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Abstract The spinning regular black hole (spin a) met-
ric proposed by Johannsen shares the Kerr horizon but con-
tains independent dimensionless parameters marking devi-
ation from the Kerr metric. Non-zero value of any of the
parameters would indicate violation of the no-hair theorem.
We shall find the influence of these parameters on the rel-
ative time delay (not Shapiro time delay) treated here as a
diagnostic for no-hair theorem using aligned, finite, thin-
lens approximation in realistic spinning astrophysical con-
figurations. Precise measurement of this delay would then
help us determine, from observational perspective, whether
or not any of the parameters is really non-zero. We shall
also point out that the aligned spinning lens is completely
equivalent to a “static” lens with a fictitious lens geometry,
which would enable us to re-express the relative time delay
components in terms of the spin a. Numerical values are tab-
ulated for three astrophysical lens systems. The advantage
of the present treatment is that it can accommodate a variety
of spinning lens systems that are likely to be detected in the
near future.

1 Introduction

The status of the no-hair theorem in general relativity is
still a subject of current research ever since Penrose conjec-
tured it in 1969 (see, e.g., a recent work by Cuzinatto et al.
[1]). Specific examples of spinning spacetimes have also
been studied in the literature testing the theorem (see, e.g.,
[2]). However, to our knowledge, no generic spinning space-
time has been considered for such studies until Johannsen
[3] proposed a new spinning metric that departs from the
Kerr black hole (BH) by an infinite number of dimension-
less deviation parameters such that non-zero value of any
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of them would indicate violation of the no-hair theorem.
The metric is not a solution of any known modified grav-
ity theory but nonetheless shares the Kerr horizon defined
by the BH mass M and spin a. Special features of the
Johannsen metric include its regularity properties and the
absence of closed time-like curves. Hence it provide an ideal
setting for measuring the deviations, for instance, by observ-
ing the deformation of Kerr BH photon rings [3–5]. Possi-
ble deviations has been suggested also via the Blandford-
Zjanek mechanism responsible for BH jets [6] (see also the
review [7]).

The motivation of the present paper is guided by the pos-
sible determination of the Johannsen deviation parameters,
hence the status of the no-hair theorem, from a completely
different perspective, namely, the effect of relative time delay
(RTD) (which is not Shapiro time delay). The concept of RTD
is defined as follows [8,9]: two light rays emanate from a vari-
able source S behind a spinning lens L (with mass M), pass
on either side of it with different times of arrival (TOA) at the
observer O . The difference is caused by the frame dragging
due to the intervening spinning lens that in turn causes light
path lengths on either side of the lens to differ, shorter on
the co-rotating side and longer in the counter-rotating side
(see Fig. 1). An example of such an effect could be the early
observation of extremely rapid fluctuations in the brightness
of quasar 1525+227 with characteristic time scale ∼ 200 sec
speculated to be caused by the relative delay of signals due
to a spinning BH of mass M ∼ 5×108M� situated between
the quasar and the observer [10].

The purpose of the present paper is to argue for gravi-
tational lensing as a method to determine the influence of
deviation parameters on the RTD. We shall work in the thin-
lens approximation in first order in spin a and apply the
result to different astrophysical lenses assuming an aligned
setting of source, lense and observer. It will also be shown
that the spinning lens can be degenerate to a artificial “static”
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lens1, which would enable us to re-express the relative time
delay components in terms of the spin a measured from the
observed brightness of images. Numerical values are tabu-
lated for three astrophysical lens systems. Note that there
are also other regular metrics (see, e.g., [12–17]), that could
equally well be treated within the framework of the present
analysis.We shall take G = 1, c = 1 unless specifically
restored.

The paper is organized as follows. In Sect. 2, we shall
derive the equation for the relative time delay and in Sect. 3,
integrate it in the thin-lens approximation. Section 4 contains
the equivalent static lens system and the corresponding mag-
nification of images. Section 5 presents indicative numerical
estimates for three lens systems and Sect. 6 concludes the
paper.

