinite higher derivative corrections to
the WZ effective actions of a real tachyon, a scalar field and
a Cp RR closed string, see (9),

2iβ ′μ′
p

p! (2πα′)2
∫

�p+1

∂iCp ∧ Tr

×
( ∞∑

n=−1

cn(α
′)n+1Da1 . . . Dan+1 DTDa1 . . . Dan+1φi

)
. (11)

Likewise all the contact interactions related to the second
term (8) can be constructed if one applies the same prescrip-
tion to all higher derivative corrections to S2 action as fol-
lows:

2iβ ′μ′
p

p! (2πα′)2
∫

�p+1

εa0...apCia0...ap−2 Tr

×
( ∞∑

n=−1

cn(α
′)n+1Da1 . . . Dan+1 Dap−1T Da1 . . . Dan+1 Dapφ

i
)

.

It is also interesting to revisit the amplitude in the other
pictures. The final result of the amplitude can be derived:

AC−1T 0φ−1 = 2Tr (P−H/ (n)Mp�
ia)k1aξ2i (πβ ′μ′

p)

× √
π

�[−u + 1/4]
�[3/4 − u] . (12)

The trace that includes the γ 11 factor has the special property
that all results hold for the following relations as well:

p > 3, Hn = ∗H10−n, n ≥ 5.

Now if we apply momentum conservation (k1+k2+ p)a = 0
to the above amplitude then we realize that the amplitude (12)
can just produce the first term of (8); more importantly one
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finds that a Bianchi identity holds for the world volume of
the branes in the presence of the RR field strength,

paHa0...ap−1ε
a0...ap−1a = 0. (13)

Finally, the result of the amplitude for AT−1φ0C−1
is derived

to be(
k2bTr (P−H/ (n)Mp�

ib) − piTr (P−H/ (n)Mp)

)

×ξ2i (2πβ ′μ′
p)

√
π

�[−u + 1/4]
�[3/4 − u] .

Finding the above result and keeping in mind momentum
conservation, one understands that, to get a result consistent
with both the string theory and the effective field theory parts,
the restricted world volume Bianchi identity (13) has to be
modified, to obtain a new Bianchi identity which will be valid
for both world volume and transverse directions of the branes
as follows:

piεa0...ap Ha0...ap + paεa0...ap−1aHi
a0...ap−1

= 0. (14)

3 < VC−1Vφ−1VT0VT0VT0 > amplitude

In this section we would like to deal with a non-BPS six
point function including an RR, a transverse scalar field
and three real tachyons to be able to find not only the
proper expansion of the amplitude but also to reveal all
the bulk singularity structures as well as various restricted
Bianchi identities. Given the exact symmetries of the string
theory amplitudes, a tachyon expansion and the partic-
ular soft limit, in the following we show that one is
able to predict some of the singularity structures of <

VC−1(z,z̄)Vφ−1(x1)
VT 0(x2)

VT 0(x3)
VT 0(x4)

> amplitude. We
then work out < VC−1(z,z̄)Vφ0(x1)

VT−1(x2)
VT 0(x3)

VT 0(x4)
>

and determine all the singularities including the bulk singu-
larities that carry the momentum of RR in the bulk directions.
One needs to provide the correlation function between two
spinors and four fermion fields at different locations where
just one of them moves along a transverse direction of the
brane so I cbai1 =<: Sα(xz) : Sβ(xz̄) : ψ i (x1) : ψa(x2) :
ψb(x3) : ψc(x4) :> is found to be

I cbai1 =
{
(�cbaiC−1)αβ − α′ηab(�ciC−1)αβ

Re[x25x36]
x23x56

+ α′ηac(�biC−1)αβ

Re[x25x46]
x24x56

− α′ηbc(�aiC−1)αβ

Re[x35x46]
x34x56

)}
2−2x3/4

45

× (x15x16x25x26x35x36x45x46)
−1/2.

Note that here x5 = z = x+iy, x6 = z̄. All the techniques
have already been explained, fixing the position of open
strings at x1 = 0, 0 ≤ x2 ≤ 1, x3 = 1, x4 = ∞ and using six
independent Mandelstam variables, s = −( 1

4 + 2k1.k3), t =
−( 1

4 +2k1.k2), v = −( 1
4 +2k1.k4), u = −( 1

2 +2k2.k3), r =
−( 1

2 + 2k2.k4), w = −( 1
2 + 2k3.k4). The final form of the

amplitude is written

A = 4iξ1i (P−H/ (n)Mp)
αβ

∫ 1

0
dx2x

−2t−1/2
2 (1 − x2)

−2u−1

×
∫

dz
∫

dz̄|1 − z|2s+2u+2w+1/2|z|2t+2s+2v−1/2

×k2ak3bk4c(z − z̄)−2(t+s+u+v+r+w)−5/2

×|x2 − z|2t+2u+2r+1/2

×
[
(�cbaiC−1)αβ + (z − z̄)−1

×
(

2ηab(�ciC−1)αβ(1 − x2)
−1(x2 − xx2 − x + |z|2)

−2ηac(�biC−1)αβ(x2 − x) + 2ηbc(�aiC−1)αβ(1 − x)

)]
.

