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Abstract We explore a cosmological model in which the
time scale is variable with the expansion of the universe
and the effective spacetime is driven by the inflaton field.
An example is considered and their predictions are con-
trasted between Planck 2018 data. We calculate the spec-
trum indices and the slow-rolling parameters of the effec-
tive potential. The results are in very good agreement with
observations.

1 Introduction and motivation

The emergence of quantum spacetime in the universe has
been a subject of study in the last years [1,2]. This is an
intriguing issue in the history of the universe that remains
unsolved [3,4]. Possible dissipative effects in the context
of fundamental theories of gravity have been discussed [5],
and so have extra-dimensional models where a condensate of
fermion fields drives the expansion of the universe [6]. Other
proposals have been studied in a causal extra-dimensional set
theory [7]. On the other hand, the Friedmann–Robertson–
Walker (FRW) metric is used to describe the large-scale
expansion of the universe, and it can be considered as an
effective (or phenomenological) way to describe a more fun-
damental line element which has a quantum mechanical ori-
gin [8]. In this metric the time scale along the whole of
the expansion of the universe is considered as a constant.
However, it makes sense to think that this scale of time has
not always been the same. If the gravitational field was very
intense at the beginning of the universe, it is reasonable to
think that events spatially very close could be subjected to a
slower rate of temporal flux. This means that with the expan-
sion of the universe, spatially very separated events should be
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described by a more intense flux of time, as the gravitational
field becomes weaker and weaker with the expansion of the
universe.

In this work we shall consider, in a phenomenological
approach, the emergent spacetime to grow exclusively due to
the energy density transferred by the inflaton field at cosmo-
logical scales. For generality, we shall use a metric in which
time scales of events at cosmological scales are not the same
during the expansion of the emerging primordial universe.
This means that the scaling of time will be considered as
variable along the expansion.

2 The model

We consider an expanding universe that is spatially flat,
isotropic and homogeneous, which is not necessary in a vac-
uum background. The background metric is described by
the line element which describes a non-vacuum Friedman–
Lemaitre–Robertson–Walker (FLRW) metric

dS2 = gμνdxμdxν = e−2
∫

�(t) dtdt2 − a2
0 e2

∫
H(t)dt δi j dxidx j ,

(1)

such that H(t) is the Hubble parameter on the background
metric and �(t) describes the time scale of the background
metric. This should be the case in an emergent accelerated
universe in which the spacetime is growing and the time scale
can be considered variable with the expansion. In this paper
we shall consider natural units, so that c = h̄ = 1. The case of
a background expansion on a vacuum is recovered by setting
� = 0.

To describe the expansion of the universe, we consider a
single scalar field φ which is minimally coupled to gravity
and drives the expansion,
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I =
∫

d4x
√

−ĝ

{ R
16πG

+ L̃φ

}

, (2)

where ĝ is the determinant of gαβ and L̃φ is the Lagrangian
density for the scalar field:

L̃φ = −
[

1

2
gαβφ,αφ,β − V (φ)

]

.

If we use the definition for the stress tensor, T̃μν =
2 δL̃φ

δgμν − gμν L̃φ , we obtain the stress tensor related to L̃φ

T̃μν = −
[

φ,μφ,ν − gμν

(
1

2
gαβφ,αφ,β − V (φ)

)]

. (3)

Since we are dealing with a spatially isotropic and homoge-
neous background metric (1), the scalar field only depends
on time, and it complies with the dynamics

φ̈ + [3H(t) − �(t)]φ̇ + δV (φ)

δφ
= 0, (4)

and the action written explicitly is

I =
∫

d4x
√

−ĝ

{ R
16πG

−
[
φ̇2

2
e2

∫
�(t) dt − V (φ)

]}

,

(5)

where the volume of the background manifold is v̂ =√−ĝ = a3
0 e

− ∫
�(t) dt e3

∫
H(t) dt . The action (5) can be

rewritten as1

I =
∫

d4x
√

−ĝ e2
∫

�(t) dt

{
R̄

16πG
−

[
φ̇2

2
− V̄ (φ)

