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Abstract We investigate the effect of electric charge in
anisotropic compact stars with conformal symmetry. We
assume that the pressure and the density of the matter inside
the stellar structure are large with strong gravitational fields.
The strong electric field produces significant effects on the
phenomenology of the stellar objects, in order of 1020 V. m~!
in MKSA units. The conformal symmetry condition produces
an integral relationship between the metric functions. We
use this condition to find a new anisotropic solution to the
Einstein—-Maxwell field equations. This solution is relevant in
modelling a relativistic compact star. Radii and masses are
consistent with stellar objects such PSR J1614-2230, Vela
X1, PSR J1903+327 and Cen X-3. The mass-radius ratio
and the surface red shift are in agreement with realistic con-
straints. Also our model displays constraint on the maximum
stellar mass, central density and radius for the upper bound
redshift requirements.

1 Introduction

Spherically symmetric exact solutions in general relativity
are important tools in describing the structure and phys-
ical properties of stellar compact objects. Charged, self-
gravitating anisotropic fluid spheres have been investigated
in general relativity since the early work of Bonnor [1]. The
theoretical investigations of Ruderman [2] and Canuto [3] on
realistic stellar solutions pointed out that the stellar objects
may have high density ranges (> 10" g cm™3), when the
nuclear matter has anisotropic features. As a result anisotropy
fluid spheres were studied to describe compact star models.
For more details, see Bowers and Liang [4], Herrera and
Ponce de Leon [5], Gokhroo and Mehra et al. [6], Herrera
and Santos [7], Mak and Harko [8], Hernandez and Nunez
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[9], Thomas et al. [10], Mauryaetal. [11], Mauryaetal. [12],
Singh and Pant [13] and Ratanpal et al. [14]. Yet at the same
time, gravitational collapse is one of the most extreme phe-
nomena in the universe. When there is insufficient pressure
to balance the gravitational attraction inside a stellar object,
it undergoes sudden gravitational collapse and its physical
characteristics change drastically. These facts lead people to
believe that the presence of charge in compact objects may
prevent gravitational attraction which can counterbalanced
by the repulsive Colombian force in addition to the pressure
gradient as pointed by Dayanandan et al. [15]. In recent years,
there have been several studies of compact star models in the
presence of an electric field with Einstein—Maxwell system
of equations. The presence of charge may affect values of
redshift, radius and maximum mass in stars. The nonlinear-
ity of the Einstein field equations makes them extremely hard
to solve analytically. The difficulties in solving the Einstein—
Maxwell equations analytically can be alleviated with the
presence of a conformal Killing vector placing constraints
on the gravitational field, and this simplifies the integration
process. Therefore a conformal symmetry is useful in mod-
elling dense relativistic stellar objects. The first models on
conformally invariant gravitating spheres were found [16—
19]. Many of these solutions were not regular at the cen-
tre. The first regular models of conformally invariant spheres
with an anisotropic energy momentum tensor were found by
Maartens and Maharaj [20].

Conformal symmetries have been widely studied in static
spherical spacetimes by Maartens et al. [21,22] and Tup-
per et al. [23]. Manjonjo et al. [24] utilised the component
of the Weyl tensor to generate conformally flat and non-
conformally flat static metrics with conformal symmetries.
In a later result Manjonjo et al. [25] proved that a confor-
mal vector yields an explicit connection relating the met-
ric functions in general; isotropic and anisotropic pressures
can then produce models with conformal symmetry. These
studies can be utilised to model compact stars in relativistic
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Table 1 Variation of mass, radius in term of b, n and H in absence and presence of charge

Star b(km™2) E n H Mops (M) Mprea(My) R(km) %gﬁg;
PSRJ1614-2230  0.0032063 §=0 120921 0250386 1.97+0.04  1.9740.04 10.30 £ 0.20  0.28230 £0.02809
(0.0032063) (5 =4) (1.20921) (0.254673) — (2.134£0.03)  (10.49+0.19) (0.29970 + 0.02294)
Vela X-1 0.00309987 §=0 1.17072 0297192 1.77+£0.08 1.77 £0.08 9.99 +0.08 0.26151 £ 0.04590
(0.00309987) (5 =4) (1.17072) (0.301479) — (1.93+£0.07)  (10.17+£0.07) (0.28011 % 0.03692)
PSR J1903+327 0.0030455 §=0 115320 0.322566 1.667 £0.021 1.667 £0.021  9.82+0.03 0.25056 + 0.01296
(0.0030455) (5 =4) (1.15320) (0.326853) — (1.820 4+ 0.019)  (10.00 £0.02) (0.26863 £ 0.01063)
Cen X-3 0.00295072 §=0 1.12838  0.308379  1.49+0.08 1.49 £ 0.08 9.51£0.13 0.23126 + 0.05540
(0.00295072) (5 =4) (1.12838) (0.312666) — (1.63+£0.07)  (9.68£0.12)  (0.24854 + 0.04470)
zl?all)rifitzies\gl;isifng?:fl Ccilarge STAR pe (gem™) Pre (dyne em™) ps (gem™) Zs
for§ =4 PSR J 1416-2230 1.031 x 1015 1.205 x 103 9.69 x 10 0.5184 £ 0.1172
Vela X-1 0.997 x 10" 1.065 x 1033 9.57 x 10 0.4514 4 0.1438
PSR J 1903+327 0.980 x 103 0.995 x 10%° 9.51 x 10 0.4194 4 0.0756
Cen X-3 0.949 x 101 0.865 x 10%° 9.38 x 10 0.4274 4 0.1492

