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Abstract We determine the non-perturbatively renormal-
ized axial current for O(a) improved lattice QCD with Wil-
son quarks. Our strategy is based on the chirally rotated
Schrödinger functional and can be generalized to other finite
(ratios of) renormalization constants which are tradition-
ally obtained by imposing continuum chiral Ward identi-
ties as normalization conditions. Compared to the latter we
achieve an error reduction by up to one order of magnitude.
Our results have already enabled the setting of the scale
for the Nf = 2 + 1 CLS ensembles (Bruno et al. in Phys
Rev D 95(7):074504. arXiv:1608.08900, 2017) and are thus
an essential ingredient for the recent αs determination by
the ALPHA collaboration (Phys Rev Lett 119(10):102001.
arXiv:1706.03821, 2017). In this paper we shortly review the
strategy and present our results for both Nf = 2 and Nf = 3
lattice QCD, where we match the β-values of the CLS gauge
configurations. In addition to the axial current renormaliza-
tion, we also present precise results for the renormalized local
vector current.

1 Introduction

Lattice regularizations with Wilson type fermions [3] are
widely used in current lattice QCD simulations [4–10]. The
ultra-locality of the action enables numerical efficiency and
thus access to a wide range of lattice spacings and spatial
volumes. Furthermore, Wilson fermions maintain the full
flavour symmetry of the continuum action, as well as the dis-
crete symmetries such as parity, charge conjugation and time
reversal. Unitarity is either realized exactly, or, in the case
of Symanzik-improved actions, approximately up to cutoff
effects which vanish in the continuum limit.

a e-mail: mattia.dalla.brida@desy.de

The price to pay for these advantages consists in the
explicit breaking of all chiral symmetries by the Wilson term
in the action. Well-known consequences include the additive
renormalization of quark masses, the mixing under renormal-
ization of composite operators in different chiral multiplets
and discretization effects linear in a, the lattice spacing. Fur-
thermore, the Noether currents of chiral symmetry are no
longer protected against renormalization.

The matrix elements of the axial Noether currents between
pion or kaon states and the vacuum, parametrized by the
decay constants fπ,K , e.g.

〈0|Aud
μ (0)|π−,p〉 = i pμ fπ , Aud

μ (x) = ψu(x)γμγ5ψd(x),

(1.1)

can be related to the measured life times of pions and kaons.
The decay constants are finite in the chiral limit, can be
precisely measured in numerical simulations and are ideally
suited to set the scale in physical units. In order to achieve
this with Wilson quarks one needs to determine the correctly
renormalized axial currents,

(AR) f1 f2
μ (x) = ZAA f1 f2

μ , (1.2)

(with flavour indices f1,2 = u, d, s), which are to be inserted
into the matrix elements. Of course it is desirable that the error
of the matrix elements is not dominated by the uncertainty
of the current normalization constant.

Over the last 30 years many efforts have been made to con-
trol the consequences of explicit chiral symmetry breaking
with Wilson quarks. The main strategy consists in imposing
continuum chiral symmetry relations as normalization con-
ditions at finite lattice spacing [11,12]. This is usually done
using chiral Ward identities, which follow from an infinites-
imal chiral change of variables in the QCD path integral. An
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example is the PCAC relation which determines the additive
quark mass renormalization constant, as the “critical value”
of the bare mass parameter, where the axial current is con-
served. The fact that chiral symmetry is fully recovered only
in the continuum limit implies that the choice of normaliza-
tion condition matters at the cutoff level; at a fixed value of
the lattice spacing the numerical results may occasionally
differ substantially between any two such choices. Rather
than interpreting this scatter as a systematic error, the mod-
ern approach consists in choosing a particular normalization
condition and in fixing all dimensionful parameters (such
as momenta or distances or background fields) in terms of
a physical scale. This defines a so-called “line of constant
physics” (LCP), along which the continuum limit is taken.
As the lattice spacing a (or, equivalently, the bare coupling,
g2

0 = 6/β), is varied, this defines a function ZA = ZA(β).
Obviously, another choice for the LCP will result in a differ-
ent function Z ′

A(β). However, their difference will be, within
errors, a smooth function of β which vanishes asymptoti-
cally ∝ a or ∝ a2 if O(a) improvement is implemented.
Hence, following a LCP ensures that cutoff effects are smooth
functions of β and the choice of LCP becomes irrelevant in
the continuum limit. Adopting this viewpoint, the relevant
systematic error is therefore determined by the precision to
which a chosen LCP can be followed.

In this paper we apply a recently developed method to
lattice QCD with Nf = 2 and Nf = 3 flavours, matching
the lattice actions chosen by the CLS initiative [8,10]. Our
method is based on the chirally rotated Schödinger functional
(χSF) [13,14]. The theoretical foundation of this framework
has been explained in [14] and it has passed a number of per-
turbative and non-perturbative tests [15–20]. In contrast to
the Ward identity method the axial current renormalization
conditions follow from a finite chiral rotation in the mass-
less QCD path integral with Schrödinger functional (SF)
boundary conditions. The renormalization constants are then
obtained from ratios of simple 2-point functions. For the axial
current, this represents a significant advantage over the Ward
identity method [12,21,22] which involves 3- and 4-point
functions. Hence, we observe a dramatic improvement in
the attainable statistical precision for ZA and some care is
required to ensure that systematic errors are under control at
a similar level of precision. We also discuss the normalization
procedure for the local vector current. While flavour symme-
try remains unbroken on the lattice with (mass-degenerate)
Wilson quarks, the corresponding Noether current lives on
neighbouring lattice points connected by a gauge link, so that
the use of the local vector current is often more practical.

This paper is organized as follows: after a short reminder
of the χSF correlation functions in the continuum and the
normalization conditions derived from them in Sect. 2, we
define in Sect. 3 a couple of different LCPs which we have fol-
lowed. We then present the ZA and ZV determinations for lat-

tice QCD with Nf = 2 and Nf = 3 quark flavours in Sects. 4
and 5, respectively, together with various tests we have car-
ried out. Section 6 contains a summary of the main results of
this work and some concluding remarks. Finally, the paper
ends with three technical appendices: Appendix A collects
the parameters and results of the simulations, Appendix B
provides a detailed discussion on the systematic error esti-
mates for our determinations, and Appendix C gathers our
set of chosen fit functions which smoothly interpolate our
ZA,V results in β.

The main results for Nf = 2 are collected in Table 4, while
those for Nf = 3 are given in Tables 6 and 7. These results
can be directly applied to data obtained from the CLS 2-
and 3-flavour configurations, respectively [8,10]. The Nf =
3 results have, in fact, already been used, and enabled the
precision CLS scale setting in Ref. [1] and the accurate quark-
mass renormalization of Ref. [23].