2 Johannsen metric and relative time delay

The gravitational field of a spinning lens of mass M described
by axisymmetric, stationary and asymptotically flat space-
time, which we call here the spinning chargeless Johannsen
metric [3], is given by

dτ 2 =gtt dt
2+2gtφdtdφ+grr dr

2 + gθθdθ2+gφφdφ2 (1)

where

gtt = − Σ̃
[
Δ − a2A2(r)2 sin2 θ

]

[
(r2 + a2)A1(r) − a2A2(r) sin2 θ

]2 , (2)

gtφ = −a
[
(r2 + a2)A1(r)A2(r) − Δ

]
Σ̃ sin2 θ

[
(r2 + a2)A1(r) − a2A2(r) sin2 θ

]2 , (3)

grr = Σ̃

ΔA5(r)
, (4)

gθθ = Σ̃, (5)

gφφ = Σ̃ sin2 θ
[
(r2 + a2)2A1(r)2 − a2Δ sin2 θ

]

[
(r2 + a2)A1(r) − a2A2(r) sin2 θ

]2 , (6)

A1(r) = 1 +
∞∑

n=3

α1n

(
M

r

)n

, (7)

A2(r) = 1 +
∞∑

n=2

α2n

(
M

r

)n

, (8)

A5(r) = 1 +
∞∑

n=2

α5n

(
M

r

)n

, (9)

Σ̃ = r2 + a2 cos2 θ + f (r), (10)

1 This result is similar to the result of a “displaced Schwarzschild lens”
equivalent to Kerr lens up to first order in spin, as shown generically by
Sereno [11].

f (r) =
∞∑

n=3

εn
Mn

rn−2 , (11)

Δ = r2 − 2Mr + a2. (12)

The parameter a is the specific angular momentum of the
lens defined by a = J/M . The outer event horizon appears
at (Δ = 0):

r+ = M +
√
M2 − a2. (13)

While the BHs have the constraint a ≤ M , spinning galaxies
tabulated by Romanowsky and Fall [18] have a > M (see
an example in Table 3 below) but these constraints will not
affect our analysis since in the weak field form of the metric
these parameters can be freely specified.

The infinite number of deviation parameters are denoted
by α1n , α2n , α5n and εn for specified ranges of n as shown
above. The metric is asymptotically flat, has the correct
Newtonian limit, and is consistent with the current post-
Newtonian constraints. At the first nonvanishing order in
the deviation parameters, the metric depends only on four
parameters in addition to the mass M and the spin a, which
are α13, α22, α52 and ε3. These parameters are dimensionless
numbers without dynamical interpretations except that lower
limits on them have been worked out in [3] on the basis of cer-
tain requirements such as the existence of event horizon, the
signature protection, positivity of the determinant, absence
of closed time-like curves. At the extreme limit a = ±M ,
all of these have lower limit −1. This limit in turn would
induce lower limits to redefined deviation parameters (see
below).

To derive the equation for relative time delay, consider the
light trajectory on the equatorial plane (θ = π/2) is given by
dτ 2 = 0, so that the coordinate time required for light rays
along an infinitesimal null world line is given by

dt± = dφ

gtt
[−gtφ ± h(r, φ)], (14)

where

h(r, φ) ≡
√√
√√g2

tφ − gtt

{

grr

(
dr

dφ

)2

+ g2
φφ

}

. (15)

We assume the passage of coordinate time to be positive for
both ± sides of the lens identifying dφ > 0, for light rays
passing the lens by the co-rotating side (+) and dφ < 0 for
the counter-rotating side (−), so that dt+ and dt− are both
positive. The net arrival time difference between the two light
rays at the observer is also positive:
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Fig. 1 The generic thin-lens configuration (scales exaggerated). S, L
and O are the source, lens and observer respectively aligned on a straight
line (β = 0), b is the closest approach distance and a is the spin. The
arbitrary angles are as shown

dt = dt− − dt+ = |dφ|
gtt

[gtφ + h(r, φ)]

−|dφ|
gtt

[−gtφ + h(r, φ)] = 2gtφ
gtt

|dφ| . (16)

This delay dt is due to the frame-dragging effect character-

ized by
(

2gtφ
gtt

)
, which we are going to compute in this paper.

We consider that the source, lens and the observer are per-
fectly aligned, that is, they are situated on a straight line (see
Fig. 1). When the lens is not spinning, the path lengths of the
light ray on both sides of the lens would be the same and there
would be no arrival time difference at the observer. However,
when the lens is spinning the path lengths will differ - shorter
for co-rotating and longer for counter-rotating rays - giving
rise to the time delay effect.2

We shall consider deviation parameters that appear in the

lowest order of expansion in
( a
cr

)
of the function

(
2gtφ
gtt

)
,

since for the metric (1), the next order appears only in ( a
cr )

3,
reduced further by smaller order multiplicative terms like
(M/r) << 1 valid in the weak field. In this approximation,
the expansion up to third order in (M/r) is:

dt = |dφ|
(

1

c

)[
4aM

r
+ 8aM2

r2 λ1 + 2aM3

r3 λ2

]
, (17)

2 Interestingly, there is also an effect of gravitational time advancement
in Schwarzschild gravity, which is largely due to differing clock rates
[19]. However, the delay in Eq. (16) is due to the physical effect of
frame dragging [8] that gives rise also to a gravitational analogue of the
Sagnac effect [20,21].

