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Abstract This paper is devoted to the canonical analysis
of non-linear sigma model that describes motion of non-
relativistic string on stringy Newton–Cartan background. We
determine structure of constraints of this string and com-
pare resulting Hamiltonian with previous proposal of non-
relativistic string on stringy Newton–Cartan background.

1 Introduction and summary

In [1,2] non-relativistic string theory with Galilean invariant
global symmetry was proposed.1 This theory is described by
two-dimensional quantum field theory which is well defined
and which contain fields that describe dynamics of string
in target space-time together with additional fields which
are crucial for consistency of string theory. It is important
to stress that the target space-time, where the string propa-
gates corresponds to flat space-time invariant under global
stringy Galilean symmetry. The characteristic property of
non-relativistic string theory is that there is no Riemannian
metric in the target space. In fact, non-relativistic string the-
ory provides a quantization of stringy non-relativistic space-
time geometry in the same way as relativistic string the-
ory provides quantization of Riemannian geometry. Natu-
ral question is whether we can formulate non-linear sigma
model that describes string propagation on a non-relativistic
target space-time structure. As was shown recently in [17]
the appropriate geometry corresponds to so-called stringy
Newton–Cartan geometry [18].2

The action proposed in [17] is very interesting and cer-
tainly deserves further study. In particular, it would be very
nice to find Hamiltonian form of this action and analyze its

1 For related works, see for example [3–16].
2 For related works, that analyse point particles or extended objects in
Newton–Cartan geometry or its stringy generalizations, see for example
[19–25].
b e-mail: klu@physics.muni.cz

relation to Hamiltonian that was proposed recently in [26].3

The goal of this paper is to perform such an analysis. It turns
out that the canonical analysis of the action proposed in [17]
is rather non-trivial due to the complicated structure of the
target space-time and also thanks to the presence of addi-
tional world-sheet fields that are needed for the consistency
of theory. Since these fields are non-dynamical we find that
their conjugate momenta are the primary constraints of the
theory. Then requirement of the preservation of these pri-
mary constraints implies secondary constraints that together
with primary constraints are second class constraints. Hence
they can be explicitly solved with very interesting result. In
more details, in order to find Hamiltonian formulation of
the action proposed in [17] we should find metric inverse to
the boost invariant metric that defines string sigma model in
stringy Newton–Cartan gravity. It turns out that crucial object
for construction of such a metric is matrix valued Newton
potential which is natural generalization of Newton potential
defined in Newton–Cartan geometry. Then we will be able
to find corresponding Hamiltonian and diffeomorphism con-
straints and we show that they are the first class constraints.
As a next step we proceed to the solution of the second class
constraints. It turns out that when we solve these constraints
and insert this result into the original Hamiltonian constraint
we find that the resulting constraint agrees with the Hamilto-
nian constraint found in [26] which is very nice consistency
check of both approaches. Note that the Hamiltonian found in
[26] was derived with the help of the limiting procedure that
defines Newton–Cartan geometry from the relativistic one
[27]. In more details, we start with the Hamiltonian for rela-
tivistic string in general background. Then we used the form
of the metric [27] that leads to the stringy Newton-Cartan
background in the limit when parameter ω goes in infinity. We
argued that in order to cancel divergence in the Hamiltonan
constraint of non-relativistic string when this procedure is

3 The Hamiltonian analysis of non-relativistic string in the background
with flat longitudinal dimension was performed previously in [14].
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performed, we should include background NSNS two form
in the special form that was chosen in such a way to obtain
finite Hamiltonian constraint. In principle this procedure is
not unique and hence the agreement between the Hamilto-
nian constraint found in [26] and derived here shows that the
ansatz introduced in [26] is the correct one.

Finally we determine Lagrangian from corresponding
Hamiltonian and we find that it agrees exactly with the
Lagrangian found in [18] which is again very nice consis-
tency check. Let us outline our results and suggest possi-
ble extension of this work. We find canonical structure of
non-linear sigma model proposed recently in [17]. We deter-
mine all constraints and we identify Hamiltonian and spatial
diffeomorphism constraints and calculate Poisson brackets
between them. We also determine second class constraints
and perform their explicit solutions which gives the Hamil-
tonian constraint that agrees with the constraint found in [26].

