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Abstract The aim of the present research is the analysis of
the photon motion in the regular spacetimes arising as solu-
tions of the Einstein gravity coupled with a non-linear elec-
trodynamics (NED). The photons no longer follow the null
geodesic of the background spacetime, but the null geodesics
of an effective geometry where the electromagnetic non-
linearity is directly reflected in addition to the spacetime
geometry. Motion of photons is compared to the motion of
neutrinos that are not directly affected by the non-linearities
of a non-Maxwellian electromagnetic field, and follow null
geodesics of the background spacetime. We determine shad-
ows of the regular Bardeen black holes, representing a special
solution of the general relativity coupled with NED related to
a magnetic charge, both for photons and neutrinos, and com-
pare them to the shadow of the related Reissner—Nordstrom
black holes. We demonstrate that the direct NED effects give
clear signature of the presence of the regular black holes, on
the level going up to 20% that is detectable by recent obser-
vational techniques. We also demonstrate strong influence of
the NED effects on deflection angle of photons moving in the
Bardeen spacetimes, and on the time delay of the motion of
photons and neutrinos in vicinity of the black hole horizon.

1 Introduction

Inrecent years, the Reissner—Nordstrom (RN) black holes are
frequently studied in the astrophysical context. In its standard
form governed by the Einstein—-Maxwell theory with an elec-
tric charge as the source of the electromagnetic field, they are
often applied as a model explaining the GRBs [38,40,56]
— of course, there is a criticism of the strong electric field
paradigm [37] implying that existence of stable astrophys-
ical black holes with a significant electric charge seems to
be improbable. However, this argument is not relevant in the
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case of dyonic black holes carrying magnetic charge, as in
the field of such black holes the vanishing of charge due to
accretion of oppositely electrically charged matter is irrele-
vant. If the magnetic charge is influencing only uncharged
matter through the accordingly modified spacetime geome-
try, its role is the same as of the electric charge [30,46].

The interest in the RN black hole geometry occurs also
due to the solutions with a tidal charge that arise in the multi-
dimensional braneworld Randall — Sundrum approach [21] -
possible astrophysical consequences of tidally charged black
holes or naked singularities can be found in [1,16,31,32,49,
54]). We recall that the braneworld tidal charge reflects cur-
vature of the additional dimension in the braneworld mod-
els, being formally equivalent to the electric charge squired in
the standard models; however, the tidal charge may take both
positive and negative values, and currently there are no strong
observational constraints on the tidal charge value, contrary
to the case of the electric charge. Of course, the tidal charge
is not interacting with the electric (magnetic) charges, but
it can influence the photon motion, modifying accordingly
the optical effect in vicinity of the black hole [41,42,54],
or the oscillatory motion of Keplerian disks orbiting tidally
charged black holes [49,51]. Further, the RN black holes
could be mimicked also by the phantom fields [23], or by the
Horndeski gravity [7].

Any form of the RN black hole solutions can be reflected
in the shape of its shadow, if the black hole stands between
a shining source and a distant observer. It was suggested to
apply the RN (or more general) black hole model with a tidal
charge for the black hole at the Galactic Center, in particular
to consider the gravitational lensing for such an object [4,13—
15,41,42,48,63,65]. The BH shadows were studied also in
the case of more complex rotating spacetimes, starting from
the pure Kerr BH spacetime [12], or its extension to the Kerr
naked singularity spacetimes [8,29,45,50,52], the Kerr-NUT
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spacetime [28] or Kerr-de Sitter spacetime [2,20,26,27,33,
47,55,62], or rotating regular black hole spacetimes [3].

On the other hand, theories predicting so called reg-
ular black holes (and related “no-horizon” strong gravity
objects), lacking any physical singularity with diverging cur-
vature of the spacetime, attracted strong attention in recent
years. There is several such theories, e.g., those of the
non-commutative gravity [10,58], but strongest attention is
devoted to the models based on the standard general relativity
combined with a non-linear electrodynamics (NED), where
a variety of approaches to the NED has been developed and
discussed. For the first time, the regular black holes were pro-
posed in connection to magnetic charges by Bardeen [11].
Later their substance has been reflected in detailed studies
of their relation to NED [5,6,9,17-19,39,43,53,57,59,60].
Generic regular NED black holes were introduced in [25,61].
Along with the static and spherically symmetric non-rotating
solutions, generalizations to the rotating spacetimes were
derived and studied extensively [34,59]. It is thus of cru-
cial importance to look for clear observational signatures of
the regular black holes.

Clearly, the most relevant signatures of the NED regular
black holes are related to the fact that the motion of uncharged
matter, e.g., in Keplerian disks, is related purely to the space-
time geometry of these regular black holes, while motion of
photons is not, being related to some effective geometry mod-
ified by the NED effects additional to those reflected in the
structure of the spacetime. It is thus natural to test this effec-
tive geometry — first in the simplest, but very significant and
in principle measurable effects on the extension of the black
hole shadow.