astrophysics. Mak and Harko [26] modelled quark stars with
conformal motions in general relativity. Relativistic compact
objects a linear equation of state were studied by Esculpi
and Aloma [27]. Rahaman et al. [28] and Shee et al. [29]
investigated anisotropic bodies with a nonstatic conformal
symmetry, anisotropy and an assumed specified spacetime
potential. Quintessence fields [30], gravastar models [31]
and braneworld structures [32] were studied as stellar mod-
els with a conformal symmetry. These investigations indi-
cate that the existence of a conformal symmetry in the man-
ifold is a valuable approach in producing exact solutions of
Einstein-Maxwell equations, and to describe astrophysical
phenomena in stars.

We need to restrict the gravitational potentials or the
energy momentum tensor to solve the Einstein—Maxwell field
equations. Here we take into account charged anisotropic
matter with a conformal Killing vector in spacetime. The con-
nection relating the metric functions established by Manjonjo
et al. [24] and Mafa Takisa et al. [33] is our starting point.
We use the form for one of the metric functions that permits
the conformal condition in [24] and [33] to be solved. In this
paper we find a charged anisotropic solution for stellar matter
with the help of a conformal symmetry in spherical symmet-
ric spacetime. In Sect. 2, we give the connection between the
metric functions and the Einstein—-Maxwell field equations.
A new exact charged anisotropic solution is found in Sect.
3. Some physical conditions for acceptability of the compact
star and the model parameter constraints are given in Sect.
4. We find stellar masses and radii for particular pulsars PSR
J1614-2230, Vela X-1, PSR J1903+327 and Cen X-3. Our
obtained results are tabulated in Tables 1 and 2. Graphical
plots for the matter variables in the stellar model are pre-
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sented in Sect. 5. A detailed study of the physical features
is undertaken and throughout we compare our new charged
results with the earlier uncharged anisotropic model. In Sect.
6 a brief conclusion is made.

2 The model

The line element for a static spherically symmetric interior
matter distribution can be given as

ds* = —e*Vdi? + e Vdr® + r2(d0* + sin’ 0d¢?), (1)
where the functions v(r) and A(r) are the gravitational poten-
tials. The fluid 4-vector is comoving and can be written as
u? = e~V for the metric (1). For charged anisotropic dis-
tributions, the charged matter tensor can be taken as

E? E?

E? E?
- pz+—,Pz+—>,

— Q= Pr

2 2 2 2

@

with p, p, and p, and E being the energy density, radial
pressure, tangential pressure and electric field respectively.
The anisotropy is defined by A = p, — p;. For equal radial
and tangential pressures, A = 0 and the pressure is isotropic.
From (1) and (2) the Einstein—-Maxwell system of equations
may be written as

Tap = dlag <_)0

E2
— [r(l _ e*”)] =87+ —. (3a)
2 1 1 E?
-2\
[ﬁr—z]‘r—z—g”l’r‘? G0)
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/ )L/ E2

o2 |:v” + V2 + y_4 _\/)J] =8mp; + —, (3¢)
r r 2

e*)\(rzE)/’ (3d)

o =
4mrr?

where ' = % and o is the proper charge density. In our work
we are using units where G = ¢ = 1.

The charged field equations (3) are difficult to integrate in
general. In this approach the existence of a conformal sym-
metry leads to an exact solution. For a conformal symmetry
X to exist the metric tensor field g, is Lie dragged to give
the condition

Lx8gab = 2V 8gab. 4

In Eq. (4), Lx is the usual Lie derivative operator with ¥ (x%)
being the conformal killing vector. Static spherically geome-
tries admitting a conformal killing vector have been fully
analysed by Manjonjo et al. [24] by extending the results
in Maartens et al. [21,22] and Moopanar and Maharaj et al.
[34,35]. The basis of these papers is the presence of confor-
mal Killing vector in the form

a a
X:a(t,r)E +,B(t,r)5, 4)

which is spherically symmetric with the nonstatic conformal
function ¢ = ¥ (¢, r). The presence of a conformal Killing
vector X in (5) leads to a particular connection between the
metric functions ¢>*) and "), Manjonjo et al. [24] show
that the conformal symmetry gives the gravitational potential

A
¢’ = Brcosh («/1 +k/ < ar +1) , (6)
r

where B, k and [ are constants. Then the spacetime is con-
formally flat when & = 0. Non-conformally flat models cor-
respond to k # 0. We take the functional form (5) as our
starting point to find a charged anisotropic star.