]}

,

(6)

where now the new scalar field φ will be the solution
of a new dynamics equation because it is embedded in
an effective background volume ˆ̄v = √−ĝ e2

∫
�(t) dt =

a3
0 e

∫
�(t) dt e3

∫
H(t) dt . The redefined potential is V̄ (φ) =

V (φ) e−2
∫

�(t) dt , and we have an effective scalar curva-
ture R̄ = R e−2

∫
�(t) dt . In this framework the stress ten-

sor for the background inflation field, φ, can be consid-
ered as a perfect fluid on an effective background vol-
ume ˆ̄v. We shall consider the model of an universe in
which all the potential energy of the inflaton field is
transferred to the expansion of this spacetime volume. In
that case, the dynamics of the scalar field φ is given
by

1 The new stress tensor is Tμν = − [
φ,μφ,ν − gμν

( 1
2 g

αβφ,αφ,β

− V̄ (φ)
)]

and the new Lagrangian density corresponding to φ is
Lφ = − [ 1

2 g
αβφ,αφ,β − V̄ (φ)

]
, from which, due to the spatial isotropy

and homogeneity, the action (6) can be obtained explicitly.

φ̈ + [3H(t) + �(t)]φ̇ + δV̄

δφ
= 0, (7)

which describes the dynamics of the background scalar field
evolving on the background metric (1). The first dissipative
term is due to the expansion of the universe, but the second
one is due to the existence of a nontrivial time scale. The
background Einstein equations are

−3H2 e2
∫

�(t) dt = −8π G T 0
0 , (8)

−[3H2 + 2Ḣ + 2� H ] e2
∫

�(t) dt δij = −8π G T i
j , (9)

such that

P e2
∫

�(t) dt δij = −T i
j = −T̃ i

j , ρ e2
∫

�(t) dt = T 0
0 = T̃ 0

0 ,

(10)

where P and ρ are the solutions for � = 0, for which
we recover the expressions for a perfect fluid: Tμ

ν =
diag(ρ,−P,−P,−P). The results (10) can be obtained by
using the relationship between V̄ and V , and by equating
Eqs. (4) and (7), so that the following conditions must hold:

�(t) = V̇

2

[
1 − e−2

∫
�(t) dt

]
. (11)

The last term in the left side of Eq. (9) describes the contri-
bution of the non-vacuum to the dynamics of the field. The
equation of state that describes the dynamics of the system
is

ω = P

ρ
= − 1 −

(
2Ḣ

3H2 + 2�

3H

)

. (12)

Notice that in the case of a vacuum expansion with � = 0,
the equation of state agrees with that of an ideal fluid. Of
course, the most interesting case is � �= 0. In that case it
is possible, for example, to describe inflationary scenarios
where dissipative effects are important in the evolution of
the universe.

2.1 Back-reaction effects

A nonperturbative back-reaction formalism was developed
in earlier work [10,11]. In that work it was demonstrated
that the background metric can be altered by a scalar field σ

without the action being altered: δI = 0, when

− δ ˆ̄v
ˆ̄v =

δ
[

R̄
16πG + Lφ

]

[
R̄

16πG + Lφ

] = 2δσ. (13)

It can be demonstrated that [9]
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δσ = − 1

2
gαβδgαβ. (14)

Here, the back-reaction effects are due to the nonzero flux
gαβδRαβ = −�

2 δσ , through a gaussian hypersurface, such
that the manifold is defined by

�α
βγ =

{
α

β γ

}

+ δ�α
βγ =

{
α

β γ

}

+ σαgβγ , (15)

and the covariant derivative of the metric tensor, on this man-
ifold, is

δgαβ = gαβ|γ dxγ = ∇γ gαβ dxγ − [
σβgαγ + σαgβγ

]
dxγ ,

(16)

such that the covariant derivative of the metric tensor on the
Riemannian manifold is zero: ∇γ gαβ = 0. In other words,
the metric tensor has null geometricity on the Riemann man-
ifold, but not on the extended manifold defined by (15).
From the point of view of the Riemann manifold � is a con-
stant, but from the point of view of the Weyl-like manifold
� ≡ �(σ, σα) can be considered a functional, given by