where

λ1 = 1 + α22

4
, λ2 = 8 + α13 + 2α22 + α23 (18)

are the redefined deviation parameters. Three results are
already immediate: (1) The number of deviation parame-
ters has reduced from three to two, viz., λ1 and λ2, the term
containing ε3 has canceled out between the numerator and

dinominator of
(

2gtφ
gtt

)
. (2) The absence of a2 terms implies

that the moment M2 does not contribute to observables in the
asymptotic limit.3 (3) The lowest limit −1 on α22, α13 and
α23 corresponding to the extreme case yields lower limits
λ1 > 3

4 , λ2 > 4.
The total time delay Δt between two light rays traveling

from the source to observer along two opposite sides of the
intermediate spinning lens is

Δt =
(

1

c

) π∫

0

dφ

[
4aM

r
+ 8aM2

r2 λ1 + 2aM3

r3 λ2

]
(19)

≡ 1

c
(I1 + I2 + I3) = Δt1 + Δt2 + Δt2. (20)

We compute the integral locating the spinning lens at the
origin of a polar system of coordinates on the equatorial plane
(θ = π/2). As can be seen, the deviation parameters do not
influence the leading order delay contribution Δt1. In the
following, we shall derive explicit expressions for Δt1, Δt2
and Δt2 within the thin-lens approximation.

3 Thin-lens approximation

Thin-lens approximation means that the light deflection takes
place only at the lens approximated as a point, while else-
where the rays travel in straight lines and the relevant angles
are small. In this approximation, Dymnikova [8] has shown
that the rays emerging from S, after passing by either side
of spinning lens L on the equatorial plane, will meet at O
only if the corresponding closest approach distances are b
and b + a as shown in Fig. 1.

At this stage, an important issue needs to be addressed.
Note that major deflection does not occur in the weak field,
hence it is necessary to quantify exactly how close to the
lens the light rays should pass so that the weak field expan-
sion for the metric does not incur significant errors. We
shall quantify the closeness by using a natural characteris-
tic length peculiar to the lens. For instance, we recall that
there occurs photon spheres around BHs and the deflection
angle becomes logarithmically divergent at that radius, as

3 Sereno and De Luca [22] previously showed that pure spin terms∝ a2,
a3 do not contribute to the observable lensing quantities, in particular
to the deflection angle.
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a result of which the light rays get captured there [23–25].
This radius therefore demarcates a natural strong field limit.
We also recall that Bardeen [26] has shown that a spinning
BH has two photon spheres centered at the lens with radii
r = r±

ph = 2M
[
1 ± cos

{ 2
3 cos−1

( a
M

)}]
. We shall con-

sider the larger of the two photon spheres r+
ph , and define

b ≈ 10nr+
ph with n an integer. Our idea is to march b towards

r+
ph , with the rays still moving in the weak field preserving

the smallness of the involved angles. This algorithm will be
exercised in Tables 1 and 2 below.

As a specific illustration right now, consider a small
BH with M = 20M�, a = 0.99M (PSR-BH system,
Table 1), then r+

ph ≈ 107 cm. Choosing n = 2, so that

b ≈ 109cm, it can be seen that the expansion of gμν con-
tains typical terms having magnitudes much smaller than
unity: M

b ≈ 10−4, a2

b2 ≈ 10−7, aM
b2 ≈ 10−7, aM2

b3 ≈ 10−10,
M3

b3 ≈ 10−10, aM3

b4 ≈ 10−13, a2M3

b5 ≈ 10−16 etc (assuming
the deviation parameters to be of the order of unity). Thus,
when the light rays pass about a hundred times farther than the
photon sphere, b ≈ 102r+

ph , it would produce a measurable

leading order microsecond level delay as also anticipated in
the literature using a different approach [9]. The values would
be considerably higher in the two other systems considered
in Tables 2 and 3.

Returning to Fig. 1, we have by constructiondLS = χdOL ,
where χ is a constant, PLQ ⊥ OLS, arbitrary angles
�LSP =γ1, �LOP = γ2, �LSQ = δ1, �LOQ = δ2, thus
allowing for a most general thin-lens configuration. With r
denoting an arbitrary point A, we can write for the co-rotating
light motion, where �LSP = γ1, �LOP = γ2, the equation
of the straight line corresponding to the polar angle segment
π ≥ φ ≥ π/2 as:

1

rcor
= 1

dLS
cos φ + 1

dLS
cot (γ1) sin φ, (21)

where dLS = LS, the distance between the lens and source
and the subscript “cor” denotes corotating side. Similarly, for
the remaining segment π/2 ≥ φ ≥ 0, we have