The metric function (6) permits us to express the field
equations (3) in the similar form

1 — e—ZA ZA/e—ZA E2

87p = - =, 7
0 = + . > (72)
2e*YTFRtanh (VTHE [ Sdr +1)
8rpr = 3
.
372+ 1 EZ
LB 7b
et (7b)
2T+ ke tanh (VTHK [ Sdr +1)
Snpl‘ = 2
.
1+k (1=2xre? E?
A G50 L 7o)
r r 2
1 X2 /
0= ¢ (7). (7d)

All the matter variables in (7) are defined in terms of metric
function, namely e2*. An assumed form for A (r) will produce
to an exact solution of Einstein—-Maxwell field equation (7)
after integration. We show that this is possible in the next
section. The mass of a charged compact star is defined by

r E2
M(r, E) = 47 / (,o(a)) + 8—>a)2da), (8)
0

T

which is contained within a radius r, and also depends on the
electric field E.

3 Exact solution

The function ¢* is chosen in order to integrate equation (6)
and generate a solution to the Einstein—-Maxwell system. This
particular choice is taken so that both metric functions remain
regular at the centre r = 0. We make the following choice
for the potential e* and the electric field E. For the potential
we take

1

A

e = —,
Jk+1—br

were b is a constant. The electrical field is taken to have the
functional form

&)

2 Sr

S dr {10

where s, d and f are constants. Using Eq. (6) we get the
second potential

, B |:(621—1)br2+«/1+k:|

e’ = (1D
2Vbe! V1+k—br?

At the centre of the star » = 0 the potentials are regular.
The electric field E is regular and bounded the interior and
generates physically reasonable profiles. we note that £ = 0
at r = 0 which is necessary for stability. When s = 0 we
regain the uncharged results of Mafa Takisa et al. [33].

Then utilizing the functions (10) and (11), an exact solu-
tion to the Einstein—-Maxwell system (7) can be found. The
matter variables have the form

6b/1+ k — 5b%r2 k sr
p= 87 T 8nr2 T 16n(d + )2
(12a)
30— Drt + P21+ k(7 — 8n)r?
pr= 87 [(n — 1) br? + VT+K]
+(5k+4)(n— Db+ k1 +k
87 [(n — 1) br? + V1 +k]
Sr
* 16m(d + fr2)?’ (12b)
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503(n — Dr* 4+ b2J/1+ k(9 — 8n)r?
87 [(n — 1) br? + V1 +k]
+4(k + 1)(n — Db
87 [(n— D br2 +V1+k
Sr
R
s(W1+k —br?)(5d + fr?)

87T(d+f}" )2 /m

where for notational simplicity, we let n = ¢2/ . The system
(12) represents the interior of a charged anisotropic compact
object with conformal symmetry. For the above density and
the electric field, the mass function (8) becomes

Pt =

(12¢)

(12d)

2
M(r, E) = b1+ kr? ——r —gr
sd slog (d + fr?)
+4f2(d+fr2) 812 ' (13

from the definition (8).

4 Physical features of the stellar model
4.1 Regularity conditions inside and at the boundary r = R

For regularity and physical acceptability throughout the star,
the model should satisfy certain requirements. These include:

A.1. The metric functons e?” and ¢** and the matter vari-
ables p, pr, pr should be positive at the centre and con-
tinious in the interior of the star; at the centre p, p, and
p: must be bounded: p(r = 0) = p¢, pr(r =0) = p,..
and p,(r = 0) = p,.; the gradients are decreas-
ing with o’ < 0, p,/ < 0 and p;/ < O inside the
star. The anisotropy at the centre must vanish so that
A(r =0) =0, pr = pr.