The next important step in our canonical formulation
of non-relativistic string theory is to perform analysis of
T-duality since, as was shown in [17], T-duality of non-
relativistic string theory is more complex than in case of its
relativistic version. This analysis is currently in progress.

The structure of this paper is following. In the next Sect.
(2) we review basic facts about stringy Newton-Cartan geom-
etry and non-linear sigma model defined on it, following [17].
Then in Sect. (3) we perform canonical analysis of this theory.
Finally in Sect. (4) we explicitly solve second class constraint
and determine corresponding Hamiltonian.

2 Non-linear sigma model on stringy Newton–Cartan
geometry

In this section we define stringy Newton–Cartan geometry,
following [17]. Let M is D + 1 dimensional manifold and
let Tp is tangent space at point p. We decompose Tp into
longitudinal directions indexed by A = 0, 1 and transverse
directions with A′ = 2, . . . , d−1. Two dimensional foliation
ofM is defined by generalized clock function τ A

μ that is also
known as longitudinal vielbein field that satisfies a constraint

Dμτ A
ν − Dντ

A
μ = 0, (1)

where Dμ is covariant derivative with respect to the longitu-
dinal Lorentz transformations acting on index A. Let us also
introduce transverse vielbein field E A′

μ . We further introduce
projective inverse τ

μ
A and Eμ

A′ that are defined as

E A′
μ Eμ

B′ = δA
′

B′ , τ
μ
Aτ B

μ = δBA ,

τ A
μ τν

A + E A′
μ Eν

A′ = δν
μ,

τ
μ
AE

A′
μ = 0, τ A

μ Eμ

A′ = 0. (2)

Let � A′
A is a parameter of string Galilei boost transforma-

tions. Then various components of NC geometry transform
in the following way

δ�τ A
μ = 0, δ�E A′

μ = −τ A
μ � A′

A ,

δ�τ
μ
A = Eμ

A′� A′
A , δ�Eμ

A′ = 0. (3)

From vielbein we can construct longitudinal metric τμν =
τ A
μ τ B

ν ηAB and transverse metric hμν = Eμ

A′Eν
B′δA

′B′
that

are invariant under string Galilean boost transformations.
It is clear that in order to define string moving in stringy

Newton–Cartan background we need transverse tensor Hμν

that is invariant under the string Galilei boost. It turns out
that this can be done when we introduce gauge field m A

μ and
we can construct boost invariant tensor

Hμν = E A′
μ E B′

ν δA′B′ + (τ A
μ m B

ν + τ A
ν m B

μ )ηAB . (4)

In conclusion, τ A
μ , E A′

μ and m A
μ defines stringy Newton–

Cartan geometry.
Now we are ready to proceed to the string sigma model that

was introduced in [17]. An important point is that this model
is relativistic on two-dimensional world-sheet and hence it
should be defined on the Riemann surface �. It turns out that
this action contains world-sheet scalars xμ that parameterize
an embedding string into target space time together with two
worlds-sheet scalars that we denote as λ and λ̄. These fields
are needed for the realization of string Galilei symmetry on
the world-sheet theory.

Now we will be more explicit. Let σα, α = 0, 1 parame-
terize world-sheet surface �. The sigma model is endowed
with two dimensional world-sheet metric γαβ and we intro-
duce two dimensional vielbein e a

α , a = 0, 1 so that

γαβ = e a
α e b

β ηab, (5)

where ηab = diag(−1, 1). Using light-cone coordinates for
the flat index a on the world-sheet tangent space we define

eα ≡ e 0
α + e 1

α , ēα ≡ e 0
α − e 1

α . (6)

We can also use light-cone coordinates for the flat index A
on the space-time tangent space Tp and define

τμ ≡ τ 0
μ + τ 1

μ , τ̄μ = τ 0
μ − τ 1

μ . (7)

Then we are ready to write sigma model for non-relativistic
string on an arbitrary string Newton–Cartan geometry, non-
relativistic Kalb–Ramond B-field Bμν and dilaton field φ in
the form [17]