1

rcor
= 1

dOL
cos φ + 1

dOL
cot (γ2) sin φ, (22)

Table 1 Relative time delay components Δt1,Δt2,Δt3 in microsec-
onds (μs) calculated from Eqs. (30, 32, 33) for a typical BH sample
with M = 20M�, a = 0.998M and dOL = 5 kpc, r+

ph = 1.18 × 107

cm. The source distances dLS = χdOL in Fig. 1 are varied ensuring
that the angles remain small in the lensing geometry: γ1 
 tanγ1 =

b/dLS 
 δ1 
 tanδ1. The Kerr metric is obtained by setting the devia-
tion parameters α22, α13 and α23 to zero so that, from Eq. (18), the last
two columns in the table below should be multiplied by λ1 = 1, λ2 = 8
respectively

Geometry χ γ1 b/r+
ph Δt1 (μs) Δt2 (μs) × λ1 Δt3 (μs) × λ2

1. 10−15 8.76 × 10−1 1.14 161.862 84.021 2.272

2. 10−14 2.77 × 10−1 3.61 89.781 9.487 0.131

3. 10−13 8.76 × 10−2 1.14 × 101 32.368 1.092 0.005

4. 10−12 2.77 × 10−2 3.61 × 101 10.828 0.115 1.678 × 10−4

5. 10−11 8.76 × 10−3 1.14 × 102 3.404 0.012 5.420 × 10−6

6. 10−10 2.77 × 10−3 3.61 × 102 1.080 1.175 × 10−3 1.725 × 10−7

7. 10−9 8.76 × 10−4 1.14 × 103 0.342 1.177 × 10−4 5.468 × 10−9

8. 10−8 2.77 × 10−4 3.61 × 103 0.108 1.177 × 10−5 1.730 × 10−10

9. 10−7 8.76 × 10−5 1.14 × 104 0.034 1.177 × 10−6 5.473 × 10−12

10. 10−6 2.77 × 10−5 3.61 × 104 0.010 1.177 × 10−7 1.731 × 10−13

Table 2 Relative time delay components Δt1,Δt2,Δt3 in seconds cal-
culated from Eqs. (30, 32, 33) for SgrA* with values given by Kato
et al. [34], viz., M = 4.2 × 106M�, dOL = 7.6 kpc and a unique
a = 0.44M so that r+

ph = 2.48 × 1012 cm. The source distances
dLS = χdOL in Fig. 1 are varied ensuring that the angles remain small:

γ1 
 tanγ1 = b/dLS 
 δ1 
 tanδ1. The Kerr metric is obtained by
setting the deviation parameters α22, α13 and α23 to zero so that, from
Eq. (18), the last two columns in the table below should be multiplied
by λ1 = 1, λ2 = 8 respectively

Geometry χ γ1 b/r+
ph Δt1 (s) Δt2 (s) × λ1 Δt3 (s) × λ2

1. 10−9 3.25 × 10−1 3.53 × 101 9.736 × 100 1.238 × 10−1 2.033 × 10−2

2. 10−8 1.03 × 10−1 1.12 × 101 3.541 × 100 1.411 × 10−1 7.586 × 10−4

3. 10−7 3.25 × 10−2 3.53 × 101 1.166 × 100 1.482 × 10−2 2.548 × 10−5

4. 10−6 1.27 × 10−2 9.07 × 101 4.597 × 101 2.286 × 10−3 1.537 × 10−6

5. 10−5 4.01 × 10−3 2.87 × 102 1.461 × 10−1 2.301 × 10−4 8.899 × 10−8
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where dOL = OL , the distance of the observer to the lens
and the closest approach distance b is given by

cot (γ1)

dLS
= cot (γ2)

dOL
= 1

b
at φ = π/2. (23)

For the counter-rotating light motion, denoted by the sub-
script “cou”, where �LSQ = δ1, �LOQ = δ2, the equation
in the segment −π/2 ≤ φ ≤ −π is

1

rcou
= 1

dLS
cos φ + 1

dLS
cot (δ1) sin φ, (24)

and in the segment −π/2 ≤ φ ≤ 0, it is

1

rcou
= 1

dOL
cos φ + 1

dOL
cot (δ2) sin φ, (25)

with the closest approach distance (a + b) given by

cot (δ1)

dLS
= cot (δ2)

dOL
= − 1

a + b
at φ = −π/2. (26)

Inserting the expressions for 1/r in Eq. (19) for the relevant
segments and carrying out the angular integrations on the
co-rotating and counter-rotating sides using

dLS = χdOL , γ1 = cot−1 [dLS/b] ,

γ2 = cot−1 [dOL/b] , (27)