2 Renormalization conditions from universality
relations

2.1 The Schrödinger functional and chiral field rotations

We start by considering massless two-flavour continuum
QCD. The Euclidean space-time is taken to be a hyper-
cylinder of volume L4 with Schrödinger functional boundary
conditions [24,25]. In particular, in the Euclidean time direc-
tion, the quark and anti-quark fields satisfy,

P+ψ(x)|x0=0 = 0 = ψ(x)P−|x0=0, (2.1)

and similarly at time x0 = L with the change P± → P∓.
The SU(2) × SU(2) chiral and flavour symmetry leads to
conserved isovector Noether currents, given by

Aa
μ(x) = ψ(x)γμγ5

τ a

2
ψ(x),

Va
μ(x) = ψ(x)γμ

τ a

2
ψ(x), (2.2)

with Pauli matrices τ a and isospin index a = 1, 2, 3. SF cor-
relation functions of these currents with isovector boundary
sources Oa

5 and Oa
k have been defined in [26,27] and are

given by

〈Aa
0(x)Ob

5〉 = −δab fA(x0),

3∑

k=1

〈V a
k (x)Ob

k 〉 = −3 δabkV(x0).
(2.3)

Passing from the isospin notation to fields with definite
flavour assignments,

A f1 f2
μ (x) = ψ f1(x)γμγ5ψ f2(x),
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V f1 f2
μ (x) = ψ f1(x)γμψ f2(x), (2.4)

and similarly for the boundary sources, the correlation func-
tions for isospin indices a = 1, 2, can be written in terms of
the flavour off-diagonal fields,

fA(x0) = −1

2
〈Aud

0 (x)Odu
5 〉,

kV(x0) = −1

6

3∑

k=1

〈V ud
k (x)Odu

k 〉. (2.5)

For the flavour diagonal fields in the isospin a = 3 compo-
nents, e.g.

A3
μ = 1

2

(
Auu

μ − Add
μ

)
, (2.6)

one may use flavour symmetry to write

fA(x0) = −1

2
〈Auu′

0 (x)Ou′u
5 〉, (2.7)

and analogously for kV. Note that the additional up-type
flavour u′ is merely a notational device to indicate the
fermionic contractions taken into account when applying
Wick’s theorem. Indeed, the sum of all the disconnected con-
tributions for the flavour diagonal a = 3 components of SF
correlation functions cancels exactly due to flavour symme-
try.

We now apply a flavour diagonal chiral rotation to the
fields,

ψ → exp
(
i
α

2
γ5τ

3
)

ψ, ψ → ψ exp
(
i
α

2
γ5τ

3
)

. (2.8)

Choosing the rotation angle α = π/2 then leads to the chi-
rally rotated SF boundary conditions,

Q̃+ψ(x)|x0=0 = 0 = ψ(x)Q̃+|x0=0, (2.9)

with projectors Q̃± = 1
2 (1± iγ0γ5τ

3). Analogous boundary
conditions with reverted projectors are obtained at x0 = L .
Applying the same chiral field rotation to the axial currents,

Aud
μ (x) → −iV ud

μ (x), Auu
μ (x) → Auu

μ (x), (2.10)

one obtains either a vector current or remains with an axial
current, depending on the flavour assignments. If the chiral
rotation of the field variables is performed as a change of
variables in the functional integral, one arrives at the formal
continuum identities

fA = guu
′

A = −igudV , kV = luu
′

V = −iludA , (2.11)

where the g- and l-functions are defined with χSF boundary
conditions, Eq. (2.9), for instance

g f1 f2
A (x0) = −1

2

〈
A f1 f2

0 (x)Q f2 f1
5

〉

(Q̃+)
. (2.12)

Here, the boundary operators Q f1 f2
5 denote the chirally

rotated versions of their SF counterparts,O f1 f2
5 . For the com-

plete expressions and further details we refer to Ref. [20].
Regarding the case of QCD with Nf = 3 quark flavours

we note that the very same steps can be taken provided the
massless third quark does not take part in the chiral rotation
and thus remains with standard SF boundary conditions [14].
Correlation functions are then considered for the doublet
fields only, i.e. the third quark never appears as a valence
quark.

2.2 Renormalization conditions

In the lattice regularized theory with Wilson type quarks, rela-
tions such as (2.11) can only be expected to hold after renor-
malization and up to cutoff effects. One first has to ensure
that massless QCD with χSF boundary conditions has been
correctly regularized. This is achieved by tuning the bare
mass parameter m0 to its critical value, mcr, where the axial
current is conserved, and by tuning a boundary counterterm
coefficient z f such that physical parity is restored (cf. [20] for
more details). In terms of the bare χSF correlation functions
one may choose the two conditions,

m = ∂̃0gudA (x0)

2gudP (x0)

∣∣∣∣
x0=L/2

= 0, gudA (L/2) = 0 (2.13)

(with ∂̃0 the symmetric lattice derivative). The division by
the pseudo-scalar correlation function gudP is not really nec-
essary, however it is done for convenience, as it gives rise to
the definition of a (bare) PCAC quark mass m. Solutions to
these equations define mcr and z∗f as functions of the bare
coupling g0, and the lattice size, L/a.

Once the lattice regularization is correctly implemented,
we expect e.g.

ZAZ2
ζ g

uu′
A (x0) = −i ZVZ2

ζ g
ud
V (x0) + O(a2), (2.14)

where Zζ renormalizes a boundary quark or anti-quark
field [14,26,28] and ZA,V are the current normalization con-
stants of interest. Requiring such identities to hold exactly at
finite lattice spacing thus fixes the relative normalization of
axial and vector current. Replacing the latter by the exactly
conserved lattice vector current Ṽμ(x) (cf. Ref. [20]), for
which ZṼ = 1, one may obtain ZA from either one of the
ratios
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Rg
A = −igud

Ṽ
(x0)

guu
′

A (x0)

∣∣∣∣
x0=L/2

or Rl
A = iluu

′
Ṽ

(x0)

ludA (x0)

∣∣∣∣
x0=L/2

.

(2.15)

Assuming that the parameters x0 (here set to L/2), the bound-
ary angle θ [29], the background gauge field [24], and the pre-
cise definition for the zero mass and α = π/2 point (2.13)
are fixed, we define, on an (L/a)4 lattice and for a given bare
coupling g2

0 = 6/β,

Zg,l
A (β, L/a) = Rg,l

A . (2.16)

Finally the choice of a line of constant physics (cf. Sect. 3)
defines a smooth function (L/a)(β) such that the normaliza-
tion constants become functions of β alone, with the differ-
ence between any two definitions vanishing smoothly with a
rate ∝ a2.

We also comment on the appearance of a second up-type
flavour u′ in (2.15). When applying the chiral rotation (2.8) to
the diagonal components of fA, the disconnected diagrams
are mapped to disconnected diagrams on the χSF side which
can be shown to add up to a pure cutoff effect. Their omis-
sion is thus perfectly legitimate, even if the formulation of
the renormalization conditions then has an element of partial
quenching to it. The situation is comparable with the Ward
identity method in two-flavour QCD [12,21], where a ficti-
tious s-quark can be introduced to eliminate the disconnected
diagrams.