S = −T

2

∫
d2σ(

√−γ γ αβ∂αx
μ∂βx

νHμν

+εαβ(λeατμ + λ̄ēατ̄μ)∂βx
μ)
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−T

2

∫
d2σεαβ∂αx

μ∂βx
νBμν

+ 1

4π

∫
d2σ

√−hRφ, (8)

where γ = det γαβ, γ αβ is inverse to γβα , R is scalar curva-
ture of γαβ and T is string tension. Further, ∂αxμ = ∂

∂σα xμ.
In what follows we restrict to the case of constant dilaton
field so that the last term on the second line in (8) is total
derivative and will be ignored. It is important to stress that
λ and λ̄ are world-sheet scalars under change of wold-sheet
coordinates σ ′α(σ ). Explicitly, under such transformations
we have

γ ′
αβ(σ ′) = ∂σγ

∂σ ′α
∂σ δ

∂σ ′β γγ δ(σ ), λ′(σ ′) = λ(σ),

λ̄′(σ ′) = λ̄(σ ), x ′μ(σ ′) = xμ(σ ). (9)

Further, εαβ is Levi–Chivita symbol defined as ε01 =
−ε10 = 1. Finally, we restrict ourselves to the case of the
constant dilaton field so that the last term in (8) is topological
invariant and will be ignored in what follows.

After this review of string sigma model in stringy Newton-
Cartan background we now proceed to its Hamiltonian for-
mulation.

3 Hamiltonian formulation of string in stringy
Newton–Cartan background

The presence of two dimensional vielbeins e a
α makes the

analysis slightly complicated and hence it is important to
choose suitable parametrization. To do this we use convention
introduced in [28,29]. Explicitly, let us define eα and ēα as

e 0
α = 1

2
(eα + ēα), e 1

α = 1

2
(eα − ēα). (10)

Then it is easy to see that γαβ = e a
α e b

β ηab has the form

γαβ = −1

2
(eα ēβ + ēαeβ) (11)

and also γ = det γαβ is equal to

γ = −1

4
(e0ē1 − ē0e1)

2. (12)

Then inverse metric γ αβ has components

γ 00 = 4e1ē1

(e0ē1 − ē0e1)2 , γ 11 = 4e0ē0

(e0ē1 − ē0e1)2 ,

γ 01 = −2
e0ē1 + e1ē0

(e0ē1 − ē0e1)2 . (13)

As the next step we introduce following variables [28,29]

ξ = ln(−e1ē1), ε = 1

2
ln

(
−e1

ē1

)
, �+ = e0

e1
,

�− = − ē0

ē1
(14)

with following inverse relation

e1 = e
1
2 (ξ+2ε), ē1 = e

1
2 (ξ−2ε),

e0 = �+e
1
2 (ξ+2ε), ē0 = −�−e

1
2 (ξ−2ε) (15)

and hence we obtain

√−γ γ 00 = − 2

�+ + �− ,
√−γ γ 11 = 2�+�−

�+ + �− ,

√−γ γ 01 = �+ − �−

�+ + �− . (16)

With the help of these relations we rewrite the action (8) into
the form

S = T
∫

d2σ(
1

�+ + �− ẋμ − �+x ′μ)(ẋν + �−x ′ν)Hμν

−T

2

∫
d2σ(λ�+e

1
2 (ξ+2ε)τμx

′μ − λe
1
2 (ξ+2ε)τμ ẋ

μ)

−T

2

∫
d2σ(−λ̄�−e

1
2 (ξ−2ε)τ̄μx

′μ − λ̄e
1
2 (ξ−2ε)τ̄μ ẋ

μ)

−T
∫

d2σ ẋμx ′νBμν, (17)

where ẋμ ≡ ∂xμ

∂σ 0 , x ′μ = ∂xμ

∂σ 1 . From the form of the action

(17) we see that it is natural to perform rescaling of λ, λ̄ as

λ+ = λe
1
2 (ξ+2ε), λ− = λ̄e

1
2 (ξ−2ε) (18)

and hence the action (17) has the form

S = T
∫

d2σ
1

�+ + �− (ẋμ − �+x ′μ)(ẋν + �−x ′ν)Hμν

−T
∫

d2σ ẋμx ′νBμν

−T

2

∫
d2σ(λ+�+τμx

′μ − λ+τμ ẋ
μ)