δ1 = cot−1 [−dLS/ (a + b)] ,

δ2 = cot−1 [−dOL/ (a + b)] , (28)

we get the final result by subtracting between the path lengths,
viz., SQO − SPO:

I1 = 4aM

⎡

⎢
⎣

π∫

π/2

1

rcor
dφ +

π/2∫

0

1

rcor
dφ

⎤

⎥
⎦

− 4aM

⎡

⎢
⎣

−π∫

−π/2

1

rcou
dφ +

−π/2∫

0

1

rcou
dφ

⎤

⎥
⎦ , (29)

Δt1 = I1
c

= 8a2M {b (χ − 1) + χdOL}
b(a + b)χdOL

+ 8abM {b (χ − 1) + 2χdOL}
b(a + b)χdOL

. (30)

Equation (30) generalizes the expression used by Laguna and
Wolszczan [9]

Δt1 
 16aM

cb
, (31)

to finite distance scale lensing geometry. In the same way, we
can calculate the integrals I2 and I3 which, to leading orders

in
(M
b

)2
and

(M
b

)3
, work out to

Δt2 = I2
c

= 4aM2
[
a2F1 + 2abF2 + b2F3

]

cb2(a + b)2 (χdOL)2 λ1, (32)

Δt3 = I3
c

= 2aM3 [G1 + G2 − G3 − G4]

3cb3d3
OL

λ2, (33)

where

F1 ≡ 2b(χ − 1)χdOL + π (χdOL)2

+πb2
(

1 + χ2
)

, (34)

F2 ≡ 3b(χ − 1)χdOL + π (χdOL)2

+πb2
(

1 + χ2
)

, (35)

F3 ≡ 4b(χ − 1)χdOL + 2π (χdOL)2

+πb2
(

1 + χ2
)

, (36)

G1 ≡ [b + dOL ]
(

2b2 + bdOL + 2d2
OL

)
, (37)

G2 ≡
[
a + b + dOL

(1 + a/b)3

] [
2 (a + b)2 + (a + b) dOL

+ 2d2
OL

]
, (38)

G3 ≡
[
b − χdOL

χ3

] [
2b2 − bχdOL + 2(χdOL)2

]
, (39)

G4 ≡
[

1

(1 + a/b)3 χ3

] [
2 (a + b)3 − 3 (a + b)2 χdOL

+ 3(a + b) (χdOL)2 − 2(χdOL)3
]
. (40)

The Eqs. (30, 32, 33) are central to the calculation of the
delay. We shall plug the lens parameter values a, M , distance
values b, dOL , χ = dLS/dOL into these equations, take care
to preserve small angles b/dOL , b/dLS << 1, and estimate
the total time delay Δt containing the Johannsen deviation
parameters λ1 and λ2 for spinning BHs and lens galaxies
(Tables 1, 2 and 3). While one manifestation of a spinning
lens is relative time delay, another manifestation could be in
the form of magnification of images, to which we turn next.

4 Magnification of images

By measuring image positions in a static system, the Einstein
angle θE can be inferred. We shall replace the spinning lens
system by a fictitious static system with β �= 0 effectively
equivalent to the spinning lens system with β = 0 in the
weak field limit. As deduced by Hartle [27], in a static lens
system with β �= 0, the arrival times of the two images are
different because of the difference ΔD in path length given in

first order in β by ΔD 

(

16β
θE

)
M . This yields a first order

time difference ΔD/c. The advantage of this static equiv-
alent is that it facilitates the computation of the observable
image shapes, individual and total magnifications, which are
useful since a fluctuation in the magnification of the source
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Fig. 2 Fictitious “static lens” with β �= 0 equivalent to the spinning
lens of Fig. 1 with β = 0. The images appear at I± at two angular
locations θ±

will produce later fluctuation in the image, when it arrives at
Earth.

If the lens were truly static, and the observer O , lens L ,
source S are perfectly aligned (β = 0) along a line OLS,
there would be no frame dragging, the rays from the source
would traverse equal length to the observer, so there will be
no time delay since the images would be placed symmet-
rically about the line OLS. However, due to the spinning,
and consequent frame dragging, the incoming rays along
the two different angles γ2 and δ2 would now produce two
images θ± situated asymmetrically on either side of the line
OLS.