We start our study concentrating attention on the Bardeen
spacetimes, where both the magnetic and electric charges
could be introduced, but mainly the case of the magnetic
charge could be relevant [18]. We compare the effective-
geometry predicted regular black hole shadow related to the
photon motion, to the shadow related to the neutrinos consid-
ered as massless particles that is determined by the spacetime
structure purely; for completeness, we make comparison also
to the shadow related to the RN black holes with the same
value of the magnetic (electric) charge as those of the regular
Bardeen black hole. We demonstrate that the differences are
quite significant.

For comparison we consider also the notion of the deflec-
tion angle, and the related issue of the time delay of pho-
tons and (massless) neutrinos, or general uncharged ultra-
relativistic particles, while they are crossing the strong grav-
ity region of a regular Bardeen black hole. We again demon-
strate possibility of effects giving clear signatures of NED
effects in the regular black hole backgrounds. We consider
also a simple situation where both the source and the observer
are located oppositely to the BH at the same distance from
the BH centre, e.g., on an radiating ring, and determine the
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time necessary for properly chosen photon and neutrino to
reach the observer, if they are radiated simultaneously. There
will be a difference of the time interval of the photon and the
neutrino, both due to the different trajectory and different
metric coefficients of the regular and effective spacetimes.
The time difference could be quite significant even for the
stellar-mass black holes, and very large for the super-massive
black holes, as the time delay dimensional factor is linear in
the black hole mass parameter.

2 Geometry and effective geometry

The regular spacetimes can be derived from the Einstein grav-
itational theory coupled to a non-linear electrodynamics; the
corresponding action of the combined theory reads

§— 1
16w

/=g [R — L(F)] (D
where F' = FyF “f and the electromagnetic tensor is
related to the vector potential due to the relation Fpg =
0gAp — dgAg. In 1968, Bardeen [11] for the first time pro-
posed black hole solution regular at r = O where the stan-
dard black hole spacetimes have a physical singularity. The
Bardeen spacetime metric has the line element taking the
form

1
ds? = — f(r)de> + mdrz +r2d6% + r¥sin? 0d¢?, (2)

with

2Mr?

f(")=1—W'

3)

This solution is parametrised by the mass parameter M, and
the magnetic charge ¢g,,. Later Ay6n-Beato and Garcia [5]
have found out that the Bardeen spacetime is a solution of the
Einstein gravitational equations coupled to the NED repre-
sented by the action (1) where the non-linear electromagnetic
Lagrangian is given by the formula

5/2
6 [ Ji2F/2 W
Sqm \1+q2F/2)

with s = ¢, /2M.

In the parametric space of the specific magnetic charge
qm/M, the Bardeen spacetimes can be separated into three
classes corresponding to different behaviour of the circular
geodesics of the spacetime geometry, especially to their sta-
bility. Detailed discussion of the circular geodesics of the

L(F) =
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Bardeen spacetimes can be found in [53] — here we con-
centrate on the reflection of the three classes of the Bardeen
spacetimes in the character of the circular null geodesics.

e Bardeen black hole spacetimes —specific charge g, /M <
0.7698. In the black hole spacetimes there is only one
unstable null circular geodesic located above the outer
horizon, and no null circular geodesic located under the
inner horizon.

e Bardeen no-horizon spacetimes containing null circular
geodesics — 0.7698 < ¢,,/M < 0.8586. There exists an
inner stable null circular geodesic and an outer unstable
null circular geodesics in such spacetimes.

e Bardeen no-horizon spacetimes having no null circular
geodesics — g, /M > 0.8586. In such spacetimes a finite
maximum of the deflection angle exists for geodesics
approaching the centre of the spacetime [43].

In the following, we directly use the results of the previous
works [43,53] for our recent study.

Due to the non-linearity of the electromagnetic field, pho-
tons do not follow null geodesics of the Bardeen spacetime.
Novello have shown that the photon trajectory is governed
by an effective geometry directly reflecting non-linear elec-
trodynamic effects [17,22]. In the Appendix, we present an
alternative derivation of the effective geometry, using the
short-wave approximation; this method leads to the same
results as the Novello approach.

The effective geometry corresponding to the Bardeen
spacetime geometry reads

~ f) 1 2 r? 2 r? 2
ds? = — dt d —de% + —d¢?,
3 o, +£pf(r)r+<l> +q>¢ (5)
where
dL(F) d>L(F)
= F =
LF 7 and Lr TR (6)
S =Lr+2LppF @)
and
2
dm
F=2n. 8
2,,4 ( )

Confronting the effective Bardeen geometry and the space-
time Bardeen geometry, we see immediately that the pseudo-
singularities determined by vanishing (diverging) of the met-
ric coefficients are located at the same radii, corresponding
to the black hole horizons, and governed by vanishing of the
lapse function f(r; M, gn).