+T

2

∫
d2σ(λ−�−τ̄μx

′μ + λ−τ̄μ ẋ
μ). (19)

Before we proceed to the canonical formalism we would like
to analyze the action (19) in more details. Let us determine
equation of motion for λ+ and λ− that follow from (19)

�+τμx
′μ − τμ ẋ

μ = 0, �−τ̄μx
′μ + τ̄μ ẋ

μ = 0. (20)

If we combine these equations together we obtain

�+�− = − τττ

τσσ

, �+ − �− = 2
ττσ

τσσ

, (21)
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where

ταβ = τμν∂αx
μ∂βx

ν, τμν = τ A
μ τ B

ν ηAB . (22)

Equation (21) can be solved as

�− = −ττσ + √− det τ

τσσ

, �+ = ττσ + √− det τ

τσσ

. (23)

Inserting this result into the action (19) we finally obtain

S = −T

2

∫
d2σ

√− det τταβHμν∂αx
μ∂βx

ν

−T
∫

d2σ ẋμx ′μBμν (24)

which corresponds to the non-relativistic string action as was
formulated in [18].

Let us now proceed to the canonical formalism. From (19)
we obtain following momenta pμ conjugate to xμ

pμ = T
1

�+ + �− (2ẋν + (�− − �+)x ′ν)Hνμ − T Bμνx
′ν

+T

2
λ+τμ + T

2
λ−τ̄μ,

or equivalently

pμ − T
�− − �+

�+ + �− Hμνx
′ν + T Bμνx

′ν − T

2
λ+τμ − T

2
λ−τ̄μ

= 2T

�+ + �− Hμν ẋ
ν . (25)

Remaining conjugate momenta are primary constraints of the
theory

p�+ = ∂L

∂�̇+ ≈ 0, p�− = ∂L

∂�̇− ≈ 0,

pλ+ = ∂L

∂λ̇+ ≈ 0, pλ− = ∂L

∂λ̇− ≈ 0. (26)

Now using (25) we obtain Hamiltonian density in the form

H = pμ ẋ
μ − L = T

�+ + �− (ẋμHμν ẋ
ν + �+�−Hμνx

′μx ′ν)

+T

2
λ+�+τμx

′μ − T

2
λ−�−τμx

′μ. (27)

Of course, this is not correct form of the Hamiltonian density
since it does not depend on canonical variables pμ, xμ. In
order to express it in the right form we have to find relation
between ẋμ and pμ. In order to solve this problem let us
observe that we have following relation

Hμρh
ρσ Hσν = Hμν + τ A

μ �ABτ B
ν , (28)

where we defined matrix valued Newton potential �AB as

�AB = −τσ
Am

C
σ ηCB − ηACm

C
ρ τ

ρ
B

+ ηACm
C
ρ hρσm D

σ ηDB . (29)

Let us further define τ̂
μ
A as

τ̂
μ
A = τ

μ
A − hμρm B

ρ ηBA. (30)

Then it is easy to see that

τ̂
μ
A

(
pμ − T

�− − �+

�+ + �− Hμνx
′ν + T Bμνx

′ν − T

2
λ+τμ − T

2
λ−τ̄μ

)

= − 2T

�+ + �− �ABτ B
ν ẋν . (31)

To proceed further we will presume that �AB is non-singular
matrix so that we can introduce its inverse in the form

(�−1)AB = 1

det �AB

(
�11 −�01

−�01 �00

)
. (32)

Now if we combine (28) with (31) we find that the inverse
metric Hμν to Hμν has the form

Hμν ≡ hμν − τ̂
μ
A(�−1)AB τ̂ ν

B, HμνHνρ = δμ
ρ . (33)

then it is easy to determine canonical Hamiltonian from (27)
and we obtain

H =
∫

dσH,

H = (�+ + �−)

4T
πμH

μνπν + T

4
(�+ + �−)x ′μHμνx

′ν

−1

2
(�− − �+)x ′μπμ

−1

4
(�+ + �−)πμH

μν(λ+τν + λ−τ̄ν)