Imagine a static lens with β �= 0,where β is the unlensed
position angle of the source and θ± are the measured angular
positions of the images (see Fig. 2), which are roots of the
quadratic lens equation [27]

θ2 − βθ − θ2
E = 0. (41)

where θE is the “Einstein angle” for some fictious distances
in the static lens configuration (having “non-aligned” β �= 0)
that are different from dLS , dOS , dOL used in the spinning
configuration (having β = 0). However, a value of θE can be
inferred from the observations of the image angles θ±. Thus,
we can identify from Figs. 1 and 2 that

θ+ ≡ γ2 = cot−1
(
dOL

b

)
, (42)

θ− ≡ δ2 = cot−1
(

− dOL

a + b

)
. (43)

so that we can write, from Eq. (42),

θ+ + θ− = β, (44)
√−θ+θ− = θE . (45)

It can be verified that the above values of β and θE numeri-
cally yield the time delay deduced by Hartle [27]:

Δt1 
 ΔD/c 

(

β

θE

)(
16M

c

)
. (46)

Comparing Eq. (31) for Δt1 with ΔD/c, we get a/b = β/θE ,
which then very nearly yields the other contributions Δt2 and
Δt3 as well. The slight deviation is due to thin-lens approxi-
mation that can be improved. Note that time delay in a static
system has been calculated by Virbhadra and Ellis [28] with
the Einstein angle determined by the lens mass. In contrast,
here θE is determined from the lens geometry.

The values of β and θE allow us to compute the shapes
and magnifications (or ratios of brightness) of the images.
Note that, while the azimuthal width Δφ is unchanged, the
polar width Δθ± of the images change and its magnitude can
be obtained by differentiating Eq. (41):

Δθ± =
(

1

2

)⎡

⎣1 ± β
√

β2 + 4θ2
E

⎤

⎦Δβ. (47)

Since the angular width of the source Δβ �= 0, this result
implies a distorted and elongated shape of the images that
have been confirmed by observations.

The ratio of the brighness of the individual images μ±
to the unlensed brightness μ∗ at the angular positions θ± is
given by the magnifications [27]

μ±
μ∗

=
∣∣∣∣

(
θ±
β

)(
dθ±
dβ

)∣∣∣∣

= 1

4

⎡

⎣ β
√

β2 + 4θ2
E

+
√

β2 + 4θ2
E

β
± 2

⎤

⎦ . (48)

We can draw a very interesting conclusion from here: Since
from Eqs. (44) and (45) it follows that β < 0, we have
|μ−| > μ+ showing that the the image θ− on the counter-
rotating side is brighter than the image θ+ on the co-rotating
side. Such observations would indicate that the intervening
lens is spinning and provide determination of spin a if all
other parameters are independently known. However, the
magnitudes of brightness in any given sample do not dif-
fer very greatly thus making the individual measurements
difficult. In this case, another very useful quantity is the total
magnification over the background μ∗, called the magnifica-
tion factor defined by
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μtot

μ∗
= μ+ − μ−

μ∗
= 1

2

∣∣
∣∣∣∣

β
√

β2 + 4θ2
E

+
√

β2 + 4θ2
E

β

∣∣
∣∣∣∣

= 1

2

∣∣∣∣∣
∣

(β/θE )
√

(β/θE )2 + 4
+

√
(β/θE )2 + 4

(β/θE )

∣∣∣∣∣
∣
, (49)

the ratio being always greater than unity. Especially, when
the equivalent β is small, that is, the source is very close to the
optical axis OLS , the total magnification could be quite large
that should be observable. The measurement of magnification
can lead to the determination of β/θE . It is then possible to re-
express the time delay components Δt1,Δt2,Δt3 of Eqs. (30,
32, 33) in terms of the observable β/θE using a/b = β/θE .

5 Numerical estimates

A possible scenario for detection of relative time delay would
be provided by variable sources like pulsars, quasars, GRBs
etc giving out signals at the instant they are behind the spin-
ning lens on the optical axis OLS. Below we present some
numerical estimates of the delay in different lensing situa-
tions.

(a) PSR-BH binaries
PSR-BH binary systems provide the best laboratory for

testing the time delay predictions [9]. Though a concrete
example of PSR-BH binary is yet to be detected, the prospects
for discovery seem quite promising. Early estimate was that,
of all pulsars discovered so far, only a small but signifi-
cant number of them belong to a PSR-BH category with BH
masses ∼ 20M� [29].

As is evident from the first two rows of the Table 1, the
light rays pass very close to photon sphere b ≈ 100r+

ph so
that all the delay components could be measurable but in this
case the validity of the weak field metric expansion becomes
doubtful since M

b ∼ 10−1. In the 3rd and 4th row, M
b ∼ 10−2

and the expansion could be just marginally valid. From the
5th to the last row, it is evident that as b continue to become
larger than r+

ph, the leading order delays Δt1 become com-
parable to those obtained in [30]. High precision measure-
ment is best possible in the case of millisecond pulsars, and
a precision of 0.1μsec was obtained by van Straten et al.
[31] for PSRJ0437 − 4715, a bright millisecond pulsar in
a White Dwarf-Neutron Star (WD-NS) binary system. How-
ever, unless the accuracy of measurement of total observed
delay is raised to pico-second level, which is absurd today,
there is no hope to estimate the values of the deviation param-
eters λ1 and λ2 by curve fitting.