�(σ, σα) = −3

4

[
�̂σ + σασα

]
. (17)

Therefore, a geometrical quantum action on the Weyl-like
manifold with (36) can be considered,

W =
∫

d4x
√

−ĝ e2
∫

�(t) dt �(σ, σα), (18)

such that the dynamics of the geometrical field is given by
the Euler–Lagrange equations, after imposing δW = 0. The
dynamics of the back-reaction is described by the equation

σ̈ + [3H + �]σ̇ − 1

a2
0

e−2
∫ [H+�] dt ∇2σ = 0. (19)

Notice that the term �σ̇ in (19) takes into account the inter-
action between the geometric field σ with the background.
In order to describe the algebra of σ , we define the scalar
invariant �2 = �α�α . If we require that [�2, σ ] = 0, we
obtain the algebra [10,11]

[σ(x), σα(y)] = − i h̄ Ûα δ(4)(x − y),

[σ(x), σα(y)] = i h̄ Ûα δ(4)(x − y), (20)

where Ûα ≡ dxα

dS are the components of the Riemannian
velocities, such that gμν Uμ U ν = 1.

3 An example: power-law inflation with variable
timescale

We consider the case where the Hubble parameter and the
dissipative coefficient are

�(t) = p/t; H(t) = q/t, (21)

with p and q to be determined by the observation parameters.
In this case the dynamics equation for the inflaton field holds,

φ̈ +
[

3q + p

t

]

φ̇ + δV̄

δφ
= 0, (22)

where, in the Einstein equations (8) and (9), we must set

T 0
0 =

[
φ̇2

2 + V̄ (φ)
]
e2

∫
�(t) dt and T i

j =−δij

[
φ̇2

2 − V̄ (φ)
]

e2
∫

�(t) dt . Notice that we are not considering the radiation
energy density. This is because all the energy of the inflaton
field is transferred to expansion of the spacetime.

The geometrical scalar field σ can be expressed as a
Fourier expansion,

σ (x, t) = 1

(2π)3/2

∫
d3k

[
Ak e

ik.xξk(t) + A†
k e

−ik.xξ∗
k (t)

]
,

(23)

where A†
k and Ak are the creation and annihilation operators:

〈
B

∣
∣
∣
[
Ak, A

†
k′
]∣∣
∣ B

〉
= δ(3)(k − k′), 〈B |[Ak, Ak′ ]| B〉
=

〈
B

∣
∣
∣
[
A†
k, A

†
k′
]∣
∣
∣ B

〉
= 0. (24)

The metric with back-reaction effects included is

gμν = diag
[
e−2

∫
�(t)dt e2σ ,− a2

0 e2
∫
H(t)dt e−2σ ,

− a2
0 e2

∫
H(t)dt e−2σ ,− a2

0 e2
∫
H(t)dt e−2σ

]
, (25)

where the background scale factor a(t) is given by (36).
The relativistic quantum algebra is given by the expressions
(20), with co-moving relativistic velocities U 0 = e

∫
�(t)dt ,

Ui = 0, which are calculated on the Riemannian (back-
ground) manifold.

Furthermore, as was calculated in previous work [12], the
variation of the energy density fluctuations is

〈

B

∣
∣
∣
∣
1

ρ̄

δρ̄

δS

∣
∣
∣
∣ B

〉

= − 2
δσ

δS
= − 2U 0 σ0 = − 2U 0 σ̇ , (26)

where U 0 =
(

t
t0

)p
and σ̇ ≡ 〈

B
∣
∣σ̇ 2

∣
∣ B

〉1/2
.