+T

4
(�− + �+)x ′μ(λ+τμ − λ−τ̄μ)

+ T

16
(�+ + �−)(λ+τμ + λ−τ̄μ)Hμν(λ−τν + λ̄−τν),

(34)

where

πμ = pμ + T Bμρx
′ρ. (35)

Finally we introduce two variables N and Nσ defined as

N = 1

4
(�+ + �−), Nσ = 1

2
(�+ − �−) (36)

so that we find final form of the Hamiltonian density

H = NHτ + NσHσ , (37)

where

Hτ = 1

T
πμH

μνπν +T x ′μHμνx
′ν − πμH

μν(λ+τν + λ−τ̄ν)

+T x ′μ(λ+τμ − λ−τ̄μ)

123
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+T

4
(λ+τμ + λ−τ̄μ)Hμν(λ−τν + λ̄−τν),

Hσ = x ′μ pμ. (38)

Let us now proceed to the analysis of the requirement of
the preservation of all primary constraints. In case of the
constraints pN ≈ 0, pσ ≈ 0 which are momenta conjugate
to N and Nσ we obtain

ṗN = {pN , H} = −Hτ ≈ 0,

ṗσ = {pσ , H} = −Hσ ≈ 0, (39)

while requirement of the preservation of the constraints pλ+ ≈
0, pλ− ≈ 0 implies

ṗλ+ = {
pλ+, H

} = πμH
μντν − T x ′μτμ

−T

2
τμH

μν(λ−τν + λ−τν) ≡ Gλ+ ≈ 0,

ṗλ− = {
pλ−, H

} = πμH
μντ̄ν + T x ′μτ̄μ

−T

2
τ̄μH

μν(λ−τν + λ̄−τ̄ν) ≡ Gλ− ≈ 0. (40)

Let us now analyze constraints Hσ ≈ 0,Hτ ≈ 0 in more
details. Since we can anticipate that Hσ ≈ 0 is generator
of spatial diffeomorphism it is natural to extend it in the
following way

Hσ → pμx
′μ + λ′+ pλ+ + λ′− pλ− (41)

and introduce its smeared form

Tσ (Nσ ) =
∫

dσNσHσ (42)

together with smeared form of the Hamiltonian constraint
Tτ (N ) = ∫

dσNHτ . Note that Tσ (Nσ ) has non-zero Pois-
son bracket with canonical variables
{
Tσ (Nσ ), xμ

} = −Nσ x ′μ,{
Tσ (Nσ ), pμ

} = −(Nσ pμ)′,{
Tσ (Nσ ), λ±} = −Nσ λ′±,{
Tσ (Nσ ), pλ±

} = −(Nσ pλ±)′. (43)

Then it is easy to see that
{
Tσ (Nσ ),Tσ (Mσ )

} = Tσ (Nσ M ′σ − Mσ N ′σ ). (44)

In the same way we obtain
{
Tσ (Nσ ),Hτ

} = −2N ′σHτ − NσH′
τ (45)

or equivalently

{
Tσ (Nσ ),Tτ (M)

} = Tτ (N
σ M ′ − MN ′σ ). (46)

Finally we calculate Poisson bracket

{Tτ (N ),Tτ (M)}
=

∫
dσ(NM ′ − MN ′)(pμx

′μ − 2x ′μ(λ+τμ + λ−τ̄μ)

+2πμH
μν(λ+τν − λ̄−τ̄ν))

−T (λ+τμ − λ̄−τ̄μ)Hμν(λ+τν + λ−τ̄ν)

=
∫

dσ(NM ′ − MN ′)(Hσ + 2(λ+Gλ+ − λ−Gλ−))

(47)

that vanishes on the constraint surface Hσ ≈ 0,Gλ+ ≈
0,Gλ− ≈ 0. Collecting all these results together we find that
Hτ ≈ 0,Hσ ≈ 0 are the first class constraints which is an
expected result since the action (8) defines relativistic theory
on two-dimensional world-sheet �.