(b) PSR-SgrA* lensing system
It is estimated that there are probably ∼ 100 pulsars sur-

rounding the supermassive spinning BH SgrA* with orbital

periods � 10 years [32] and a few among them are expected
to form PSR-BH binaries with stellar sized BH companions
residing within ∼ 1 parsec of SgrA* [33]. We shall assume
the possibility that some of the pulsars (in binaries or not)
may cross the optical axis OLS behind SgrA*.

We see that the delay could be as large as ∼ 10 s, when b
is closest to r+

ph allowed by the thin-lens condition for small
angles. The weak field expansion of the metric is also valid
since M

b = 7.1 × 10−3. All the components of the delay
should be measurable provided an appropriate pulsar is iden-
tified in the future missions.

(c) Quasar–Galaxy lensing system
The Hubble Space Telescope has imaged the angular

size of the Einstein rings of a number of lens galaxies, the
observed Einstein angles are given in [30]. Also, more than
200,000 quasars are known, most from the Sloan Digital Sky
Survey. The magnitude of all quasars have long been known
to be intrinsically varying [35]. Therefore, there is good pos-
sibility that one one such quasar can be detected behind any
lens galaxy. The observed time delay on Earth would be mod-
ified by the red-shift factor (1 + zL) of the lens such that
Δt = (Δt1 + λ1Δt2 + λ2Δt3) (1 + zL) [36].

Table 3 below shows relative time delay components
Δt1,Δt2,Δt3 in seconds calculated from Eqs. (30, 32, 33) for
a typical spiral galaxy NGC 224 chosen from the 67 samples
tabulated by Romanowsky and Fall (seeTable 4, p.47 in [18]).
The values4 are: dOL = 0.70 Mpc, log10 (M/M�) = 11.6,
a = 2290 km s−1kpc (hence a/M = 1.38 × 103), Rd = 5.9
kpc, zL = ( H

c

)
dOL = 1.68 × 10−4 (using linear Hubble

law with the WMAP value of the Hubble constant H = 72
km sec−1Mpc), μtot

μ∗ = 3.869 × 103. Since there is no pho-
ton sphere for galaxies, the natural characteristic length here
is the galactic disk scale length Rd specific to each sample
and so we shall identify b to be Rd and multiples of it. Here
M
Rd

= 9.33×10−7, hence metric expansion is valid. The red-
shift correction to delay is too small. The source distances
dLS = χdOL in Fig. 1 are varied ensuring that the angles
remain small: γ1 
 tanγ1 = b/dLS 
 δ1 
 tanδ1

4 Note that the specific angular momentum a used in the present paper
is denoted by jt in [18], Eq. 1] defined by the usual formula

jt = Jt
M∗

=
∫
r r × vρd3r
∫
r ρd3r

,

where, in the three-dimensional space, r and v(r) are the position and
mean-velocity vectors (with respect to the center of mass of the galaxy),
and ρ(r) is the three-dimensional density normally of the stellar pop-
ulation in the galaxy. The magnitude |jt | = jt = a. The subscript “t”
denotes the “true” specific angular momentum in three-dimensional
space distinguishing it from the “projected” specific angular momen-
tum proxy jp .

123



105 Page 8 of 9 Eur. Phys. J. C (2019) 79 :105

Table 3 Table shows that for a chosen b, and for a range of source dis-
tances dLS designated by χ , the delay components do not vary much.
The leading order term Δt1 is in hours, measurement of the next order
Δt2 requires an accuracy at μsec level, while that of Δt3 requires nano-

sec level accuracy. The Kerr metric is obtained by setting the deviation
parameters α22, α13 and α23 to zero so that, from Eq. (18), the last two
columns in the table below should be multiplied by λ1 = 1, λ2 = 8
respectively