In the case of the linear (Maxwellian) electrodynamics,
the Lagrangian of the electromagnetic field reads

L(F)=F 9)

and the corresponding static, spherically symmetric space-
time metric is described by the Reissner—Nordstrom (RN)
geometry. The related space-time interval reads

1
dsgy = —frN(r)di* + dr? +r2d6* 4 r? sin® dg?
JrN(r)
(10)
where
M q?
fan@)=1-==+15. (11)

M is again the mass parameter of the spacetime while g,
denotes the electric charge of the electromagnetic field of
the RN background [35]. Of course, we could consider also
the so called dyonic RN spacetimes where both electric and
magnetic charges are present (g2 — g2 + ¢2) [46]. In the
Einstein-Maxwellian theory, all zero mass particles, includ-
ing photons, follow null geodesics of the RN spacetime.

3 Equations of motion

In the regular black hole backgrounds with charges related to
a NED, the motion of photons is not governed by the space-
time geometry, but by an effective geometry directly reflect-
ing the non-linearities of the electrodynamics, as shown here
in the Appendix. Of course, motion of the other uncharged
particles is determined solely by the spacetime geometry.
As we would like to test the complete effects of the NED
under consideration, we have to study both the motion of
photons governed also by the direct non-linear interaction
with the black hole charges, and of the other uncharged par-
ticles, here assumed to be simply neutrinos (as they could
be effectively considered as zero-mass particles, but we can
consider any kind of extremely relativistic uncharged parti-
cles) that are influenced by the charge parameter only through
its influence on the spacetime structure. Therefore, we first
summarise the equations of motion of the mass-less parti-
cles in the Bardeen spacetime geometry, and in the related
Bardeen effective geometry, presenting their derivation in the
Appendix.

3.1 Motion governed by the spacetime geometry

The uncharged particles (e.g. neutrinos whose motion could
be very close to the photon motion in the vacuum spacetime)
are not affected by the electromagnetic field non-linearities
and follow geodesics (null geodesics) of the Bardeen space-
time. Let the contravariant components of test particle 4-
momentum vector are denoted as k*, and the correspond-
ing covariant components as k.. Due to the Bardeen space-
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time stationarity and spherical (axial) symmetry there are two
constants of motion: E = —k; is the covariant energy, and
L, = kg is the azimuthal angular momentum. One can define
the impact parameter due to the standard relation! = L, /E.
The corresponding equations of motion for the spacetime
geometry then can be expressed in the form

(K =1— fr)*+q)/r?, (12)

(k%)? = r%(q — IPetg?0), (13)
[

¢ _ - 14

g r2sin’0’ (4

K = ;, (15)
f(r)

where the motion constant g is associated with the separa-
tion constant corresponding to the total angular momentum
related to the spherical symmetry of the spacetime, and is
introduced in such a way that it vanishes for the motion in the
equatorial plane; the lapse function f(r) corresponds to the
Bardeen geometry. In the case of the motion in the Reissner—
Nordstrom spacetimes, we replace the function f(r) by the
lapse function fry (7).

3.2 Motion governed by the effective geometry

The photons move along the null geodesics of the effective
geometry (5). Let us stress that the effective metric rises and
lowers indexes of the photon 4-momentum only. The effec-
tive geometry is again static and spherically symmetric and
therefore posses again three constants of motion — two of the
motion constants are related to the stationarity of the geom-
etry, energy E = —k;, and axial symmetry of the geometry,
axial angular momentum L. = I€¢. Here we also introduce
the impact parameter I=L </ E. The equations of motion of
photons in the effective geometry take the form

(k") = LF (1 - ;ﬂr)(i2 + c})/r2> , (16)
F
k%2 = r%(q — [Pcot?0), (17)
[0) -
K= r2sin?6 (18)
L
K= ij) (19)

where again the impact parameter g is associated with total
angular momentum of the photon in the same way as in
the spacetime geometry. In the case of Reissner—Nordstrom
spacetime the effective geometry coincides with the space-
time geometry.

@ Springer

4 Circular orbits and the black hole shadows

The circular motion in the Bardeen spacetimes was studied in
[43,53], for both the black hole and no-horizon cases; for the
Reissner—-Nordstrom spacetimes, both black hole and naked
singularity cases were studied in [48]. We can thus directly
use the results of these works, concentrating attention on the
motion in the effective geometry.

We can recall that the separation between the Reissner—
Nordstrom black holes and naked singularities corresponds
to the specific charge ggy/M = 1. The circular null
geodesics exist in the Reissner—-Nordstrom spacetimes with
specific charge ggry /M < /9/8 — there is one unstable cir-
cular null geodesic for the black hole spacetimes withg < 1,
and an inner stable, and outer unstable circular geodesic in
naked singularity spacetimes with ¢ € (1 < g < /9/8).
In Reissner—Nordstrom naked singularity spacetimes with
q > /9/8 no circular null geodesics exist [48].

The separation of the black-hole and no-horizon Bardeen
spacetimes corresponds to the specific magnetic charge
qm/M = 0.7698. The circular null geodesics exist in the
Bardeen spacetimes with specific charge g,,/M < 0.85865,
and for Bardeen ho-horizon spacetimes with g, /M €
[0.7698, 0.85865], even two circular null geodesics exist, the
inner being stable, the outer being unstable [53]. No circu-
lar null geodesics exist in the no-horizon spacetimes with
qm/M > 0.85865.