4 Second class constraints and their solution

Now we analyze the constraints Gλ+ ≈ 0,Gλ− ≈ 0 in more
details. First of all we show that Gλ+ ≈ 0,Gλ− ≈ 0 are second
class constraints together with pλ+ ≈ 0 and pλ− ≈ 0 since

{
pλ+(σ ),Gλ+(σ ′)

} = T

2
τμH

μντνδ(σ − σ ′),
{
pλ+(σ ),Gλ−(σ ′)

} = T

2
τ̄μH

μντνδ(σ − σ ′),
{
pλ−(σ ),Gλ+(σ ′)

} = T

2
τμH

μντ̄νδ(σ − σ ′),
{
pλ−(σ ),Gλ−(σ ′)

} = T

2
τ̄μH

μντ̄νδ(σ − σ ′). (48)

Clearly there is also non-zero Poisson bracket between Gλ+ ≈
0 and Gλ− ≈ 0. Let us now introduce common notation for
the second class constraint as �A ≡ (pλ+, pλ−,Gλ+,Gλ−). Then
the matrix of Poisson brackets between these constraints has
schematic form

�AB =
(

0 X
Y W

)
, (49)

where X,Y,W are 2×2 matrices that have generally inverse
matrices.4 Then the inverse matrix has the form

�AB =
(−Y−1WX−1 Y−1

X−1 0

)
, �AB�BC = δCA . (50)

If we now calculate Dirac bracket between xμ and pν we
obtain

4 Of course, each entry of these matrices is infinite dimensional since it
depends generally on σ and σ ′. However for our purposes this schematic
form is sufficient.
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{
xμ, pν

}
D = {

xμ, pν

} − {
xμ,�A

}�AB {�B, pν}
= {

xμ, pν

} − (0, 0, ∗, ∗)

(−Y−1WX−1 Y−1

X−1 0

)

×(0, 0, ∗, ∗)T = {
xμ, pν

}
, (51)

where ∗ means non-zero entry whose explicit form is not
important. From this result we see that Dirac brackets
between xμ and pν coincide with corresponding Poisson
brackets. Now we are ready to solve the second class con-
straints Gλ+ ≈ 0 and Gλ− ≈ 0. First of all we introduce part of
the Hamiltonian constraint Hτ ≈ 0 that depends on λ+ and
λ− as

Hλ
τ = Aλ+ + Bλ− + T

4
((λ+)2X + 2λ+λ−Y + (λ−)2W ),

(52)

where

A = −πμH
μντν + T x ′μτμ, B = −πμH

μν τ̄ν − T x ′ν τ̄ν ,

X = τμH
μντν, Y = τ̄μH

μντν, W = τ̄μH
μν τ̄ν . (53)

Using this notation we can write the solution of the second
class constraints Gλ+ = 0, Gλ− = 0 in the form

λ− = − 2

T

AY − BX

Y 2 − XW
, λ+ = − 2

T

BY − AW

Y 2 − XW
. (54)

Then inserting this result into Hλ
τ we obtain

Hλ
τ (onshell) = 1

T (Y 2 − XW )
(A2W + B2X − 2ABY ),

(55)

where explicit calculations give

X = −(�−1)00 − 2(�−1)01 − (�−1)10,

Y = (�−1)ABηBA,

W = −(�−1)00 + 2(�−1)01 − (�−1)11 (56)

so that

Y 2 − XW = − 4

det �AB
. (57)

Then after some complicated calculations and with the help
of the explicit form of A and B given in (53) we get

Hλ
τ (onshell)

= 1

T
πμτ̂

μ
A(�−1)AB τ̂ ν

Bπν − 2πμτ̂
μ
AεABηBCτ C

σ

+T τ A
σ �ABτ B

σ − T τ A
σ τ B

σ ηAB�CDηCD, (58)

where τ A
σ ≡ x ′μτ A

μ . Inserting (58) into (38) we obtain
Hamiltonian constraint that depends on the canonical vari-
ables xμ and pμ only

Hsol
τ = 1

T
πμh

μν pν + T x ′μHμνx
′ν

−2πμτ̂
μ
AεABηBCτ C

σ

+T τ A
σ �ABτ B

σ − T τ A
σ τ B

σ ηAB�CDηCD, (59)

where τ A
σ ≡ x ′μτ A

μ . The form of the Hamiltonian constraint
(59) coincides with the Hamiltonian constraint found in [26]
where non-relativistic string in stringy Newton–Cartan back-
ground was defined with the help of the limiting procedure
that defines Newton–Cartan geometry from the relativistic
one. We mean that this is very nice consistency check of
both approaches.