(15)

The amplitude makes sense for the p = n + 1 and p + 1 =
n cases. The algebraic form of the above integrals can be
derived in the soft limit, 4k2.p → 1. Using this limit and
Appendix B of [66] and [67] one arrives at a closed form for
the integrals. For simplicity, we just write down the ultimate
result of the amplitude for p = n + 1 case as

ACφT T T
1 = 4iξ1iπk2ak3bk4cTr (P−C/ (n−1)Mp�

cbai )M1M2

(16)

where M1, M2 are

M1 = (2)−2(t+s+u+v+r+w)−5/2 �(−2t + 1
2 )�(−2u)

�(−2t − 2u + 1
2 )

M2 = �(−u − r − w − 1
2 )�(−t − v − r)�(−s + r + 1

4 )�(−t − s − u − v − r − w − 3
4 )

�(−u − s − w − 1
4 )�(−t − s − v + 1

4 )�(−u − w − t − v − 2r − 1
2 )

.
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The other part of the amplitude holds for the Cp case and
one reveals its final form as follows:

A2 = M1π
32

(p + 1)!ε
a0...ap−1aHi

a0...ap−1
ξ1i i

{
− k2a

(
w + 1

2

) (
−r − t − v − 1

2

)
M3

+ 1

4(−2t − 2u + 1
2 )
k3a

(
r + 1

2

)
M3

×
(

(−1 + r(−2 + 8t − 8u) − 2v + 2t (1 + 4t + 4v)

−8u(1 + u + w))

)

+ 1

16
k4aM4

(
4s(−1 + 4t) + 4(5 + 4r)u + 8r + 3

+20t + 4w + 16(t + u)(u + w)

)}
, (17)

where M3, M4 are written in terms of the ratio of the Gamma
functions,

M3 = �(r − s + 3
4 )�(−t − v − r − 1

2 )�(−u − r − w − 1)�(−t − s − u − v − r − w − 5
4 )

�(−t − s − v + 1
4 )�(−u − s − w − 1

4 )�(−t − u − v − w − 2r − 1
2 )

M4 = �(r − s − 1
4 )�(−t − v − r + 1

2 )�(−u − r − w − 1)�(−t − s − u − v − r − w − 5
4 )

�(−t − s − v + 1
4 )�(−u − s − w − 1

4 )�(−t − u − v − w − 2r − 1
2 )

.

Let us deal with the bulk singularities.

4 < VC−1(z, z̄)Vφ0(x1)VT−1(x2)VT0(x3)VT0(x4) > amplitude

In this section we would like to produce all the massless
bulk singularity structures that carry momentum of RR in the
transverse directions. To do so, we deal with the amplitude
< VC−1(z,z̄)Vφ0(x1)

VT−1(x2)
VT 0(x3)

VT 0(x4)
>. All the correla-

tion functions can be computed. For brevity we use the same
gauge fixing as in the last section. Thus the final form of the
amplitude is found,

A ∼ 4iξ1i (P−H/ (n)Mp)
αβ

∫ 1

0
dx2x

−2t−1/2
2 (1 − x2)

−2u−1

×
∫

dz
∫

dz̄|1 − z|2s+2u+2w+1/2|z|2t+2s+2v−1/2

×k3bk4c(z − z̄)−2(t+s+u+v+r+w)−5/2|x2 − z|2t+2u+2r+1/2

×
[
pi

(
2ηbc(C−1)αβ

1 − x

(z − z̄)
v + (�cbC−1)αβ

)

+k1a

(
(�cbiaC−1)αβ + (z − z̄)−1

×
(
xl1 + l2|z|2 + l3

))]
(18)

where

l1 = 2ηab(�ciC−1)αβ − 2ηac(�biC−1)αβ − 2ηbc(�iaC−1)αβ

l2 = −2ηab(�ciC−1)αβ

l3 = 2ηbc(�iaC−1)αβ .