A.2. For a stable configuration it is necessary that the speed
of sound is less than the speed of light. This means
that 0 < v? = 22 < Jand 0 < v? = % < |

inside the star. To avoid cracking or overturning of the

star we must have —1 < v? —v? < 0,0 < v? —
vt < 1. Another condition that may be used for the

stability is the condition on the adiabatic index I' =
p+pr d_p - 4

prdp 3 N
A.3. The equilibrium condition for stability of the star

is usually considered in relation to the Tolman—
Oppenheimer—Volkoff (TOV) equation. The TOV equa-
tion can be written as

2
prl ==V +p)+ (= p)+ ocEe*.  (14)

@ Springer

Let us define

dp;

F, = —Vv , Fp=— s
g vi(p+ pr) h dr
2 A
Fa:;(pt_pr)s F,=0Ee",

where F,, Fj, F, and F, are referred to as grav-
itational, hydrostatic, anisotropic and electric forces
respectively. Then (14) is given by

Fy+ Fj + Fy+ F, =0, (15)

so that sum of the forces is zero giving an anisotropic
charged gravitating sphere in equilibrium.

A.4. Inside the star, the dominant energy conditions imply
thatp—p, >0,p—p; > 0and p— p, —2p; > 0. The
metric quantities e?* and ¢*’ at the boundary r = R
must match to the Reissner—Nordstrom exterior metric:

2M 2
eZV(R) — 1 + Q

R R
2M Q2
20:(R) _
‘ %“%*@) (1o

The pressure p, should vanish at the stellar surface
pr(R) =0. 7)

Smooth matching of the electric field E across the star
boundary gives

0%*(R) = E*R*. (18)

A.5. The mass-radius ratio and the surface redshift are
important to describe the physics quantities. The max-
imum limit of the mass-radius ratio for a charged com-
pact star is given by Andréasson [36]. The requirement

for charged star is v M < ‘/7 +v7T Ry E23R3 For a

realistic charged compact object the surface redshift
upper bound reads

1

[{ _ 2M(R.E)
R

as given by Ivanov [37].

Zy(R) = —1 <5221, (19)

4.2 Model parameter constraints

The regularity of the model depends on the choice of the
parameters given in the physical quantities discussed in Sect.
4.1. These values constraint the model. The parameter values
ensure that the model is regular at the centre and throughout
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the star. We must use the value k = 0 in the energy density
(12a) for regular centre. Also at the centre r = 0 we generate
the parameter values

_3b _(n=1b _(n=1b
Pe=dm> Pre= g - DT T
(n—1)b 1
Pre = “or Ur% = 5(4’12 —-3),
2 1 2
Vg = §(4n -95), E=0, (20)

The central values in (20) constraint the parameter n to the
interval g <n <2

We name a new constant v H = B

!
three boundary conditions (16)—(17) withbeﬁve unknowns
M, R,n,b and H. We can write particular parameters in
terms of the remaining parameters. The physically relevant
model quantities are the mass M and the radius R, and the
model parameters n and b of a compact object in the electric
field E.

We first express R, M in terms of n, b and E. We obtain
the relationship

and use the

2
R = 0.408248 En-7) A -nE
(b(n — 1) + 0.166667(1 — n)2 E?)
12
/b (616G — D+ 1) + 81— mn2E?)
- 21

b (b(n — 1) 4 0.166667(1 — n)2 E2)

which is the radius of star. In addition we obtain the other
relationship

2 2
M:RS[b<l—%>+E7], (22)

which represents the total mass of the stellar object. Equation

(22) constrains the parameter b to the interval 0 < b < %

The parameter H can be expressed in terms of n, b and E as

1
b2(n — 1)3n (b + 1.66667(n — 1)E?)

[b3((0.0416667 — 0.0833333n)n + 0.03125)

H =

+ b>(((0.083333n — 0.104167)n + 0.0260416)n
— 0.0052083) E% + ((0.015625 — 0.0208333n)n
+ 0.0052083) E2[b> (b(16(n — )n + 1)

+8(1 — n)n2E2)]1/2 + b (—0.03125

VB3 (b(16(n — Dn + 1) + (1 — n)n2E?)
+n(nE*(n(0.0416667 — 0.0208333n)
—0.0208333) + 0.0416667

B3 B16( — Dn+ 1) + 8(1 — n)nZEZ)))] 23

where H is a constant scaling in the static stellar charged
body. Then the recipe for the physical study in our new model
can be given as follows: choose the central density p, = %

and central pressure p,. = %

\/TE <n<A2and0 < b < %; calculate the radius R
using (21); use (22) to calculate the mass M; the parameter
H can be obtained from (23). The remainder of the matter
variables then can be calculated. Secondly, we can express b
and n in terms of the radius R, the mass M and the electric

field E. We get

with n lying in the range

R —VR(R —2M + E*R3)
= R3 N
with the parameter b associated with the central density p..
The parameter 7 is given by

b

(24)

_L 23 23
n= 3 [2(2M—E R)(K(6M—4(E R} +R))

— RIR(E*r* + 6E*R* +4)
— OM(E*R? + 5)))
+ [4(—2M + EMR3)? (K(4(E2R3 +R) — 6M)
+ RIR(ER* + 6E’R? + 4)
212 2
— 2M(E*R* + 5)))

— 4L(L 4+ 24KM?* — 16KMR
+ 4M@8M — TKE*)R?