4.1 Circular null geodesics of the effective geometry and
the spacetime geometry

Here we treat the conditions governing the circular geodesics
motion in both the effective geometry and the spacetime
geometry of the Bardeen solution of the combined Einstein
gravity and the assumed NED. The circular orbits must simul-
taneously satisfy the following conditions

k"
K =0 and —0. (20)
dax

By making derivative of Eq. (16), we obtain a differential
equation for k" in the form

a1 )
= - [LFFF’ <LF - —zfl2>
r

da 2

2
+Lp <LFFF’ —(@'f +@f ) - 2r<1>f)i—4>} :
@

Using the particular case of the Egs. (16) and (21), we obtain
conditions (20) in the form

of 2

O=Lp—— (22)
r
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0=LppF' — (' f + Of)r* —2rdf)—. (23)
r
Finally, the radial coordinate of the photon circular orbit is
determined by equation

Lp

0=LprF — (@' f + Of)r* — 2r©f)m

(24)

and the corresponding impact parameter of the circular pho-
ton orbit, governing the shadow of the Bardeen black hole
determined by the formula

2_ LFr2
= o5 (25)

The radius of the circular photon orbits, in dependence on the
specific charge of the Bardeen spacetime, is given in Fig. 1,
while the corresponding impact parameter of photons on the
circular orbits, in dependence on the specific charge, is given
in Fig. 2.

Other neutral test massless (or strongly ultra-relativistic)
particles are not directly affected by the electromagnetic non-
linearity and follow the null geodesics of Bardeen spacetime.
Radius of their circular orbit is determined by the equations
f'rr=2fr=0, (26)
while the corresponding impact parameter of the circular
orbit is determined by

=" 27
7 (27)

We assume these particles are massless neutrinos, v, and give
again the dependence of the radius and impact parameter
of the circular orbit on the specific charge of the Bardeen
spacetime in Figs. 1 and 2. In the case of the Reissner—
Nordstrom spacetimes both the motion of photons and neu-
trinos is governed by the spacetime geometry. To find the
radius and impact parameter of the circular null geodesics
of the Reissner—Nordstrom spacetimes, we replace f(r) by
frn(r) in the corresponding relations of the spacetime null
geodesics. Their dependence on the specific charge of the
Reissner—Nordstrom spacetime is again presented in Figs. 1
and 2, where we assume that the specific charges of the
Bardeen and Reissner—Nordstrom spacetimes are equally
valued — we thus assume positive charges satisfying the rela-
tion g, = grN = q.

There is a clear distinction between the circular orbits
of neutrinos and photons. There are two neutrino circu-
lar orbits for a given specific charge g from the interval
g € [0.7698, 0.85865]. For ¢ < 0.7698, there is only one
neutrino circular orbit. In the case of the photon circular orbits

201-- —r-rr—T—Tr T T T T T T T T T T T

1.5¢ y .
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Fig. 1 The loci of circular orbits in r — ¢ plot (r-the radial coordinate
and g-the magnetic charge parameter) of photons in effective Bardeen
geometry (y) and neutrinos (v) in Bardeen spacetime. Curve y repre-
sents loci of the Bardeen spacetime horizons. Curve y gy represents
loci of the Reissner—Nordstrom spacetime horizons. Note that from the
spacetime interval (5) it follows that horizons of g,, and g,, coincide
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Fig. 2 Plots of photon (y), neutrino (v) circular orbit impact param-
eters /¢ (it determines the radius of the BH shadow) as functions of
magnetic charge parameter g, in effective-Bardeen and Bardeen space-
times. For comparison with the NED case we constructed the plot of /¢
for the case of null geodesics in Reissner—Nordstrom spacetime where
we set the specific charge gry = g = g (curve ygn). Inthe RN space-
times, there are three distinct regions — the first one with ¢, < 1 for
black hole spacetimes, demonstrates one photon orbit impact parameter
for given magnetic charge, the second one with 1 < ¢, < 3/(2v/2)
for naked singularity spacetimes, demonstrates two photon orbit impact
parameters for any given magnetic charge, and the third one of the par-
ticular naked singularity spacetimes with g,, > 3/(2+/2) demonstrates
no circular photon orbit

in the effective geometry, there is no such limit. The pho-
ton circular orbits (governed by the effective geometry) thus
exist in all the Bardeen spacetimes, contrary to the circular
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null geodesics of the spacetime, relevant for the other ultra-
relativistic particles.