The equation of motion for the modes ξk(t) in the expan-
sion (23) is
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ξ̈k(t) +
[

3q + p

t

]

ξ̇k(t) + k2

a2
0

(
t

t0

)−2(p+q)

ξk(t) = 0. (27)

Using the commutation relation (24) and the Fourier expan-
sions (23) in

〈
B

∣
∣[σ(t, x),�α(t, x′)

]∣∣ B
〉 = i δ(3)(x − x′), (28)

with canonical momentum �α = δLq
δσα = − 3

4

√−ĝ e2
∫

�(t)dt

σα , we obtain the normalization condition for the modes
ξk(τ )

ξk(t)ξ̇
∗
k (t) − ξ∗

k (t)ξ̇k(t) = i

(
a3

0

e3
∫
H(t) dt

)

, (29)

where the asterisk denotes the complex conjugate. The gen-
eral solution of Eq. (27) is

ξk (t) = t−
1
2 (p+3 q−1) {AH(1)

ν [y(t)] + BH(2)
ν [y(t)]}, (30)

where H(1,2)
ν [y(t)] are Hankel functions of the first and sec-

ond kind, with parameter

ν = (p + 3 q − 1)

2(p + q − 1)
, (31)

and argument y(t) = k t0(p+q)t−(p+q−1)

a0 (p+q−1)
. To quantize we use

the Bunch–Davies vacuum [13], and we obtain for ξk

ξk (t) =
√

π

4(p + q − 1)
t−

1
2 (p+3 q−1) H(2)

ν [y(t)], (32)

and the power-spectrum on cosmological scales is

P〈
B

∣
∣
∣ 1
ρ̄

δρ̄
δS

∣
∣
∣B

〉(k, t)

= 1

2π2

kns−1

π(p + q − 1)(βt)2

(
t

t0

)2p

× [
�(ν1)[2(p − 1)β]ν1 + [1 − (3q + p)]β�(ν)

[2(p + q − 1)β]ν]2
, (33)

with ν1 = 3p+5q−3
2(p+q−1)

, and β = a0 t
−(p+q)
0 . The power of the

spectrum is 3 − 2ν, which is related to the spectral index by
the expression

3 − 2ν = ns − 1. (34)

Furthermore, using Eq. (12), we obtain

ω = − (2ν + 3)

3(2ν − 1)
, (35)

where ν is given by Eq. (31). Notice that, for p = 1, we
obtain ν = 3/2, ns = 1 and ω = − 1. This means that the
model predicts a Harrison–Zel’dovich spectrum [16,17] for
a vacuum expansion of the universe where the amplitude of
the spectrum is frozen. However, the latest experimental data
excludes ns = 1 [15], so that we shall contrast our model with
the experimental data.

Now we consider the background dynamics given by the
Einstein equations (8) and (9), with the inflaton dynamics
(22). From the Einstein equations, we obtain

φ̇2 = 1

4πG
(Ḣ + �H), (36)

V̄ = 1

8πG
[3H2 + (Ḣ + �H)]. (37)

From (36), we obtain

φ̇(t) = −
√
q(1 − p)

4π G
t−1. (38)

Notice that the case p = 1 corresponds to ω = − 1 and
ν = 3/2, so that ns = 1, and the spectrum is scale invari-
ant. In this case the back-reaction power spectrum effects
(33) are independent of time, so that the amplitude of the
back-reaction spectrum on cosmological scales is frozen.
Furthermore, in this case φ̇ = 0, so that the inflaton field
assumes a constant value. On the other hand, due to the fact
that δV