The amplitude makes sense for the p = n + 1 and p +
1 = n cases. Using the soft limit, 4k2.p → 1, one finds the
amplitude for the p = n + 1 case,

AC−1φ0T−1T 0T 0

1 ∼ 64iξ1iπM1M2k3bk4c

(p − 1)!(
k1aε

a0...ap−3acbHi
a0...ap−3

+ piεa0...ap−2cbHa0...ap−2

)
.

(19)

The second part of the amplitude holds for the Cp case and
one finds

A2 = M1π
32

(p)!ξ1i i

{
− piεa0...ap Ha0...ap

(
w + 1

2

) (
−r − t − v − 1

2

)
M3

+εa0...ap−1d Hi
a0...ap−1

M4(
k4d

(
s + 1

4

)
(−u − r − w − 1)

−k1d

(
w + 1

2

) (
r − s − 1

4

)

+k3d

(
r − s − 1

4

)
(−r − t − v − 1

2 )

(
v + 1

4

)
(−u − r − w − 1)

)}
.

(20)

Now let us deal with all singularities and start to produce
them.

5 Bulk Singularity Structures

To obtain all the singularity structures, including the ones
that carry momentum of the closed string RR in the bulk
direction, one needs to find first the expansion of the ampli-
tude. The following remarks need to be taken into con-
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sideration. Having applied momentum conservation we get
s + t + u + v + r + w = −pa pa − 3

2 . Using the constraint
pa pa → 1

4 for the non-BPS branes, taking the symmetries
of our amplitude (given the EFT and the fact that it should be
symmetric under exchanging s, t, v), one obtains the expan-
sion for the amplitude (20) as follows:(
s, t, v → −1

4

)
, (u, r → 0), w → −1. (21)

The expansion of (M1M2) for this particular soft limit and
around (21) can be read off:

−π3/2

u
− π7/2

6u

(
(t + s + r + w)2 + 2t (v − w)

−2s(t + w) + 2r(r + v) + v2 + . . .

)
. (22)

Given the above expansion, and standard EFT methods
that propose infinite u-channel massless gauge field poles
and symmetries [68], one understands that ki .k j → 0 for
massless strings and that pa pa → 1

4 for non-BPS branes.
There is no coupling between two tachyons and a scalar field.
Given the selection rules for non-BPS branes [54] and the fact
that the kinetic term of tachyon is fixed in the DBI action,
one clarifies that there is no double pole for the p = n + 1
case. This point can also be observed from the expansion
of the amplitude; hence we have an infinite number of u-
channel simple poles. For the p = n + 1 case, from EFT
and the above expansion, one notices that the S-matrix has
an infinite number of u-channel gauge field poles. The first
u-channel pole in string theory can be written down:

64iπ3/2

(p − 1)!u εa0...ap−3acbHi
a0...ap−3

k1ak3bk4cξ1iTr (λ1λ2λ3λ4).

(23)

This simple u-channel pole can be reconstructed in an EFT
by the following sub amplitude:

V α
a (T2, T3, A)Gαβ

ab (A)V β
b (Cp−2, A, φ1, T4)

V α
a (T2, T3, A) = iTp(2πα′)(k2 − k3)aTr (λ2λ3λ

α)

Gab(A) = iδabδαβ

(2πα′)2Tpu

V β
b (Cp−2, A, φ1, T4) = iμ′

pβ
′(2πα′)3

1

(p − 1)!ε
a0...ap−1bHi

a0...ap−3
k4ap−2k1ap−1ξ1iTr (λ4λ1λ

β).

(24)

Here α, β are gauge group indices. Now if we use the above
vertices in an EFT and make use of momentum conserva-
tion, (k1 + k2 + k3 + k4 + p)a = 0, the Bianchi identity,
pap−2 Ha0...ap−3 = 0, the fact that the amplitude is symmetric
under k1ap−1k1ap−2 , and also due to the antisymmetry prop-
erty of ε, we realize that the term k1ap−1k1ap−2 does not have

any effect on the EFT part of the amplitude. If we multi-
ply (23) by 1

2μ′
pβ

′π1/2 and compare it with the above EFT
amplitude, we then can explore the fact that the first simple
u-channel gauge field pole is exactly generated.