There is another interesting feature that occurs in the
case of the photon circular orbits — the existence of iden-
tical photon orbit radius for two different values of the spe-
cific charge parameter g. The common radii are located
between the radii 7,1 = 2.32506 (when the specific charge
qepn1 = 1.07663), and r¢pp2 = 3.0 (see Fig. 1). The values
of repn1 and g¢pp1 are found from the conditions

d dH/d

dr _ _0H/dq _ (28)
dg oH /or

and

H(r,q) =0. (29)

The last condition is the implicit formula for the curve rep-
resenting r — ¢ loci of the photon circular orbits, and H
introduced here is defined by the relation

L
H(r.q) = LppF — (' f + Of)r? — 2r<1>f>y’;2. (30)

We will discuss the observational consequences in the next
subsections, concentrating on the shadows of the black hole
and on the dependence of the deflection angle on the impact
parameter of the photons and neutrinos. Note that the black
hole shadow is in fact determined by the limiting value of
the impact parameter corresponding to an infinite value of
the deflection angle.

4.2 Shadow of the Bardeen BHs

The shadow of the black hole is directly related to the impact
parameter of the photon circular orbit. Generally, we consider
an observer located at an inclination angle 6,,. The image of
a source on the observer photographic plate is determined by
two angles on the observer sky, the angles « and g giving the
angular coordinates related to the photon (neutrino) impact
parameters / and g via formulas [12]

2

l
o =1/sin6f, and ﬁzzq—coszeoT. (€2))
sin“ 6,

The black hole shadow is then governed by the impact param-
eters of the photon (neutrino) circular orbit. Therefore, the
shadow of the black hole corresponds to the area within the
circle of the radius

Re = \Ja2(0) + B2(0) = \J2(9) + 4c() = Le(x/2),
(32)
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Fig. 3 The shadow of the Bardeen black hole constructed for the null
geodesics of effective geometry of the Bardeen spacetime (black), and
the Bardeen spacetime geometry (gray). The value of the specific mag-
netic charge parameter is taken ¢, = 0.1

where index “c’” denotes the photon circular orbit parameters
and ¢ = tan"!(8/). In Fig. 3, the shadows of the Bardeen
black hole are constructed for the photons and for the neu-
trinos that are governed by the null geodesics of effective
geometry of the Bardeen spacetime (photons) and by the
Bardeen spacetime geometry (neutrinos). Of course, recent
observational techniques enable measurements of the shad-
ows related to photons; predictions of the effective Bardeen
geometry could be then compared to those related to the
Schwarzschild black hole of the same mass, or the RN black
hole carrying also the same magnetic charge.

One can see directly that the radius of the photon shadow
governed by the effective geometry is significantly lower in
comparison to the radius of the neutrino shadow governed
by the spacetime geometry. The difference is of the order
of 20%, as can be seen from Fig. 3, being thus on the level
close to the precision of measurements of the super-massive
Galaxy centre black hole shadow by the Event Horizon Tele-
scope [24,64]. For possible relative comparisons see Fig. 4
where the relative difference is given also in relation to the
radius of the shadow related to the Schwarzschild black hole
of given mass. Notice that the dimension of the shadow
related to the Bardeen black hole effective geometry is sig-
nificantly smaller than the Schwarzschild shadow radius for
all values of ¢,,; the limit of ¢,, — 0 does not correspond
to the Schwarzschild value (note that even in the Minkowski
spacetime with charge described by the NED, circular photon
orbits exist). On the other hand, the Bardeen spacetime geom-
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Fig. 4 The plots of relative differences between black hole shadow
areas A; = 71112 where index i stands for Schw-Schwarzschild, B
Bardeen, NLB non-linear Bardeen, RN Reissner—Nordstrom . Curve 1:
|AnLg — Agl/Ap, curve 2: |AnLg — Aschwl/ASchw, curve 3: [Ap —
AS(rhwl/ASchwv curve 4: |ARN - ASL'hwl/ASchw

Table 1 The apparent angular diameter of two astrophysical black-
holes, designated Sgr A* and M87, is given for three models of space-
time, Schwarzschild, and R-N and eff-Bardeen with charge parameter
q=0.1

BH spacetime OBH—sgrA« (Larcsec) OpH—mg7 (Larcsec)

Schwarzschild. 62.87 25.07
R-N 62.77 25.03
Eff-Bardeen 51.32 20.46

etry shadow radius and the RN black hole shadow radius are
comparable to the Schwarzschild one for small values of g,
but decreases significantly for values of ¢,,/M > 0.5.

It is instructive to calculate the actual angular diame-
ter Opy of particular astrophysical black holes for effective
Bardeen geometry and the related RN geometry. Recently,
two black holes are in the focus of the Event Horizon Tele-
scope, namely, the Galaxy Sgr A* and M87 central supermas-
sive black holes [24,64]. In Table 1 we present their angular
diameter calculated for the case of Schwarzschild, R-N and
Bardeen spacetimes, using the standard formula

lyh GM
OpH = sin~! (%hc—z) ) (33)

taking the mass M and distance d values of the Sgr A*,
MS87 black holes from [24,64] and assuming the magnetic
charge value of ¢,, = 0.1M. Comparing the results pre-
sented in Figs. 2 and 4, we can see that the same relation
of the black hole angular diameter predicted by the effec-
tive Bardeen geometry to the Schwarzschild case holds for
wide range of the magnetic charge 0 < ¢, < 0.4. Such a
distinction is in the range of precision of the Event Horizon
Telescope.