Finally we would like to check the analysis further and
try to determine corresponding Lagrangian density. Using
canonical equation of motion we get

ẋμ = {
xμ, H

} = 2N

T
hμνπν − 2N τ̂

μ
AεABηBCτ C

σ

+Nσ ∂σ x
μ, (60)

where H = ∫
dσ (NHsol

τ + NσHσ ). Then we find

L = pμ ẋ
μ − NHsol

τ − NσHσ

= N

T
πμh

μνπν − T τ A
σ �ABτ B

σ + T τ A
σ τ B

σ �AB

−T x ′μHμνx
′ν − T ∂τ x

μBμν∂σ x
ν . (61)

To proceed further we will now follow [26] and introduce
Ê A′

μ defined as

Ê A′
μ = E A′

μ + m A
ν Eν

C ′δC
′A′

τ B
μ ηBA (62)

that obeys an important relation

Ê A′
μ τ̂

μ
B = 0. (63)

Then it is easy to express Lagrangian density (61) as function
of xμ and ∂αxμ and we obtain

L = T

4N
(ẋμ − Nσ x ′μ)Ê A′

μ δA′B′ Ê B′
ν (ẋν − Nσ x ′ν)

−T Nτ A
σ �ABτ B

σ + T Nτ A
σ τ B

σ ηAB�CDηCD

−T Nx ′μHμνx
′ν − T ∂τ x

μBμν∂σ x
ν . (64)

As the next step we determine Lagrange multipliers N and
Nσ . It turns out that these multipliers are determined by equa-
tions of motion for xμ. In fact, if we multiply this equation
by τμν we obtain

τμν(ẋ
ν − Nσ x ′ν) = −2Nτ E

μ εEDτ D
σ . (65)

If we further multiply this result with x ′μ and use an anti-
symmetry of εAB we obtain

Nσ = ττσ

τσσ

. (66)
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If we manipulate with (65) further we get

(ẋμ − Nσ x ′μ)τμν(ẋ
ν − Nσ x ′ν) = −4N 2τσσ (67)

that can be written as

τττ − 2Nσ τστ + (Nσ )2τσσ = −4N 2τσσ . (68)

This equation can be solved for N when we take into account
the result (66) and we obtain

N = 1

2

√− det ταβ

τσσ

. (69)

Inserting (66) and (69) into (64) we obtain Lagrangian den-
sity in the form

L = −T

2

√− det ταβταβHαβ − T

2

√− det ταβταβτ A
α �ABτ B

β

+T

2

√− det ταβ�ABηAB − T ẋμBμνx
′ν, (70)

where Hαβ = Hμν∂αxμ∂βxν, τ A
α = ∂αxμτ A

μ and where we
used the fact that

Ê A′
μ δA′B′ Ê B′

ν = Hμν + τ A
μ �ABτ B

ν . (71)

We see that this Lagrangian density almost coincides with
the Lagrangian density found [18] up to terms that contain
matrix valued Newton potential �AB . Now we are going to
argue that these terms cancel each other. In fact, note that ταβ

is defined as

ταβ = τ A
α τ B

β ηAB, (72)

where τ A
α is 2 × 2 matrix. Now since ταβ is non-singular so

that τ A
α is non-singular as well and hence we can introduce

an inverse matrix τ
β
A that obeys the relation

τα
Aτ B

α = δ B
A . (73)

Then we can define ταβ as

ταβ = τα
Aτ

β
BηAB (74)

that obeys

ταβτ A
β = τα

CηCA, (75)

and hence

ταβτ B
β τ A

α = τ B
β τ

β
CηCA = ηBA. (76)

With the help of these results it is easy to see that contributions
to the Lagrangian density (70) that depend on �AB cancel

each other and hence the Lagrangian density has the final
form

L = −T

2

√− det ταβταβHαβ − T ẋμBμνx
′ν (77)

which is Lagrangian density proposed in [18]. This result
again confirms validity of our approach.
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