δφ
= V̇ /φ̇, using the expressions H(t) = q/t and

�(t) = p/t in Eq. (22), we obtain the condition

q(p2 + 3pq + 3q) = 0, (39)

which gives us two possible solutions: p = 1 − 3q and
p = − 1. The case p = 1−3q is consistent with a decelerated
expansion of the universe for ν = 1.5175 ± 0.002. The case
p = − 1 is consistent with a very accelerated expansion of
the universe: q = 116 and ω = − 0.9885 ± 0.0013, which
is in very good agreement with observations [15]. The scalar
spectral index is ns = 1 − 6ε + 2η and the tensor index
is given by nt = − 2ε, where the slow-roll parameters are
given by the expressions [14]. In the second column of Table
1 we calculate the physical parameters for ns = 0.965 for
p = − 1:

ε = 3
φ̇2

2V̄ + φ̇2
, η = − 3

φ̈

(3H + �)φ̇
, (40)

meanwhile the tensor–scalar ratio is given by r = − 8 nt .
The observational cuts of these parameters from Planck 2018
results [15] are shown in the second column of Table 1. In
our model, ns ≥ 1 means that ω ≤ − 1, which is excluded
and therefore p = − 1.
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Table 1 Observational cuts for slow-roll parameters for ns = 0.965 ±
0.004 and p = − 1

Parameters For ns = 0.968

ε = 1−p
q

∣
∣
∣
(p=−1)

= 1−ns
(3−ns )

0.01526 < ε < 0.01912

η = 3
3q+p

∣
∣
∣
(p=−1)

= 3(ns−1)
5ns−17 0.0076 ≤ η ≤ 0.0096

ns = 3p+q−3
p+q−1

∣
∣
∣
(p=−1)

= q−6
q−2 0.961 < ns < 0.969

nt = − 2ε|(p=−1) = −2(1−ns )
(3−ns )

− 0.0382 < nt < − 0.0305

r ≤ 16ε|(p=−1) = 16(1−ns )
(3−ns )

0.2442 < r < 0.3060

q = 2(3−ns )
1−ns

104.56 < q < 131.03

ω = ns−7
3(3−ns )

− 0.9872 < ω < − 0.9898

Fig. 1 Plot of the range of ω(ns)-values for Planck 2018 data

4 Final comments

We have studied a cosmological model in which the scale of
time is variable and the expansion of the universe is driven
by a scalar field. The dynamics of the scalar field together
with the Einstein equations require that p = − 1, so that the
physical time is τ = 1

2 t0
t2. This means that at the begin-

ning of the expansion the rate of events is much less pro-
nounced, but after a certain amount of expansion, the rate
of co-moving events becomes more and more quickly, and
we need much less physical time τ for a physical event
to occur. From the point of view of a co-moving relativis-
tic observer, its “clock” is accelerating with the expansion
and the cosmic time, t , because the physical time evolves as
dτ = U0 dx0 = √

g00dx0 = (t/t0) dt , for c = 1. Beyond
that, the proposed metric gives the possibility to exactly

Fig. 2 Plot of the range of ω(ns)-values for ω < − 1/3, in the range
where the universe describes an accelerated expansion

describe back-reaction effects for any equation of state. This
is a great advantage over standard cosmological models
where the timescale is not variable. In Fig. 1 we have plotted
the plausible range of q for p = − 1, which corresponds to a
spectral indexns = 0.965±0.004. The results show the range
0.961 ≤ ns ≤ 0.969 (see Fig. 1), for which the rate of expan-
sion of the universe is in the range 104.56 < q < 131.03.
In this range of q-values, ω takes the values − 0.9872 <

ω < − 0.9898. The results obtained for ns agree with a
k-power of the spectrum (33) that is close to zero, but neg-
ative. The amplitude for this spectrum decreases with time.
In Fig. 2 we have plotted the curve of ω(ns), for all possi-
ble values that describe an accelerated universe: ω < − 1/3.
Our results exclude constraints from WMAP9 + Neff data
[18] [with the effective number of relativistic species Neff

and the massive neutrinos simultaneously], but the results
agree with constraints from Planck 2018 data [15], which
are compatible with WMAP9 data without considering the
effective number of relativistic species and the mass of the
neutrinos.
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