4.3 Deflection angle

The physically very important scattering effects of photons
and neutrinos on the Bardeen background can be repre-
sented by the deflection angle that is governed again by
the effective geometry in the photon case,and by the space-
time geometry in the neutrino case. Usually, in the spher-
ically symmetric black hole (and even naked singularity)
backgrounds, the deflection angle increases with decreasing
impact parameter, and it diverges while the impact parameter
is approaching the value corresponding to the impact param-
eter of the null geodesic. However, in the special class of the
no-horizon Bardeen spacetime geometry having no circular
null geodesic, the deflection angle increases with decreasing
impact parameter up to a maximum value, and with con-
tinuing decreasing impact parameter it starts to decrease —
this effect could be reflected by a creation of so called ghost
images of Keplerian disks, as shown in [43].

The deflection angle is represented by variation of the
azimuthal coordinate ¢ while the photon (neutrino) goes
from infinity back to infinity. For the photons and neutri-
nos (having a given impact parameter /) the deflection angle
is thus determined by the following formulas

A _/ ® ldr a4
S
brei-frh
and
ldr
Ady =/—2. (35)
r2 l—fﬁ—2

We compare the dependence of the deflection angles A¢ of
photons and neutrinos on the impact parameter for typical
values of specific Bardeen spacetime charge in Fig. 5. The
impact parameter is decreased from value / = 10 down to
I=(1+107%1,.

The deflection angle profiles diverge at the value of [ = [...
The magnitude of the impact parameter corresponding to
the circular orbit is higher for neutrinos than for photons as
long as g, < 0.85865. For this case there exist an impact
parameter /; such that A¢, (I;) = A¢, ;). The value of this
special impact parameter /; decreases with increasing value
of the charge parameter ¢g,,. For the values of the charge
parameter g,, > 0.85865, there is no neutrino circular orbit
(and the ghost images can occur), but there is still the photon
circular orbit and divergence of the photon deflection angle.
Therefore, the ghost images are forbidden for photon images
on the Keplerian disks, being allowed only for the neutrino
images. Such a qualitative difference could be again a clear
signature of the existence of strongly charged no-horizon
Bardeen spacetimes.
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Fig. 5 The comparison of A¢ among photons-in-Bardeen (y),
neutrinos-in-Bardeen (v), and photons-in-RN (yry). The spacetime
magnetic charge parameter g,, = 0.5 (top), 0.8, and 1.0 (bottom) and
ri = r, = 100. In case of RN spacetime we put g, = g,

5 Time-delays

The other observationally relevant quantity is time delay of
the income of a photon and neutrino signal from some distant
event. These delays could be relevant for example in the case
of the gravitational lensing phenomena.

The formulas of the time delay for photons and neutrinos
read

@ Springer
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Fig. 6 Three illustrative examples of time delay curves for neutrinos
(v), photons-in-Bardeen (y ), and photons-in-RN (yzx) as functions of
impact parameter /. The plots are constructed for three representative
values of magnetic charge parameter ¢ = 0.5 (top), 0.8, and 1.0 (bot-
tom)

dr
At, =/— (36)
gk

and

dr
Atuzf—
f1= 402

The estimate of the time delay can be obtained in a simple
way demonstrated in Fig. 6, where we compare the time-

(37)
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delays between the neutrino motion governed by the Bardeen
spacetime geometry, and the photon motion governed by the
effective Bardeen geometry, defined by same impact param-
eter. The results can be summarized in the following way,
using the classification of the Bardeen spacetimes.

The specific charge parameter ¢,,/M of the Bardeen
spacetimes is divided into three regions according to the
behaviour of the null circular geodesics of the spacetime
geometry, and generally of the properties of circular orbits,
giving thus three classes of the Bardeen spacetimes [53]. We
thus discuss the time delay effects separately for each of these
classes.

e Starting with g, /M > 0.8586, the Bardeen no-horizon
spacetimes having no neutrino circular orbit. We picked
value g,,/M = 1.0. There is a value of impact param-
eter /; where time-delay curves intersect, i.e., where is
Aty (l;) = Aty(l;). The time-delay for a fixed impact
parameter [ > [; is longer for neutrinos than for photons
and for [ < [; the situation is inverse. This behaviour
could be a very specific signature of this class of the
Bardeen spacetimes.

e In the case of Bardeen no-horizon spacetimes containing
two null circular geodesics, 0.7698 < ¢,,,/M < 0.8586,
we set g, /M = 0.8. There is no intersection between the
curves y and v. The neutrino time delay is always larger
than the photon time delay.

e In the Bardeen black hole case with an unstable null cir-
cular geodesic, g, /M < 0.7698, we set g,,/M = 0.5.
There is no intersection between curves y and v. The
neutrino time delay is always larger than the photon time
delay.