Even though there exists a conserved vector current, in
practice the local current is often used and then requires
renormalization, too. Its renormalization constant can be
obtained from,

Rg
V = gud

Ṽ
(x0)

gudV (x0)

∣∣∣∣
x0=L/2

or Rl
V = luu

′
Ṽ

(x0)

luu
′

V (x0)

∣∣∣∣
x0=L/2

. (2.17)

The same remarks as for the axial current normalization apply
here, and with definite choices for all parameters we set,

Zg,l
V (β, L/a) = Rg,l

V . (2.18)

As in the case of the axial current normalization condi-
tions, only 2-point functions are required, which connect
the boundary quark bilinear sources with the currents in
the bulk. This is a major advantage over the Ward identity
method [12,21] where 3- and 4-point functions are required.
Hence, one expects better statistical precision from the sim-
pler 2-point functions, and this will be confirmed below. Fur-
thermore, as discussed in [20], the cutoff effects in the ratios
are O(a2), due to the mechanism of automatic O(a) improve-
ment [30], even if the PCAC mass and the axial current are
not O(a) improved by the counterterm ∝ cA [26], or if the

vector currents are not improved by the corresponding coun-
terterms ∝ cV, cṼ [27,31].

Finally, we emphasize that similar renormalization con-
ditions can be devised for other finite renormalization con-
stants. An interesting example is the ratio ZP/ZS, where ZP

and ZS are the pseudo-scalar and scalar renormalization con-
stant, respectively. We refer the reader to Ref. [20] for more
details.

3 Lines of constant physics and choice of
renormalization conditions

3.1 General considerations

A line of constant physics requires to specify a physical
(length) scale r which is kept fixed as the continuum limit
is taken. A typical choice would be the pion decay constant,
r = 1/ fπ , either at the physical quark masses or in the chi-
ral limit. Once calculated for a range of lattice spacings,
this scale defines a function (r/a)(β) of the bare coupling
β = 6/g2

0 which fixes the lattice spacing a in units of the cho-
sen physical scale. Choosing the spatial lattice extent L/a,
at a given beta, such that

(L/a)(β)

(r/a)(β)
= L/r = Cr (3.1)

(with a numerical constant Cr ) then fixes the spatial size of
the finite volume system in units of r . In practice we will
choose Cr such that the physical size of L will be somewhat
larger than half a femto metre. Note that this equation can
be read in two ways: first, if one fixes Cr and then chooses a
set of β-values for which r/a is known, one obtains a corre-
sponding set of values (L/a)(β), which will not necessarily
be integers. To evaluate the normalization constants at these
non-integer lattice sizes then requires some interpolation of
results from neighbouring integer L/a-values at the same β.
Alternatively, one could choose a set of integer L/a-values
such that a choice for Cr will imply a set of β-values. In
general this means that the data for r/a may have to be inter-
polated in β. We will here choose the first option, with the
set of β-values taken over from the large volume simulations
by the CLS project [8,10].

Having set the scale one needs to ensure the correlation
functions are calculated in the desired situation of massless
QCD and for the chosen chirally rotated boundary condi-
tions at α = π/2. This means one needs to tune the bare
quark mass am0 and z f as functions of β. We will discuss
this in more detail below. Finally, the correlation functions
depend on kinematic parameters, such as x0 or background
field parameters such as θ . We have already set x0 = L/2
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in Eqs. (2.15), (2.17) and we choose θ = 0 and work with
vanishing SU(3) background field.

With these parameter choices we will have, for a given
r and Cr in Eq. (3.1), two definitions each for ZA and ZV,
namely

Zg,l
A,V(β) = Rg,l

A,V(β, a/L)
∣∣
L/r=Cr ;m=0;α=π/2 , (3.2)

either based on the g- or the l-ratios. We then expect e.g. that

Zg
A(β) = Zl

A(β) + O(a2), (3.3)

where the a2-effects are now expected to be smooth functions
of the bare coupling.

3.2 Perturbative subtraction of cutoff effects

A possible refinement consists in using perturbation theory
to reduce the cutoff effects perturbatively. This requires to
compute the R-ratios (2.15), (2.17) perturbatively, with the
exact same parameter choices as in the numerical simula-
tions. We have performed this calculation to 1-loop order,

Rg,l
A,V(g2

0, a/L) = Rg,l(0)
A,V (a/L) + g2

0 R
g,l(1)
A,V (a/L) + O(g4

0),

(3.4)

and for the chosen parameters we always find Rg,l(0)
A,V (a/L) =

1, exactly. We may then define a 1-loop correction factor,

r g,lA,V(β, L/a) = 1 + g2
0 R

g,l(1)
A,V (0)

1 + g2
0 R

g,l(1)
A,V (a/L)

, (3.5)

and results for the coefficients Rg,l(1)
A,V are collected in Table 1,

for the relevant lattice resolutions L/a and the two lattice
gauge actions used by CLS. Note that the 1-loop results
are Nf -independent and are thus obtained along the lines
of Ref. [20], the only difference being the form of the free
gluon propagator in the case of the Lüscher–Weisz gauge
action [32]. As an aside we note that our results converge
to the known 1-loop results Z (1)

A,V for an infinitely extended
lattice [33–35], i.e. for a/L = 0. We also observe that the
1-loop cutoff effects for the l-definitions are generally much
smaller than for the g-definitions.

For given L/a and β, the perturbatively improved current
normalization constants are now defined by

Zg,l
A,V, sub(β, L/a) = r g,lA,V(β, L/a) × Zg,l

A,V(β, L/a), (3.6)

and, by construction, the O(a2) cutoff effects are subtracted
to O(g2

0), reducing them to O(a2g4
0). The subtracted data for

the Z -factors are then treated as before: a choice of a line of

constant physics implies a set of β- and corresponding L/a-
values to which the data must be interpolated. We will see
evidence for the effectiveness of this perturbative subtraction
of cutoff effects in Sects. 4 and 5.

3.3 Choices of LCP for Nf = 2 and Nf = 3

In order to fix the physical scale r , we choose either the
kaon decay constant r = 1/ fK (Nf = 2), or the gradient
flow scale r = √

8t0 (Nf = 3) [36].1 In order to fix the
respective constants Cr we proceed as follows. Given the set
of values βi for i = 1, 2, . . . (taken from CLS), we choose
as a reference value βref either the largest or the smallest of
the set. Choosing an integer lattice size L/a at the reference
point βref now fixes Cr through

Cr = (L/a)(βref)

(r/a)(βref)
. (3.7)

Having set the scale in this way, the L/a-values at the remain-
ing βi follow from Eq. (3.1). For all our choices the physical
size of our space-time extent will be L ≈ 0.6 − 0.7 fm. As
mentioned before, except at the chosen reference value for
β this requires interpolations of simulation results at integer
L/a and our current simulation code, which is based on the
openQCD package [37,38], requires that L/a is also even.