V a(Cp−2, A, φ1, T4) was derived from some part of the
mixed WZ coupling and Taylor expansion,

β ′μ′
p(2πα′)3

∫
�p+1

Tr (∂iCp−2 ∧ F ∧ DTφi ). (25)

However, as can be seen from the expansion, the amplitude
in (19) has an infinite number of bulk singularity structures,
concretely, where the first bulk pole in string theory reads

32iβ ′μ′
pπ

2ξ1i k3bk4c

(p − 1)!u piεa0...ap−2cbHa0...ap−2 . (26)

If one wants to extract the couplings from (25), one per-
forms integration by parts to arrive at two different contribu-
tions:

−β ′μ′
p(2πα′)3

∫
�p+1

εa0 ...ap ,

×
(
dap−2 ∂iCa0 ...ap−3 Aap−1dap Tφi − ∂iCa0 ...ap−3 Aap−1dap T dap−2 φ

i
)

,

(27)

where to derive the first simple u-channel gauge pole given in
(23), we have already used the contribution from the second
term of (27). Now if we use the relation

(p − 2)∂iCa0...ap−3 = Hi
a0...ap−3

− ∂[ap−3Ca0...ap−4]i (28)

and plug it into the first term of (27), then we would be able
to produce the bulk part of the vertex V b(Cp−2, A, φ1, T4).
Eventually by replacing it into the same EFT sub amplitude
(24) we are able to precisely produce the first bulk singularity
u-channel pole (26) which carries the p.ξ term as well. As
one notices from the expansion of the amplitude, we have an
infinite number of u-channel poles and to generate them in
an EFT the following remarks are in order.

The vertex of V α
a (T2, T3, A) comes from the kinetic term

of tachyons in the DBI action which is fixed and has no cor-
rection. The propagator is also fixed, as it comes from the
kinetic term of gauge fields that has been fixed for this case
too. Therefore, to be able to reconstruct all infinite u-channel
poles one must directly apply infinite higher derivative cor-
rections to the mixed WZ coupling (25), as follows:

β ′μ′
p(2πα′)3

∞∑
n=−1

bn

×
∫

�p+1

Tr

(
∂iCp−2 ∧ Db1 . . . Dbn F ∧ Db1 . . . Dbn

[
DTφi

])
.

(29)
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Keeping fixed V α
a (T2, T3, A) and the propagator, extract-

ing the modified all order vertex V b(Cp−2, A, φ1, T4) from
(29) and replacing it in the EFT amplitude (24), then one is
able to show that all infinite bulk singularity structures are
precisely produced. This clearly confirms that the expansion
is consistent with the EFT amplitude as well.

The amplitude has an infinite number of massless scalar
poles in the (t ′ + v′ + r) 2 channel that correspond to the
extensions of higher derivative corrections of two tachyon–
two scalar field couplings. These corrections originate from
the second part of the amplitude in (20). They are recon-
structed by the following EFT prescription:

A = V α
i (Cp, T3, φ)Gαβ

i j (φ)V β
j (φ, T2, φ1, T4)

Gαβ
i j (φ) = iδαβδi j

(2πα′)2Tp(t ′ + v′ + r)

V α
i (Cp, T3, φ) = μ′

pβ
′(2πα′)2

× 1

(p)!ε
a0...ap Hi

a0...ap−1
k3apTr (λ3�

α).

(30)

To generate all scalar poles at first order one needs to employ
the following Lagrangian:

L(φ, φ, T, T ) = −2Tp(πα′)3STr(
m2T 2(Daφ

i Daφi ) + α′

2
DαT DαT Daφ

i Daφi

−α′DbT DaT Daφ
i Dbφi

)
, (31)

while to produce all the other poles, one needs to know higher
derivative corrections to the two tachyon–two scalar field
couplings to all orders,

L = −2Tp(πα′)(α′)2+n+m

∞∑
n,m=0

(Lnm
1 + Lnm

2 + Lnm
3 + Lnm

4 ), (32)

where

Lnm
1 = m2Tr

(
an,m[Dnm(T 2Daφ

i Daφi )

+Dnm(Daφ
i Daφi T

2)]
+bn,m[D′

nm(T Daφ
i T Daφi )

+D′
nm(Daφ

i T Daφi T )] + h.c.
)

,

Lnm
2 = Tr

(
an,m[Dnm(DαT DαT Daφ

i Daφi )

+Dnm(Daφ
i Daφi D

αT DαT )]
+bn,m[D′

nm(DαT Daφ
i DαT Daφi )

+D′
nm(Daφ

i DαT Daφi D
αT )] + h.c.