Geometry b (cm) χ γ1 Δt1 (h) Δt2 (h) × λ1 Δt3 (h) × λ2

1. Rd 0.5 1.68 × 10−2 3.239 4.742 × 10−6 9.379 × 10−13

2. − 3 2.81 × 10−2 3.262 4.784 × 10−6 9.476 × 10−13

3. − 100 8.43 × 10−5 3.266 4.792 × 10−6 9.495 × 10−13

4. 5Rd 0.5 8.43 × 10−2 6.372 × 10−1 1.865 × 10−7 7.370 × 10−15

5. − 3 1.40 × 10−2 6.601 × 10−1 1.944 × 10−7 7.371 × 10−15

6. − 100 4.21 × 10−4 6.645 × 10−1 1.961 × 10−7 7.807 × 10−15

6 Conclusions

In the above, we had used RTD based on gravitational lens-
ing as a possible dignostic for determining the status of the
Penrose no-hair conjecture. To that end, we considered the
generic metric of Johannsen and calculated the influence of
its deviation parameters on the RTD. The Eqs. (30, 32, 33)
generic in the weak field thin-lens approximation have been
obtained on the basis of an analytical treatment of RTD within
a realistic finite lensing system (Fig. 1). The derived equa-
tions have the flexibility to include different input values of
lens mass M , spin a, distances of closest approach b and
source distances dLS within the stipulated approximations.
We estimated not only the leading order delay Δt1 but also
other correction terms that are proportional to the redefined
Johannsen deviation parameters λ1 and λ2 to be eventually
determined by curve fitting to the observed data. They are
constrained by lower limits λ1 > 3

4 , λ2 > 4. If the fit-
ted parameters are found to have exactly the Kerr values
λ1 = 1 and λ2 = 8, then the observed delay would consti-
tute a support for the no-hair theorem of general relativity.
If they have values other than the Kerr values, the theorem
would be falsified. However, either conclusion is still pre-
mature as the corresponding lens configurations are yet to
be observationally identified and precise observational data
obtained.

To our knowledge, so far RTD [a.k.a. different times of
arrival (TOA) of pulses at the observer] calculations were
carried out for two types of scenarios: One scenario consid-
ered TOA of the pulses sent out from diametrically opposite
points on a fast spinning pulsar itself [37]. The other sce-
nario considered a pulsar orbiting around a BH companion
and used orbit parameters to determine b in Eq. (30), while
the delay was obtained by numerically integrating the null
geodesics in a Kerr background geometry [9]. The merit of
the present work is that it belongs to neither of the two scenar-
ios but presents an alternative perspective via a finite lensing
configuration allowing the light rays to approach the photon
sphere of the BHs (for galaxies, the disk radius) reasonably

closely without violating the weak field thin-lens approxi-
mation.

Further, devising a “static” lens equivalent to a spinning
lens (Fig. 2), a useful conclusion can be drawn from Eq. (48),
viz., the image θ− on the counter-rotating side isbrighter than
the image θ+ on the co-rotating side. Apart from this, it was
shown how by measuring the magnification ratio, one could
measure the RTD components. The components were esti-
mated for three lensing systems using Eqs. ((30, 32, 33). The
first system consists of anticipated PSR-BH binaries with
stellar sized BH companion as considered in [9]. Table 1
shows that the expected μsec level delay can be predicted also
from the lensing system with the adjustment of relevant dis-
tances and angles. The second one is the PSR-SgrA* lensing
system for which the delays have been found to be at the level
of seconds as shown in Table 2. The third one is the Quasar-
Galaxy lensing system, where the leading order delay appears
at the level of hours, although measurement of Δt2 and Δt3
would require nano-second and pico-second level accuracy
respectively (Table 3). It must be emphasized that the val-
ues in the Tables are only indicative subject to the accurate
detection of aligned lenses and variable sources. Currently
planned astrophysical missions are expected to throw up a
wealth of data that could tell us about the detectibility of
such lensing systems.

Finally, even though the weak field effects could be rea-
sonably large that can sample lens spin as a potential test
of general relativity, the strong field effects are expected
to reveal unforeseen characteristics. To discover these, one
should ideally consider strong field deflection, where light
rays pass very close to the photon spheres without being
captured. In the spinning lens, the deflection angles of rays
grazing the two photon spheres on either side of the lens will
be highly asymmetric and large, resulting from the multiple
winding of rays around the spheres before escaping away
to observer. Further, the formula for the exact strong field
deflection angle even in the Kerr BH metric has its own prob-
lems. The analytical expansion of the angle involving ellip-
tic functions even at the zeroth order (Schwarzschild BH)
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already shows a logarithmic divergence at the photon sphere
[25]. It would still be worthwhile to pursue this challenging
task, perhaps numerically, in a future work.

An open question is whether it is possible to detect the
inner structure of black holes, such as the existence of sin-
gularities, by using the outer effects of relative time delay
or gravitational lens or any other astrophysical effect.5 In
our opinion, this possibility cannot a priori be ruled out
since the hairs or deviation parameters α22, α13 and α23 (or
the redefined λ1 and λ2) do contain information also of the
inner structure of spacetime, notably the central singularity.
The parameter values fitted to observations could indirectly
detect the existence or otherwise of the singularity although
the experimental accuracy required for this purpose would
be quite challenging.
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