3.4 Topology freezing

Numerical simulations of the SF by means of standard Monte
Carlo algorithms are known to suffer from the topology freez-
ing problem (see e.g. Ref. [39] for a discussion). A possible
solution is to follow the proposal of Ref. [39] and simulate
the theory with open-SF boundary conditions. However, if
for the given choice of parameters the problem is “mild”,
one can circumvent the issue in a straightforward manner
by simply imposing the renormalization conditions (2.18)
and (2.13) within the trivial topological sector [40,41]. In a
continuum notation, the correlation functions entering these
definitions are modified as follows,

gudA (x0) → gudA,Q(x0) = − 1
2 〈Aud

0 (x)Qdu
5 δQ,0〉(Q̃+)

〈δQ,0〉(Q̃+)

, (3.8)

and analogously in all other cases.2 Here, the Kronecker δ in
the functional integral selects the gauge field configurations

1 The choice of the scale from fK seems somewhat circular, as its
measurement requires the correctly normalized axial current. We use
the results from Ref. [8] which were obtained using ZA from a standard
SF Ward identity determination.
2 For ease of notation, in the following the subscript Q is implicitly
understood, and we assume that all relevant correlation functions are
restricted to the Q = 0 sector.
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Table 1 Finite L/a estimators for the current normalization constants at 1-loop order, and our estimates for their asymptotic values; the latter agree
with previous results in the literature [33–35]. All results are given for SU(3)

L/a Rg(1)
A (a/L) Rl(1)

A (a/L) Rg(1)
V (a/L) Rl(1)

V (a/L)

Wilson gauge action

6 − 0.104309 − 0.116808 − 0.118728 − 0.130549

8 − 0.109076 − 0.116640 − 0.122586 − 0.129838

10 − 0.111857 − 0.116595 − 0.125088 − 0.129662

12 − 0.113308 − 0.116564 − 0.126426 − 0.129588

16 − 0.114714 − 0.116526 − 0.127747 − 0.129519

∞ Z (1)
A = −0.116458(2) Z (1)

V = −0.129430(2)

Lüscher–Weisz gauge action

6 − 0.078368 − 0.091011 − 0.089760 − 0.101750

8 − 0.083286 − 0.090737 − 0.093819 − 0.101006

10 − 0.085958 − 0.090650 − 0.096256 − 0.100811

12 − 0.087374 − 0.090604 − 0.097578 − 0.100730

16 − 0.088756 − 0.090557 − 0.098889 − 0.100657

∞ Z (1)
A = −0.090488(5) Z (1)

V = −0.100567(2)

with topological charge Q = 0. Since relations based on chi-
ral flavour symmetries should hold separately in each topo-
logical charge sector, this restriction to the trivial sector is a
legitimate modification of the current renormalization condi-
tions. It provides a viable solution to the algorithmic problem
of topology freezing in cases where this problem becomes
marginally relevant; this means when the fraction of topolog-
ically non-trivial gauge field configurations in the relevant
ensembles is not too large. For our choices of parameters,
the percentage of gauge field configurations with Q �= 0 is
generally below 10%, and reaches approximately 30% only
in a couple of cases (cf. Tables 8, 9).

On the lattice the topological charge is not unambigu-
ously defined. We follow Refs. [40,41] and define the trivial
topological sector as the set of gauge field configurations for
which |Q| < 0.5, where Q is discretized in terms of the
Wilson flow and the clover definition of the field strength
tensor [36]. The flow time t is then kept fixed in physical
units by requiring

√
8t = 0.6 × L .

3.5 On the tuning of am0 and z f

The current normalization conditions require the χSF corre-
lation functions at zero quark mass and with a chiral twist
angle of π/2. In practice this is achieved by the simultaneous
tuning of m0 and z f such that Eq. (2.13) are satisfied. In gen-
eral a 2-parameter tuning can be quite involved. However,
here the non-perturbative O(a) improvement of the action
implies that the O(a) uncertainty of the zero mass point is
very much reduced. Since a change in z f merely re-defines
the matrix element used to define the PCAC mass, a variation
of z f is expected to induce a small variation of m within this

O(a) uncertainty. The latter could in principle be reduced to
O(a2) by including the cA-counterterm to the axial current,
but this will not be pursued here. Another important obser-
vation is that, once m0 and z f are within O(a) of their target
values, the sensitivity of the PCAC mass to a variation of
z f is reduced to order a2 [cf. Appendix B, discussion after
Eq. (B.8)]. One is therefore led to conclude that the PCAC
mass m is to a good approximation independent of z f , and
the tuning of m0 and z f thus becomes straightforward; given
a reasonable guess for z f , one can first tune m0, and then
turn to z f .

As an illustration of this situation we discuss the Nf = 2
case for L/a = 8, β = 5.3. For the tuning we considered
3 values of κ = 1/(2am0 + 8) and 4 values of z f . We then
generated around 2000 gauge field configurations separated
by 10 MDUs for each of the 12 ensembles, and measured the
relevant correlation functions. Figure 1 collects the results for
the PCAC mass as a function of the bare quark mass, for the
4 different values of z f . Within statistical errors, the PCAC
mass depends linearly on m0 and is essentially independent
of z f . A linear fit of m vs. m0 yields an estimate of m0 =
mcr(g0, L/a) for which m vanishes: these are collected in
Table 2. The results are perfectly compatible with each other,
and we take as our estimate for mcr the result of a weighted
average of these four.

Once the critical bare mass is fixed, a smooth interpolation
of gudA (L/2) in m0 gives the results shown in Fig. 2. Over
the chosen range, gudA (L/2) so interpolated is perfectly linear
in z f , and it is thus straightforward to determine the point
z∗f where gudA (L/2) vanishes i.e. z∗f = 1.2877(5) in this
example.
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Fig. 1 Results for the PCAC
mass as a function of the bare
quark mass, for different values
of z f . The dashed lines are
linear fits to the data, while the
solid vertical line indicates the
location of our final estimate for
amcr(g0, a/L) (s. main text).
The results are for L/a = 8 and
β = 5.3
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am0

zf = 1.293
zf = 1.288
zf = 1.283
zf = 1.280

Table 2 Results for amcr(g0, L/a) for four different values of z f , for
L/a = 8 and β = 5.3. The weighted average of the results is also given
in the last row of the table

z f amcr κcr

1.280 − 0.32808(13) 0.1361685(47)

1.283 − 0.32828(14) 0.1361761(51)

1.288 − 0.32808(12) 0.1361687(45)

1.293 − 0.32831(14) 0.1361772(51)

Average − 0.328179(65) 0.1361722(24)

The estimated values of amcr and z∗f determined in this

way turn out to be quite accurate in practice, cf. Table 8.3 We
remark that results formcr could also be taken from a different
source, for instance from standard SF simulations. In this
case only z f needs to be tuned. The differences to the above
procedure would be O(a) both in mcr and in z∗f which, by the

mechanism of automatic O(a) improvement, induce O(a2)

differences in observables such as the current normalization
constants [14,20]. One also expects that a precise tuning of
m0 is less crucial in the χSF than in the SF; the quark mass
dependence of physical observables around the chiral limit
is quadratic rather than linear [42].