)
,

2 We have t ′ = t + 1
4 , v′ = v + 1

4

Lnm
3 = −Tr

(
an,m[Dnm(DβT DμT Dμφi Dβφi )

+Dnm(Dμφi Dβφi D
βT DμT )]

+bn,m[D′
nm(DβT Dμφi DμT Dβφi )

+D′
nm(Dμφi DμT Dβφi D

βT )] + h.c.
)

,

Lnm
4 = −Tr

(
an,m[Dnm(DβT DμT Dβφi Dμφi )

+Dnm(Dβφi Dμφi DβT DμT )]
+bn,m[D′

nm(DβT Dβφi DμT Dμφi )

+D′
nm(Dβφi DμT Dμφi D

βT )] + h.c.
)

. (33)

The definitions for the higher derivative operators Dnm and
D′
nm are

Dnm(EFGH) ≡ Db1 . . . Dbm Da1

. . . Dan EFDa1 . . . DanGDb1 . . . Dbm H,

D′
nm(EFGH) ≡ Db1 . . . Dbm Da1

. . . Dan EDa1 . . . Dan FGDb1 . . . Dbm H.

The all order extended vertex V β
j (φ, T2, φ1, T4) is derived

from (33) and in momentum space takes the form

V j
β (φ, φ1, T2, T4)

= 1

2
v′t ′ξ j

1 (−2iTpπ)(α′)n+m+3(an,m + bn,m)

(
(k2 ·k1)

n(k1 ·k4)
m + (k2 ·k1)

m(k4 ·k1)
n

+(k2 ·k1)
n(k ·k2)

m + (k2 ·k1)
m(k ·k2)

n

+(k1 ·k4)
m(k ·k4)

n + (k1 ·k4)
n(k ·k4)

m

+(k ·k2)
m(k ·k4)

n + (k ·k2)
n(k ·k4)

m
)

Tr (λ4λ1λ2λβ) (34)

where k is the momentum of the off-shell scalar field. Substi-
tuting the above vertex in the EFT amplitude (30), we produce
all infinite scalar poles as

8iμ′
pβ

′ ε
a0...apξ1i H i

a0...ap−1
k3ap

p!(v′ + t ′ + r)
Tr (λ1λ2λ3λ4)

∞∑
n,m=0

(an,m + bn,m)[v′mt ′n + v′nt ′m]v′t ′. (35)

Eventually, the S-matrix suggests that the string amplitude
has just a double pole for the p + 1 = n case. It emerges
from the following Feynman diagram in EFT:3

V (Cp, φ1, T )G(T )Va(T, T4, A)Gab(A)Vb(A, T2, T3) (36)

3 We suppress all gauge indices.
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with the derived vertices taken from the lower order effective
actions,

V (Cp, φ1, T ) = β ′μ′
p(2πα′)2 1

(p + 1)! p
iεa0...ap Ha0...apξ1i ,

Va(T, T4, A) = Tp(2πα′)(k4a + ka),

Gab(A) = iδab

(2πα′)2Tpu
(37)

Vb(A, T2, T3) = Tp(2πα′)(k2 − k3)b;
G(T ) = i

(2πα′)Tp(u + r + w + 1)
(38)

and k is the off-shell tachyon’s momentum. Replacing the
above vertices by (36) we would reproduce its double pole
too.

Note that by direct calculations, the presence of some new
couplings such as F (1) ·F (2) or Dφi(1) ·Dφi(2) has been con-
firmed in the world volume of D-brane–anti D-brane systems
[19,20,56]. Indeed making a string calculation we could pro-
duce all massless and tachyon singularities of the amplitudes.

While WZ couplingCp∧DTφ will not receive any higher
derivative correction, and all the kinetic terms are fixed, they
do not get any corrections either. Thus all other tachyon sin-
gularities give us clues about the structures of all order higher
derivative corrections to various couplings and in this paper
we could consistently fix their coefficients for good.

Note that all these couplings are found in the limit
pa pa → 1/4, thus we cannot compare these couplings with
BSFT couplings. However, the tachyon’s potential remains
the same as in BSFT (V (T ) = eπα′m2T 2

[58]), which is

V (T i T i ) = 1 + πα′m2T i T i + 1

2
(πα′m2T i T i )2 + · · ·

where m2 = −1/(2α′) is the tachyon’s mass. Tachyon con-
densation is going to be carried out at T → ∞; therefore, its
potential will be sent to zero.

We think these corrections play a crucial role in determin-
ing singularities of the higher point functions of string theo-
ries. The Veneziano amplitude [69] was generalized in [21],
and we hope to be able to address a supersymmetric general-
ization of the D-brane–anti-D-brane system by directly car-
rying out fermionic amplitudes [70]. We also hope to make
progress on the generalization of the non-supersymmetric
DBI and WZ effective actions in the near future.
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