Let us consider another physically relevant situation, cor-
responding to self-irradiation of a radiating ring, both due to
photons and neutrinos (or any ultra-relativistic particles), by
an exceptional radiation event. Assuming planar motion in
the equatorial plane, let both, neutrino and photon be emitted
from the location (r, w) = (rg, 0). We tune the impact param-
eters/, and/, (in general/,, # [,)insucha way thatboth pho-
ton and neutrino will arrive to the location (r, ¢) = (ro, 7).
We determine the time-delays of both, neutrino and photon,
for three representative values of the specific magnetic charge
parameter g,,/M = 0.5, 0.8, and 1.0.

‘We assume both the direct an indirect irradiation, and com-
pare them. The results are presented in the Table 2. The cor-
responding geodesics are plotted in Figs. 7 and 8.

We can see that the time delay effect can be quite large
and easily observable. The time delay of the direct irradiation
is almost twice the indirect irradiation, although the photons
and neutrinos are orbiting the black hole ones in the case of
the indirect irradiation, however, they are orbiting closer to
the black hole in comparison with perihelion of the direct

Table 2 Time-delays of neutrinos and photons emitter from (r, ¢) =
(100, 0) and arriving to (r, ¢) = (100, ) and to (r, ) = (100, 37)
for three representative values of magnetic charge parameter ¢ = 0.5,
0.8,and 1.0

dm
0.5 0.8 1.0
Aty (1) 197.457 197.478 197.498
Aty () 211.417 211.408 211.4
[Ar, — At () 13.96 13.93 13.90
At, (3m) 241.166 241.261 -
At,(31) 248.747 247.049 -
[At, — AL, 1(3m) 7.58 5.79 -
Aty gy (77) 211.380 211.312 211.248
Aty gy (31) 242.813 242.224 243.073
50
qm=0.5 401
-100 Z50 1ot 50 100
-20¢t
50
qm=0.8 401
-100 —50 _10k 50 100
-20¢t
50
qm=1.0 40
-100 —éO _10k 50 100
—20E

Fig. 7 Tllustrative examples of geodesics of neutrinos (v, dashed) in
Bardeen, photons (y, solid-black) in effective-Bardeen, and photons
(yrn ., solid-red) in RN geometries for three representative values of
magnetic charge parameter ¢,, = 0.5, 0.8, and 1.0. The impact param-
eters for the geodesics are presented in Table 2

trajectory. Clearly, the time delay of the irradiation can be
also a significant distinguishing effect (Table 4).

6 Conclusion
We have studied the simplest phenomena that could give a

clear signature of the relevance of NED in the black hole (or
no-horizon) spacetimes determined by the Einstein gravity
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10

qm=0.5

Table 3 List of impact parameters /; (i = (y, v, y RN)) for geodesics
connecting observer and emitter at r = 100 separated by azimuthal
angle ¢ = 7 of particular spacetime

dm 0.5 0.8 1.0

10

—10L
10

qm=0.8

10

—10L

Fig. 8 Illustrative examples of geodesics of neutrinos (v, dashed) in
Bardeen and photons (y, solid-black) in effective-Bardeen, and pho-
tons in RN (ygy, solid-red) geometries for two representative values
of magnetic charge parameter ¢ = 0.5, 0.8. The corresponding impact
parameters are presented in Table 3

combined with the version of NED governing the Bardeen
spacetimes with a magnetic charge, demonstrating clearly
that these could give clear signatures of the presence of
regular Bardeen black holes (or strong gravity no-horizon
objects).

We have determined shadows of the regular Bardeen black
holes by studying the photon motion in the effective geome-
try governed by the spacetime geometry and the Lagrangian
of the NED. Critical impact parameters for photon geodesics

@ Springer

28.1808
15.6955
15.5194

28.2007
15.6662
15.3872

1, 28.1592
I, 15.7271
I, RN 15.6593

Table 4 The impact parameters

. m 0.5 0.8
of null geodesics for two
representative values of
magnetic charge parameter gy,
presented in Fig. 8

1, 423715
1, 4.96948
lry 497496

4.19502
4.47621
4.55684

separate capture and scattering regions and these parameters
characterise shadow sizes (radii). We demonstrate explic-
itly that the shadows of the black holes have to be by about
20% smaller in comparison with what can be expected due
to the standard spacetime geometry effect, measurable by
other massless particles. Similar signatures have been found
also in the case of the deflection angle. Moreover, we have
shown that the direct effect of the NED represented by the
effective Bardeen geometry excludes existence of the ghost
photon images predicted in the special no-horizon Bardeen
spacetimes with no circular null geodesics of the spacetime
geometry [43] — thus the ghost images could be relevant only
for the neutrino images of the Keplerian disks, or due to
highly ultra-relativistic particles.

Assuming that a regular black hole is located in the Galac-
tic Center, and in the centres of other galaxies (e.g., M87), one
can use the results obtained in the present paper to analyse
future observational data obtained with advanced observa-
tional facilities as the Event Horizon Telescope [24].

Finally, we have demonstrated that the relative time delay
effects related to the motion of photons and neutrinos (or
general ultra-relativistic particles) in strong gravity regions
of the Bardeen spacetimes can be also efficient signatures of
the relevance of the NED effect in the Bardeen spacetimes.