3.6 Sources of uncertainties

Besides statistical errors directly affecting the estimators
for the current normalization constants, the other source of
uncertainty originates from the precision to which a line of
constant physics can be followed. In principle also this latter
effect is of a statistical nature, however, some elements of

3 Note that the L/a = 8, β = 5.3, simulations listed in Table 8, use
slightly different values for amcr and z∗f from a previous, less precise
determination.

modelling or estimates may be involved when propagating
these errors to the normalization constants, so that it is partly
justified labelling these effects as systematic.

Our procedure consists of the following steps:

1. The LCP together with the set of values βi translates
to target values (L/a)(βi ). At each βi we choose lat-
tices with even L/a straddling the target values. We here
anticipate that with our choices of LCPs the required
lattice sizes are in the range L/a = 8 to L/a = 16.
Note that all target values (L/a)(βi ) come with statisti-
cal errors except for β = βref , where, by definition, L/a
is given as an (even) integer.

2. For given β and L/a we determine the solutions am0 =
amcr and z f = z∗f of Eq. (2.13). In order to find their
statistical errors which follow from the statistical uncer-
tainties on m and gudA (L/2), we use estimates for the
relevant derivatives,

∂mL

∂m0L
,

∂mL

∂z f
,

∂gudA

∂m0L
,

∂gudA

∂z f
. (3.9)

3. We then determine the induced error on the Z -factors
by estimating their derivatives with respect to the bare
parameters,

∂ZA,V

∂z f
,

∂ZA,V

∂m0L
. (3.10)

It turns out that the derivatives (3.9) and (3.10) scale
quite well with lattice size and lattice spacing, so that it is
unnecessary to evaluate them for all parameter choices.
Some cross checks are sufficient. The errors coming
from the uncertainties in m0 and z f are then combined
in quadrature and added, again in quadrature, to the sta-
tistical error.
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Fig. 2 Results for gudA (L/2) as
a function of z f . The dashed
line is a linear fit to the data,
while the solid vertical line
indicates the location of our
final estimate for z∗f (s. main

text). The values of gudA (L/2)

come from an interpolation to
κ = 0.1361722, and are for
L/a = 8 and β = 5.3
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4. Where necessary, the results for ZA,V at the different
L/a-values and fixed βi are interpolated to the target
(L/a)(βi ); and the statistical error on (L/a)(βi ) is prop-
agated at this point. In the case where only one value of
L/a has been simulated, an estimate for the derivative

∂ZA,V

∂(L/a)
(3.11)

is used to assign a systematic error due to the difference
�(L/a) ≡ L/a − (L/a)(βi ), also taking into account
the statistical uncertainty on (L/a)(βi ). The resulting
systematic error is again added in quadrature.

We emphasize that all systematic effects become essentially
statistical errors provided enough data is produced to esti-
mate the derivatives required to propagate the errors to the
normalization constants. In the following two sections we
will present the lattice set-up and results for Nf = 2 and
Nf = 3 lattice QCD. We will also come back to some of the
above points.

4 Numerical results for Nf = 2 flavours

4.1 Lattice set-up and parameter choices

The CLS large volume simulations of 2-flavour QCD [8]
were performed using non-perturbatively O(a) improved
Wilson quarks and the Wilson gauge action. The matching
to CLS data via the bare coupling requires that we use the
same action in the χSF. As for the details of the action near
the time boundaries we refer to Ref. [20]. In particular the
counterterm coefficients ct(g0) and ds(g0) were set to their
perturbative one-loop values using the results of that refer-

ence. In general, the incomplete cancellation of boundary
O(a) artefacts implies some remnant O(a) effects in observ-
ables. However, for the estimators of the current normaliza-
tion constants, Eqs. (2.15), (2.17), it can be shown that such
O(a) effects only cause O(a2) differences [20].

The CLS simulations were carried out for 3 values of the
lattice spacing [8], corresponding to the β-values 5.2, 5.3
and 5.5. For future applications we have added a finer lattice
spacing corresponding to β = 5.7. We choose the smallest
CLS-value β = 5.2 as reference value and set

L/a = 8 at β = 5.2, (4.1)

to define the starting point for the line of constant physics.
We then fix the space-time volume of the χSF simulations in
terms of the kaon decay constant, fK , evaluated at physical
quark masses. Taking a fK from Table 3 at β = 5.2 yields

fK L = 0.4744(74), (4.2)

and corresponds to L ≈ 0.6 fm. Imposing this condition
at the other β-values then leads to the (non-integer) L/a-
values given in Table 3. The quoted errors are a combination
of statistical uncertainties, propagated from Eq. (4.2) and the
error on a fK at the given β’s.

While the first 3 results for a fK in Table 3 have been
directly measured [8] we have estimated a fK at the fourth
value, β = 5.7, as follows: with a fK at β = 5.5 taken
as starting point we used the three-loop β-function for the
bare coupling [43], in order to determine the ratio of lattice
spacings. The error is obtained by summing (in quadrature)
the statistical error propagated from the result at β = 5.5,
and a systematic error due to the use of perturbation the-
ory. The latter is estimated as the difference between the
non-perturbative result for a fK at β = 5.5, and the same
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Table 3 Values of a fK used to determine (L/a)(β) such as to satisfy
the condition (4.2) for the given β. The χSF simulations were performed
at the neighbouring even integer L/a-values given in the last column

β a fK (L/a)(β) L/a

5.2 0.0593(7)(6) 8 8

5.3 0.0517(6)(6) 9.18(21) 8, 10, 12

5.5 0.0382(4)(3) 12.42(25) 12

5.7 0.0290(11)† 16.35(67) 16

†This value is estimated using the perturbative running of the lattice
spacing (s. main text)

perturbative procedure, applied between β = 5.3 and β =
5.5. This systematic error is about 2.7 times larger than
the statistical one, and thus dominates the error on L/a at
β = 5.7.

Except for β = 5.3, the target values (L/a)(βi ) resulting
from condition (4.2), are very close to even integer values
of L/a, so that interpolations between simulations at differ-
ent L/a can be avoided. At β = 5.3 we simulated at the
three L/a-values given in the last column of Table 3 and
interpolated to the target value (see Appendix B.4 for more
details). For each choice of β and L/a, along the lines of the
discussion in Sect. 3.5, we have carried out various tuning
runs covering a range of am0 and z f , so as to determine the
parameters satisfying the conditions (2.13). The values of the
tuned parameters and the results for m and gudA (L/2) at these
parameters are given in Table 8.