+ 2(—8M + 5KE»)R?

+ 2E*(—19M + 4K E*)R®

1,2
+ 10E2R7 + 11E4R9)] ] , (25)

where the parameter n is linked to the central pressure p, . and
the matter variables except the central density. The scaling
parameter H can be written in the form

1
RO (—2M + E?R3 +R)

1
) (4M? — 4AME*R3 + E4RO)

x [M2R2(—0.2J 4 825K E*RS 4 KR>

H =

+9E*R? + 75E*R” + 6.5E*R* + R)

M (E2R5(0.2J _KR?—R5

+ 0.1J(R? = 0.3K) + EOR'"'(=3K —3R?)

+ E*RO(—3.5K — 3.75R3))

+ E2R3 (EZRS(—O.047J +0.25KR? 4+ 0.25R%)

— 0.05J(R* = 0.3K) + ESR'(0.41K + 0.4R>)
+ E*R°(0.625K + 0.625R3))

@ Springer
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+ MPR3(—10KE*R? — 4K — 12E*R> — 5RY)

+ MA*R2(6R3 + 4.5)] : (26)
where
J= [R3 (M4(1920K +3392E2RS + 3712R%)

+ MPR(1.13710" B K E*R* — 4352K E*R?

— 2048K — 3904E*R7 — 8192E>R> — 2560R %)
+ M*R*(R*(3648K E*R? + 3328K E*

+ 1421107 E3R® 4 2208 E*R7 + 6720E*R
+ 4096E’R? + 512R) + 512K)

+ ME’R’(—1344K E*R*

— 1792K E’R?* — 512K — 616E°R’

— 2432E*R7T — 2176 E*R> — 512R?)

+ E*R3(184K E*R* + 320K E*R? + 128K

+ 68EOR® 4 328E*R7 + 384E°R> + 128R%)

12
_ 1152M5R2)] ,

K = /RS (R —2M + E2R?),
L= E*R (2m - R2R3)2

In Egs. (24)—(26) we note the mass M < % and M # %.
Then the recipe for the physical study in our model can be
given as follows: choose the radius R and mass M for partic-
ular star such that M < % and M # %; calculate b using

(24); use (25) to calculate n checking that g <n < +2and
0<b< % is satisfied; the parameter H can be obtained
from (26). The remaining matter variables then can be cal-
culated.

5 Physical analysis

For a physical study of our model, it is interesting to inves-
tigate the effect of the electric charge on the conformal
stellar structure. To investigate the features of the charged
anisotropic model, we take four pulsars PSR J1614-2230,
Vela X-1, PSR J1903+327 and Cen X-3, also used in the
previous study of Mafa Takisa et al. [33]. We select the sim-
ilar maximum values of electric field found in the study of
Mafa Takisa et al. [38], where E = 4.91059 x 10 V m~!
in MKSA units which is equivalent to £ = 1.637 x
1016 Statvolt cm™! in CGS units. We also use the Eqs. (21)—
(23) with b = 0.0032063 km~2, n = 1.20921 for PSRJ
1614-2230. These values arise in the works of Mafa Takisa
et al. [33] for the uncharged conformal model. We observe
that the scaling parameter s in the electric field has the dimen-
sion of length—3. To take into account the physical units and
dimensional homogeneity in the electric field, we make the
following transformation

@ Springer

= sT3,

o

where 7 is a parameter with dimension of length. We use
the Eq. (18) with E = 1.637 x 10'¢ Statvolt cm™! which
corresponds to the parameter values of § = 4, d = 45,
f=0.02km™2and 7 = 7.87 km™2. We define Moy, (M)
and M req (M) as the observed and calculated mass respec-
tively. The values for the mass and the radius are M = 2.13+
0.03 M, radius R = 10.49 & 0.19 km and H = 0.254673
for the charged case. The corresponding central density, the
surface density and central radial and tangential pressures
are respectively p. = 1.031 x 10 gem™3, pr = 9.69 x
10"% gecm™3 and p,. = p;, = 1.205 x 10 dyne cm™2.

In order to generate masses and radii of the remaining
stars Vela X-1, PSR J1903+327 and Cen X-3, we allow the
parameters b, n and H in (21)—(23) to vary. The calculated
values are displayed in Table I and Table II in which rows
with parentheses represent the charged case. We note that
due to the effect of the repulsive force, the charged stars
have increased mass and increased radius compared to the
uncharged case as we should expect. This behaviour is simi-
lar to the work of Ray et al. [39]. Also itis interesting to men-
tion that the presence of the electric field increases the sur-
face gravitational redshift; therefore an observer will detect a
more distant compact distribution compared to the uncharged
scenario. We remark that even in the charged case, the central
density and central pressures decreases with the decrease of
the mass; this feature was also reported in the works of Mafa
Takisa et al. [33,38,40]. The compactification factor % and
the surface redshift increase for all four pulsars compared to
the uncharged case. Some of these features are comparable
to the work of Sharma and Ratanpal [41], Singh et al. [42]
and Kileba Matondo et al. [43].