In the future research we plan to illustrate the NED phe-
nomena in direct or indirect images of the Keplerian disks,
and in the related profiled spectral lines. Extension to the
studies of other NED regular black holes is also planed.
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Appendices

A Effective geometry of the Bardeen spacetime:
derivation

The equations of motion of photons that are determined by
the effective geometry follow from the Bianchi identities for
the Faraday tensor Fyg, which in the case of NED read

(LFF"),, =0, (38)

F;w;k + FAM;U + Fl))»;pb =0, (39)

where is F = Fj,, F*V and Ly = dL/dF. In order to derive
the equations of motion of photons in the framework of non-
linear electrodynamics, we will employ short-wave approx-
imation assuming that the Faraday tensor of locally plane
waves takes the expansion form [44]

€ €\2 i
FMU = |:aw, + l_'blu) + (l—> Cuv + .. } exp <ES> (40)

where S/e is the wave phase which can be arbitrarily large,
taking small values of €, relative to the wave amplitude a,,, +

b+ (£)” ¢w+- - - Inserting solution (40) into equations
of motion of electromagnetic field (38) and (39), one gets

LpyF* + LpF" =0, 41)

where

Lry=LrrF, =2LrrF*Fy.,

= 2LFFF"‘I3 <;_SVFDtﬂ =+ baﬂ;v exp(iS/e) + .- )
(42)

and

i €
', = =Sy F" +exp(is/e) (a””;v AT ) .
(43)

Putting last two formulas into Eq. (41), we arrive to equation
2LppFS,F* + LgS,F*' =0

2L
= FMk, = —L—FFFF‘“’kV (44)
F

where the wave vector

aS

ky =-S5, = A

(45)

was introduced.
From the Bianchi identity (39), we obtain for the terms of
the order i /e the equation

Fp,ukk + Fkukv + kakﬂ =0, (46)
and by multiplying it by F*Vk*, we obtain
Fl k" + 2k, Fy k" F* = 0. (47)

Using formula (44) for F*Vk, in the last equation, we arrive
to equation

L
¢ kiky — 4LLFFFAMF“"I<AI<,, =0 (48)

which can be rearranged to read

4L
(g“ _ L—?F%F“”) kiky = 0. (49)

This is the equation governing the behaviour of photons in
spacetimes representing the solutions of GR combined with
non-linear electrodynamics. Clearly, this is the standard nor-
malized condition of null geodesics related to metric mod-
ified by the electrodynamic terms. The photons then move
along the null geodesics of the effective geometry defined by
the relation

SAV Av 4LFr

_ )
g =g F’ 1. (50)

Lr

Recall that Novello have used the Hadamard method to
obtain the equations of the electromagnetic field propagation.
The wavefront is represented by the discontinuity surface
% in the electromagnetic field. According to the Hadamard
method, the field is continuous at the surface X, but its first
derivative is discontinuous there [18,36]. The resulting equa-
tions obtained by the Novello method coincide with the equa-
tions obtained here.

In the particular case of Bardeen geometry, where Faraday
tensor reads

Fuy = 80,8 gm sin 6, (51)

the effective geometry non-zero components are

g" =Lrg", (52)
g =Lrg", (53)
g% = og", (54)
g = vg”, (55)
and
- 8t

= -, 56
81t Lr (56)
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G = i—F (57)
goo = 2. (58)
8o = % (59)
where is

F= %. (60)
and

®=Lr+2LprF. 61)

B Equations of photon motion in the effective geometry
of the Bardeen spacetimes

The effective geometry of the Bardeen spacetime is spheri-
cally symmetric and static, similarly to the spacetime geom-
etry. Here we present the derivation of equations of photon
motion in the effective Bardeen geometry noting that the
derivation of equations of motion in the Bardeen geometry is
analogous; recall that the motion in the Bardeen spacetimes
has been studied in [43,53]. Starting from the null vector
normalisation condition in the effective geometry we obtain
the equation

__'CF F2 ! "2, @ 2 )
0= f(V)E +f(V)£F () +I’2 (ko) +rzsin20Lz'
(62)

We can clearly separate the equation into radial and latitudi-
nal parts

L r? -y r2

f @ f)Lr®

[?>=K,

kr2: k 2
() (9)+Sin292

(63)

where K is the separation constant. The equations of motion
read

(*)* =2} (1 — Eiﬂr)K/rZ) (64)
F
and
02 _ i _ [2
(k ) ot sin? 6 (65)

It is convenient to introduce a new constant g by formula

K =g+ (66)

@ Springer

This new constant is constructed in such a way that it implies
g = 0 for the motion in the equatorial plane (6 = 7/2).
Using this new constant, equations of motion will take the
final form

)
k)?* = L% (1 — —f((G+ P)/r2> : (67)
LF
(k?)? = %4(5 — [%cot?0), (68)
[0) -
¢ _
k= r2 sinzé’l’ )
LF
K = ) 70
70 70
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