4.2 Results and error budget

In Table 4 we collect the results for ZA,V, both g and l defi-
nitions, at the four values of the lattice spacing. The statistics
range from 1800 to 12,000 measurements depending on the
ensemble, cf. Table 8. The quoted uncertainties combine the

statistical and systematic errors. The statistical errors are at
the level of 0.1–0.40/00, depending on the Z -factor and ensem-
ble considered. Hence a significant contribution to the error
comes from systematic uncertainties.

As discussed in Sect. 3.6, systematic errors result from
uncertainties or deviations in following a chosen LCP, which
correspond with statistical errors and deviations from zero
in m and gudA (L/a), as well as uncertainties in the target lat-
tice extent L/a and systematic errors arising from inter- or
extrapolations from the simulated lattices sizes, if applica-
ble. Tables 3 and 8 contain the relevant information for the
case Nf = 2. The propagation of these uncertainties to the
Z -factors is then performed following the steps outlined in
Sect. 3.6. We have carried out some additional simulations
to estimate the derivatives in Eqs. (3.9), (3.10), and some
perturbative calculation to check the expected scaling of the
derivatives with the lattice size. We delegate a detailed discus-
sion to Appendix B. Here we just note that with our statistics
and our rather conservative approach, the propagated uncer-
tainties are typically larger than the statistical errors for the
R-estimators Eqs. (2.15), (2.17) (cf. Tables 10, 11).

4.2.1 Effect of perturbative one-loop improvement

As discussed in Sect. 3.2, we have also computed the rele-
vant χSF correlation functions in perturbation theory to order
g2

0 = 6/β. Besides consistency checks and qualitative insight
the main application consists in the perturbative subtraction
of cutoff effects from the data. Note that this requires to emu-
late the non-perturbative procedure in all details, in particu-
lar the determination of amcr and z∗f according to Eq. (2.13).
The lower part of Table 4 contains the results for ZA,V after
perturbative improvement. Comparing with the unimproved
results in the upper part of Table 4, one can see that the g-
definitions are more affected, and are brought closer to the

Table 4 Results for ZA,V, both g and l definitions, for Nf = 2 non-perturbatively O(a) improved Wilson fermions and Wilson gauge action. The
lower part of the table contains the same results after subtraction of the one-loop cutoff effects, cf. Eq. (3.6)

β Zg
A Zl

A Zg
V Zl

V

5.2 0.78022(55) 0.76944(94) 0.74673(47) 0.73849(97)

5.3 0.78411(61) 0.77576(66) 0.75220(70) 0.74607(69)

5.5 0.7945(13) 0.7895(13) 0.7663(14) 0.7625(14)

5.7 0.80526(97) 0.80277(93) 0.7800(11) 0.77801(98)

β Zg
A, sub Zl

A, sub Zg
V, sub Zl

V, sub

5.2 0.77262(54) 0.76963(94) 0.73986(47) 0.73890(97)

5.3 0.77847(42) 0.77591(66) 0.74706(49) 0.74636(70)

5.5 0.79138(89) 0.7897(13) 0.7634(11) 0.7627(14)

5.7 0.80358(63) 0.80283(93) 0.77836(79) 0.7781(10)

123



23 Page 10 of 27 Eur. Phys. J. C (2019) 79 :23

0.76

0.77

0.78

0.79

0.8

0.81

1.05 1.07 1.09 1.11 1.13 1.15

g20

Zg
A

Z l
A

ZSF
A

0.76

0.77

0.78

0.79

0.8

0.81

1.05 1.07 1.09 1.11 1.13 1.15

g20

Zg
A, sub

Z l
A, sub

ZSF
A

Fig. 3 Comparison of different ZA determinations for Nf = 2,
obtained from WIs in the standard SF and from universality relations
in the χSF. The effect of the perturbative one-loop improvement of the
χSF results is also shown (right panel). The χSF results are those of
Table 4. The individual SF points are taken from Refs. [8,44], and are
slightly displaced on the x-axis for better clarity. The solid black line

corresponds to the SF results from the fit formula of Ref. [8], and the
dashed lines delimit the 1σ region of the fit. Note that the SF fit for-
mula is obtained by considering additional points with g2

0 < 1, here not
shown, and by enforcing the perturbative 1-loop behaviour for g2

0 → 0
(see Ref. [8] for the details)
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Fig. 4 Comparison of different ZV determinations for Nf = 2,
obtained from WIs in the standard SF and from universality relations
in the χSF. The effect of the perturbative one-loop improvement of the
χSF results is also shown (right panel). The χSF results are those of
Table 4. The individual SF points are taken from Refs. [21], and are
slightly displaced on the x-axis for better clarity. The solid black line

corresponds to the SF results from the fit formula of Ref. [21], and the
dashed lines delimit the 1σ region of the fit. Note that the SF fit for-
mula is obtained by considering additional points with g2

0 < 1, here not
shown, and by enforcing the perturbative 1-loop behaviour for g2

0 → 0
(see Ref. [21] for the details)

corresponding l-definitions by the perturbative improvement
(cf. also Fig. 5). In any case, the perturbative corrections are
at the level of 1 per cent at most.

In conclusion, our final results for ZA,V, either with or
without perturbative improvement, turn out to be very precise
and improve significantly on the standard SF determination
based on chiral Ward identities (WIs) [8,21,44]. This is par-
ticularly true for the case of ZA, which can be appreciated in
Fig. 3 where the determinations of Table 4 are compared with
those of Refs. [8,44]. In Fig. 4 we show instead a compari-
son for the case of ZV, as obtained from the χSF, cf. Table
4, and from the standard SF (cf. Ref. [21]). We note that a
relevant contribution to the error of our results comes from
propagating the uncertainties associated with maintaining the

condition (4.2) i.e. keeping L constant (cf. Tables 10, 11).
We anticipate that due to the much more accurate knowl-
edge of the LCP in terms of t0 (cf. Table 5), and by using
interpolations in L/a at all relevant β values, this source of
error will be essentially eliminated in the case of Nf = 3
(cf. Sect. 5).

4.3 Universality and automatic O(a) improvement

The χSF determinations (2.15) and (2.17) are expected to
be automatically O(a) improved once the bare parameters
m0 and z f are properly tuned (cf. Sect. 2.2). This means
that neither bulk nor boundary O(a) counterterms are nec-
essary to cancel O(a) discretization errors in these quanti-
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Table 5 CLS β-values and corresponding results for t0/a2 in the SU(3)
flavour symmetric limit [1,2]. The latter are used to determine the lattice
sizes (L1,2/a)(βi ) which satisfy the conditions (5.1). The χSF simula-

tions are performed at the neighbouring L/a’s given in the last column
of the table