We notice that both uncharged and charged cases, the cen-
tral density is in the order of a few times 10'3g cm— which
is relevant for a charged anisotropic stellar object as pointed
out by Ruderman [44]. The surface density is approximately
in the order of 10'* g cm™ and the gravitational redshift is
in a realistic range (0.4274 £ 0.1492) — (0.518 £ 0.1172).
This range is still close to the values found by Bohmer and
Harko [45], Rahaman et al. [46,47] and Kileba Matondo et
al. [43]. The value of the stellar radius R is the range of
(9.68 £ 0.12) — (10.49 £ 0.19) km, and the mass in the
range of (1.63 = 0.07) — (2.13 = 0.03) M@. The redshift
values are consistent with strange stellar objects which have
a compactification factor higher than neutron stars with the
redshift upper bound Z; < 5.211 as pointed out by Ivanov
[37]. We note that the compactification factor is in the range
of % ~ 1—10 to }1 which corresponds to neutron stars and ultra-
compact stars as pointed out by Mafa Takisa [48] and Kileba
Matondo [43]. The Andréasson [36] requirement for charged

cases v M < @ + 4/ % + E23Ra in Table 1 are satisfied.

Similar mass values were obtained by Gangopadhyay et al.
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Fig. 1 Energy density versus radius. For § = 0 (green solid line), for
§ = 4 (black solid line) and for § = 8 (blue dashed line)
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Fig. 2 Radial pressure versus radius. For § = 0 (green solid line), for
§ = 4 (black solid line) and for 5§ = 8 (blue dashed line)

py(dyne/cm?)
1L4x10%

1.2x10%

1.0x10%

8.0x10% -

6.0x10% |

4.0x10% |

2.0x10%

. ; o (k)

[N
Fn

Fig. 3 Tangential pressure versus radius. For § = 0 (green solid line),
for § = 4 (black solid line) and for § = 8 (blue dashed line)

[49] and Mafa Takisa et al. [33,38,40] and Kileba Matondo
[43]. The compactification factor % is in the range of neutron
stars and ultracompact stars.

For qualitative understanding of the behaviour of the mat-
ter variables inside the star, we have plotted several matter
variables in different Figs. 1, 2, 3, 4, 5, 6, 7, §, 9, 10, 11,
12, 13, 14 and 15. We use two imput values of electric field,
E = 1.637 x 10'® Statvolt cm™! corresponds to § = 4 and
upper bound E = 2 x 10'° Statvolt cm™! corresponds to
s = 8. For the values of the scaling parameter 4 < § < 8,

A(dyne/cm?)
1x10%
e
DX
8x10%E 2% 10
15%10%
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6x 104 5.0x10% =0
—5.0x102F ~=05___1.0--=13
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----- =8
2% 103
R i L km
2 4 6 3 10 r(km)

Fig. 4 Anisotropy versus radius. For s = 0 (green solid line), for s = 4
(black solid line) and for § = 8 (blue dashed line)
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6x10M b=mmm=="""
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Fig. 5 Energy conditions for § = 4. For p — p, (green solid line), for
p — py (black solid line) and for: p — p, — 2p; (blue dashed line)
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Fig. 6 Forces Fy, Fy, F, and F, versus radius for § = 4. For Fy, (green
solid line), for F, (black solid line), for F (blue dashed line), for F, (red
solid line) and for Fg + Fj, + F, + F. (back dashed dot line)
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0.5F
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e
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L L L n

2 4 6 8 10

Fig. 7 Speed of sound versus radius for § = 4. For v? (green solid
line) and for vt2 (black solid line)

the results are similar to § = 4. The difference appears at the
upper bound value § = 8, which value displays unusual pro-
files in the anisotropy as showed in the zoom box in Fig. 4.

@ Springer



8 Page8of 11

Eur. Phys. J. C (2019) 79:8

v? — v v? — v?(cm?/s?)

r r

04 .-f-.
0.2
o (k) 2y

Fig. 8 The difference of the square radial and tangential speeds for
§ = 4. For vr2 — vt2 (green solid line) and for v,2 — vr2 (black solid line)
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Fig. 9 Adiabatic index versus radius for s = 4. For I', (green solid
line) and for I'; (black solid line) and for I' = % (blue dashed line)

M/Mg
l,” \\\\
3 P P \\\

2 — §5=0

—_—5=4

! ——- 5=38
17 3
0.005 0.010 0.015 pe( 3:22x107g/cm’)

Fig. 10 Stellar masses versus central density. For § = 0 (green solid
line) and for § = 4 (black solid line) and for § = 8 (blue dashed line)
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Fig. 11 Mass versus radius. For § = 0 (green solid line) and for § = 4
(black solid line) and for s = 8 (blue dashed line)

For physical acceptability of our charged model, we consider
the value 5 = 4.

5.1 Regularity and reality conditions
The regularity and reality conditions required that the energy

density, radial pressure, tangential pressure p, p,, p;, to be
positive at the centre and continuous in the interior of the star.
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Fig. 12 The surface gravitational redshift versus total mass. For § = 0
(green solid line), for § = 4 (black solid line), for § = 8 (blue dashed
line) and for Z; = 5.211(red solid line)
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Fig. 13 The surface gravitational redshift versus central density. For
§ = 0 (green solid line), for § = 4 (black solid line), for § = 8 (blue
dashed line) and for Z; = 5.211(red solid line)
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Fig. 14 The surface gravitational redshift versus radius. For § = 0
(green solid line), for § = 4 (black solid line), for § = 8 (blue dashed
line) and for Z; = 5.211(red solid line)
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Fig. 15 The central gravitational redshift versus radius. For § = 0
(green solid line), for s = 4 (black solid line) and for § = 8 (blue
dashed line)

For the formation of more compact objects, the anisotropy A
must vanish at the centre and be positive throughout the stellar
structure. From our Figs. 1, 2, 3 and 4 the the energy density,
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radial pressure and tangential pressure profiles are regular
and well behaved within the star in conformity with regularity
requirements. The energy density in Fig. 1 is regular, decreas-
ing and remains finite. In Figs. 2, 3, 4 we show profiles for the
radial, tangential pressures and the anisotropy. We note that
both tangential and radial pressures are monotonic decreas-
ing within the star and the radial pressure vanishes at the sur-
face. The tangential pressure remains positive throughout the
star. The anisotropy is finite at the centre and remains positive
within the star for s = 4, and consequently the anisotropic
force is repulsive in nature as stated by Gokhroo and Mehra
[6]. On the other hand for § = 8, the anisotropy decreases
and becomes negative and then increases and then becomes
positive as displayed in the zoom box in Fig. 4.

5.2 Energy and equilibrium conditions
5.2.1 Energy condition

The charged stellar object should satisfy the following energy
conditions: dominant energy condition (DEC): p — p, > 0
and p — p; > 0. Strong energy condition (SEC): p — p, —
2p; > 0. In Fig. 5, the energy conditions p — p,, p — p:
and p — p, — 2p; are plotted, they remain positive which
indicates that the energy conditions are not violated in our
model.

5.2.2 Equilibrium condition

Equilibrium condition for a charged anisotropic star is subject
to gravitational force (Fy ), hydrostatic force (F},), anisotropic
force (F), electric force (F,) and their sum Fy + Fj, + F, +
F, = 0. The profiles of gravitational, hydrostatic, anisotropic
and electric forces presented in Fig. 6, show that anisotropic,
hydrostatic and electric forces are positive and balanced by
the negative gravitational force. It is interesting to see that
the sum of all the forces is equal to zero indicating that equi-
librium for the static charged anisotropic stellar object is sat-
isfied.

5.3 Causality conditions and stability
5.3.1 Causality condition

The speed of sound inside a fluid stellar matter is an important
property to investigate. For a stable anisotropic compact star,
the square of radial and tangential speeds of sound should
comply with 0 < v,z <landO0 < vtz < 1.

The square of the radial and tangential speeds of sound vr2,
vf are plotted in Fig. 7, and they satisfy the causality require-
ment. The radial speed of sound is great than the tangential
speed of sound throughout the star. Therefore, the radial and

tangential speeds in our model satisfy the causality condi-
tions0 < v? < land0 <v? < 1.

5.3.2 Stability conditions

Based on the Herrera cracking concept, Abreu et al. [50]
demonstrated that one of the stability conditions through-
out the stellar object can be identified as a function of
the difference of the radial and tangential speeds. We have
1< vt2 — v,2 < 0 for the stable region and 0 < vt2 — v,2 <1
for the unstable region. Also, the criterion of stability given
by the adiabatic index I', and I'; which is the ratio of two
specific heats and should be bigger than % for stability [7].
In Fig. 8 we present the the difference of the radial and
tangential speeds v2 —v? and v> —v2. Itis expected that —1 <

vt2 — v,2 < 0O represents a stable region and 0 < vt2 — vr2 <1

an unstable region. From Fig. 8§, we can see that vr2 - vt2
within the star lies between 0 and 1 and v? — v? lies between
-1 and 0.