β t0/a2 (L1/a)(β) (L2/a)(β) L/a

3.40 2.8619(55) 8 7.225(16) 6, 8, 10, 12

3.46 3.662(13) 9.049(18) 8.172(22) 6, 8, 10, 12

3.55 5.166(17) 10.748(21) 9.706(25) 8, 10, 12, 16

3.70 8.596(31) 13.864(29) 12.521(34) 8, 10, 12, 16

3.85 14.036(57) – 16 16
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Fig. 5 Continuum limit of the ratios between the l and g definitions
of ZA (left panel) and ZV (right panel) for the case of Nf = 2 quark-
flavours; the effect of subtracting the lattice artefacts from the Z -factors

to O(g2
0) is also shown. The dashed lines correspond to linear fits to the

data, constrained to extrapolate to 1 for a/L = 0

ties. This was confirmed to one-loop order in perturbation
theory [20] and should hold generally. To this end we now
look at the ratios between Z -factors coming from the g- and
l-definitions. The expectation that these ratios converge to 1
with O(a2) corrections is indeed very well borne out by the
data, cf. Fig. 5, where we also include fits to this expected
behaviour. We emphasize that this is a non-trivial result: even
though the bulk action is improved to match the CLS set-up,
we did not O(a) improve the currents entering the definitions
(2.15), (2.17) and (2.13). This result thus confirms automatic
O(a) improvement at the non-perturbative level, and, indi-
rectly, the universality relations between the χSF and SF
formulations. A direct way to test universality between the
χSF and SF formulations would be simply to study the con-
tinuum scaling of ratios of Z -factors as obtained from one
and the other formulation. Provided the SF determinations
are properly improved, these should also approach 1 in the
continuum limit with O(a2) corrections. The large errors on
the SF determinations do not allow us for a precise test of
this expectation. However, the results in Figs. 3 and 4 clearly
show that our determinations are in fact compatible with the
SF ones within errors.

5 Numerical results for Nf = 3 flavours

5.1 Lattice set-up and parameter choices

The CLS simulations with Nf = 2 + 1 flavours of non-
perturbatively O(a) improved Wilson fermions [45] and
Lüscher–Weisz (LW) gauge action, have been carried out
for 5 values of the lattice spacing, with β-values between
3.4 and 3.85 [1,2,10]. For completeness we note that CLS
has also tried to simulate at a coarser lattice spacing corre-
sponding to β = 3.3. However, these ensembles have been
discarded for the scale determination in [1] due to very large
cutoff effects observed e.g. in t0 [10]. For this reason we will
not consider this β-value in our study, however, we mention
that it was adopted as starting point for the Ward identity
determination of ZA in Ref. [22]. Given the relatively large
set of lattice spacings we here consider two different LCPs,
with slightly different physical extent, L1 and L2, which we
define through the gradient flow time t0 [36]. The associated
length scale r = √

8t0 can be interpreted as a smoothing
radius, and has been very precisely determined for the CLS
β-values ≥ 3.4 in [1,2]. Using this scale we impose the
conditions
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L1/
√

8t0 = 1.6719(16) and L2/
√

8t0 = 1.5099(30),

(5.1)

where the right hand sides were chosen in order to have
exactly,

L1/a = 8 at β = 3.4 and L2/a = 16 at β = 3.85,

(5.2)

respectively. Using the result for t0 in physical units [1],
Eq. (5.1) translates to L1 ≈ 0.7 fm and L2 ≈ 0.6 fm.

In Table 5 we collect the relevant β values of the CLS sim-
ulations and the corresponding results for t0/a2 [2]. The latter
are evaluated for equal up-, down-, and strange-quark masses,
which are close to the physical average quark mass (see
Refs. [1,2]). Table 5 also gives the lattice sizes (L1,2/a)(β)

which satisfy the conditions (5.1). Compared to the Nf = 2
case (cf. Table 3), it is obvious that these Nf = 3 LCPs are
much more accurately determined. In order to exploit this
higher precision, we performed simulations for several L/a-
values at each β (cf. Table 5). This allowed us to accurately
interpolate the Z -factors to the target values (see Appendix
B.5 for more details). Table 9 contains a summary of all sim-
ulations performed with the corresponding parameters. Due
to both technical and historical reasons, we do not use the
finest lattice spacing for the LCP defined in terms of L1.
Following this LCP up to β = 3.85 would have required
simulating lattices with L/a = 18, 20, which are partic-
ularly inconvenient to parellelize with our current simula-
tion program. Note also that CLS simulations at β = 3.85
are ongoing and currently limited to a single ensemble,
so that the LCP with L1 may remain useful for a while.
More importantly, however, the comparison between both
LCPs allows us to perform additional tests on our results
(cf. Sect. 5.3).

The lattice action we employ for the finite volume simu-
lations matches the CLS action in the bulk, i.e. the Lüscher–
Weisz tree-level improved gauge action and 3 flavours of
non-perturbatively improved Wilson quarks [45]. Close to the
time boundaries of the lattice there is some freedom regarding
the implementation of Schrödinger functional boundary con-
ditions. For the gauge fields we choose option B of Ref. [32];
we refer the reader to this reference for the details. Regard-
ing the fermions, two quark flavours satisfy χSF boundary
conditions (option τ = 1 of [14]), while the third one obeys
the standard SF boundary conditions [25]. In general, such
a mixed set-up increases the number of O(a) improvement
coefficients which need to be tuned in order to eliminate
O(a) discretization errors from the time boundaries. As in
the Nf = 2 case, however, one can show that the corre-
sponding counterterms affect the renormalization constants
ZA,V only at O(a2). For definiteness we have used the one-

loop estimate ct = 1+g2
0c

(1)
t , where the one-loop coefficient

decomposes as follows,

c(1)
t = c(1,0)

t + 2 × c(1,1)
t (χSF) + 1 × c(1,1)

t (SF). (5.3)

The pure gauge contribution is taken from Ref. [46], the
fermionic χSF contribution from Ref. [20] and the SF con-
tribution from Ref. [29].4 Furthermore, we use the tree-level
values ds = 1/2 [20] and c̃t = 1 [26].

5.2 Results and error budget

In Tables 6 and 7 we collect the results for ZA,V, corre-
sponding to the L1- and L2-LCP, respectively. The statistics
we accumulated for the different ensembles ranges between
3200 and 31,000 measurements, with exact numbers given
in Table 9. The corresponding statistical precision on the Z -
factors is between 0.1 and 0.550/00, depending on the exact
quantity and ensemble. The errors quoted in the tables then
combine the statistical errors with the systematic errors orig-
inating from the uncertainties on the LPCs.

Like in the Nf = 2 case, the high statistical precision
requires a careful assessment of the systematic errors in order
to arrive at reliable error estimates. Tables 5 and 9 contain
information on the accuracy with which the chosen LCPs are
realized for our simulation parameters. Our estimates for the
systematic uncertainties due to deviations from the chosen
LCP were then obtained analogously to the case of Nf = 2;
we refer the reader to Appendix B for the details. Here it
is worth noting that, similarly to this case, the propagated
uncertainties are typically larger than the statistical errors
for the R-estimators, Eqs. (2.15), (2.17), cf. Table 12.

5.2.1 Effect of perturbative one-loop improvement

In the lower halves of Tables 6 and 7 we give the results
for ZA,V after perturbatively subtracting the lattice artefacts
to one-loop order. The results have been obtained by first
improving the ZA,V determinations for each L/a and g0

value, and then interpolating to the proper (L1,2/a)(β) (see
Appendix B.5).