We display the radial and tangential adiabatic indices in
Fig. 9. The profiles show that the radial and tangential adi-
abatic indices I', and Iy are great than I = %‘ everywhere

within the stellar interior. Thus our charged model is stable.

5.4 Mass and gravitational redshift
5.4.1 Mass

The mass central density relationship is useful in determining
the static hydrostatic stability of realistic compact objects.

The stellar mass versus central density is provided in Fig.
10. For the upper bound radius value R = 10.49 £ 0.19 km,
the mass increases with central density and reaches the turn-
ing point at the central density value of p. = 3.030 x
10 gem™3 with corresponding value of mass M = 3.69 +
0.03 M for s = 4. We notice an increase in the stellar
mass due to the presence of electric charge. Similar behaviour
is reported in the investigation of Ray et al. [39]. The stel-
lar densities with corresponding masses located on the left
of the turning point are in the stable region and the unsta-
ble region corresponds to the right side of the turning point.
Interestingly, all our four pulsars PSR J1614-2230 with cen-
tral density p. = 1.031 x 10" gem™3 and corresponding
mass M = 2.13 £+ 0.03 MO’ Vela X-1 with central den-
sity po = 0.997 x 105 gecm™ and corresponding mass
M = 193 +0.07 M@, PSR J1903+327 with central den-
sity po = 0.980 x 105 gecm™> and corresponding mass
M = 1.820 &+ 0.019 M) and Cen X-3 with central den-
sity po = 0.949 x 105 gem™ and corresponding mass
M =1.63 £0.07 M, listed in the two tables are located in
the stable region.
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The mass versus radius relationship is presented in Fig.
11, the mass is well behaved and increases with the increase
of the radius for both uncharged and charged cases. There is
increase of mass for the charged case due to the presence of
electric charge.

5.4.2 Redshift

The existence of a limiting value of the mass-radius ratio
leads to limiting values for other physical quantities of obser-
vational interest. One of these quantities is the surface gravi-
tational redshift of the compact object. For a dense compact
stars electrically charged to a certain extent, the light rays
emitted from its surface can be significantly shifted toward
the red, which translates to an increase value of the gravita-
tional redshift.

The surface gravitational redshift versus the mass is plot-
ted in Fig. 12, which is an increasing profile for both the
uncharged and the charged case. According to Ivanov [37]
for a charged anisotropic star the constraint on the surface
redshift is Z; = 5.211. Therefore Fig. 12 displays the upper
bound limit for the charged stellar maximum mass with
numerical value of surface redshift Z;, = 5.211 and the mass
M = 3.69 £ 0.03M, for 5§ = 4. This upper bound limit is
consistent with the upper limit of Fig. 10.

The surface gravitational redshift versus the central den-
sity is displayed in Fig. 13, it is an increasing profile with
upper bound central density of p. = 1.178 x 105 gem™3 at
surface redshift Z; = 5.211. This value is within the stable
region of Fig. 10.

In Fig. 14 we display the surface redshift versus radius.
Interestingly, the surface redshift is an increasing function
with upper bound limit of the radius set at R = 11.11 £
0.19 km for the maximum redshift value of Z; = 5.211 for
our charged compact model.

The central gravitational redshift versus radius is display
in Fig. 15, with a monotonically decreasing profile for both
uncharged and charges cases.

6 Conclusion

In this investigation we have considered a conformal sym-
metry model of a compact anisotropic star with charge.
We demonstrated an exact solution to the Einstein—Maxwell
equations with conformal symmetry. We examined in detail
the charged exact solution for the conformally flat case when
parameter k = 0. Furthermore, in order to ensure good
behaviour in the matter variables at the centre and through-
out the stellar object, various parameter constraints were
taken into account. We regained different masses and radii
of observed compact objects, such as PSR J1614-2230, Vela
X-1, PSR J1903+0327 and Cen X-3. We achieved this by

@ Springer

choosing specific values of central density, central pressure
and electric field according to the literature containing pre-
vious investigations of Ray et al. [39] and Mafa Takisa et
al. [38]. We observe that the central density decreases with
the decrease of the mass for both the uncharged and charged
cases. Similar behaviour of decreasing central density was
also mentioned in the work of Mafa Takisa et al. [33,38,40]
and Murad [51]. We also plotted the matter variables for the
stellar object. Our analysis shows that the matter variables
and the metric potentials are regular throughout the star and
well behaved. Interestingly our charged model puts an upper
bound on maximum stellar mass, central density and stel-
lar radius. The causality and the stability conditions are met
within the stellar structure. The compactification values and
surface redshift are in agreement with required values.
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