Comparing the results for ZA,V before and after pertur-
bative improvement, one sees that the g-definitions are the
most affected, and are brought closer to the correspond-
ing l-definitions. All in all, the effect of the perturbative
improvement is at most at the level of a couple of percent (cf.
Fig. 7). Hence, not too surprisingly perhaps, the situation is
very much the same as for the Nf = 2 case.

4 Even though the fermionic contributions were calculated with the
Wilson gauge action, to this order the calculation only depends on the
gauge background field, which is not modified when using the LW
action with option B of [32].
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Table 6 Nf = 3 results for ZA,V using the L1-LCP, both for g and l definitions. The lower part of the table contains the results after subtraction
of the one-loop cutoff effects, cf. Eq. (3.6)

β Zg
A Zl

A Zg
V Zl

V

3.40 0.76847(35) 0.75446(68) 0.72923(27) 0.71940(70)

3.46 0.77128(44) 0.76018(80) 0.73392(36) 0.72637(77)

3.55 0.77703(30) 0.76879(42) 0.74261(23) 0.73758(44)

3.70 0.78831(30) 0.78327(43) 0.75833(31) 0.75521(44)

β Zg
A, sub Zl

A, sub Zg
V, sub Zl

V, sub

3.40 0.75702(35) 0.75485(68) 0.71882(27) 0.72008(70)

3.46 0.76245(44) 0.76048(80) 0.72578(36) 0.72683(77)

3.55 0.77103(29) 0.76900(42) 0.73701(23) 0.73789(44)

3.70 0.78485(30) 0.78340(43) 0.75506(31) 0.75538(44)

Table 7 Same as Table 6 but for the L2-LCP

β Zg
A Zl

A Zg
V Zl

V

3.40 0.77129(39) 0.75592(72) 0.73368(30) 0.72164(74)

3.46 0.77371(51) 0.76132(93) 0.73721(42) 0.72782(89)

3.55 0.77856(31) 0.76953(43) 0.74468(25) 0.73846(46)

3.70 0.78925(31) 0.78362(47) 0.75936(33) 0.75552(48)

3.85 0.79985(31) 0.79657(47) 0.77304(33) 0.77061(49)

β Zg
A, sub Zl

A, sub Zg
V, sub Zl

V, sub

3.40 0.75741(38) 0.75642(72) 0.72120(29) 0.72259(74)

3.46 0.76288(51) 0.76169(93) 0.72732(41) 0.72845(89)

3.55 0.77115(31) 0.76979(43) 0.73780(24) 0.73886(46)

3.70 0.78499(31) 0.78378(47) 0.75534(33) 0.75574(48)

3.85 0.79734(31) 0.79667(47) 0.77065(33) 0.77074(49)

In conclusion, our final results for ZA,V are very precise
for both LCPs. Similarly to the Nf = 2 case, the results
for ZA are significantly more accurate than the standard SF
determination based on Ward identities [22]. This can be
appreciated in Fig. 6, where the results from Table 7 are
displayed together with the 2 alternative definitions ZA,0 and
Z con

A,0 of Ref. [22].

5.3 Universality and automatic O(a) improvement

Given our estimates for ZA,V we can study the approach to
the continuum limit of the ratio between different definitions.
We begin with Fig. 7 where the ratios between the g- and l-

definitions are considered for the L1- and L2-LCPs; both the
results before and after perturbative improvement are shown.
The conclusions are very much the same as for the Nf = 2
case. Considering the results before perturbative improve-
ment, along both LCPs, the g and l definitions deviate by at
most a couple of per-cent. These differences then perfectly
scale with a2 to zero as the continuum limit is approached. If
perturbative improvement is implemented, these differences
almost vanish even at the coarsest lattice spacings. There
is no significant deviation from a2 scaling, however, some
small admixture of higher order effects cannot be excluded
either.
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Fig. 6 Comparison between different ZA determinations for Nf = 3,
obtained either from WIs in the standard SF or from universality rela-
tions in the χSF. The χSF results are taken from Table 7 and the effect of
the perturbative one-loop improvement is shown in the right panel. The
individual SF points labelled ZSF

A and ZSF
A,con are taken from Ref. [22]

and correspond to the definitions ZA,0 and Z con
A,0, respectively, of that

reference. The solid black line is the fit formula to ZSF
A also given in [22]

and the dashed lines delimit the 1σ region of the fit. Note that this fit
function enforces the perturbative 1-loop behaviour for g2

0 → 0
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Fig. 7 Continuum limit of the ratios between the l and g definitions
of ZA (left panels) and ZV (right panels) for the case of Nf = 3 quark-
flavours; the effect of subtracting the lattice artefacts from the Z -factors
to O(g2

0) is also shown. The upper panels show the L1-LCP results while
the lower ones show those of the L2-LCP. In all cases, the dashed lines

correspond to linear fits to the data constrained to extrapolate to 1 for
a/L1,2 = 0. Note that the (tiny) effect of the statistical correlation
between numerator and denominator has been neglected in these ratios
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Fig. 8 Continuum limit of the
ratio between the Zl

X, L2
definitions, X = A, V,
corresponding to the L2-LCP,
and the Zg

X, L1
definitions

corresponding to the L1-LCP.
The dashed lines correspond to
linear fits to the data constrained
to extrapolate to 1 for a2/t0 = 0
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Fig. 9 Continuum limit of the ratios between the Nf = 3 WI deter-
minations of ZA of Ref. [22], and the χSF determinations Zg,l

A (left

panel) and Zg,l
A, sub (right panel) of Table 7. The ZSF

A results are from
the fit formula provided in Ref. [22], and correspond to their preferred,
ZA,0, definition. The associated dashed lines (red and blue lines) are

linear fits to the data with a2/t0 < 0.2, constrained to extrapolate to 1
for a2/t0 = 0. The ZSF

A, con results come instead from a fit of the results
for the alternative, Z con

A,0, definition considered in Ref. [22]. The latter
fit was obtained using the same fit ansatz used in Ref. [22] for ZA,0.
The associated dashed lines (green and magenta lines) are linear fits to
all data, constrained to extrapolate to 1 for a2/t0 = 0

It is also interesting to consider the continuum limit of the
ratio between the definitions belonging to different LCPs i.e.
the L1- and L2-LCP. An example of such a ratio is shown in
Fig. 8. Also in this case, the continuum scaling of this ratio is
the one expected, and the initial difference is at the 2 per cent
level. Apart from providing an important check of universal-
ity and automatic O(a) improvement, these results show that
considering one definition or the other for the renormaliza-
tion of matrix elements of the axial and vector currents, will
only introduce small O(a2) differences over the whole range
of lattice spacings covered.

Finally, we look at ratios between χSF and standard SF
determinations. Towards the continuum limit these should
also scale like 1 + O(a2), if the SF determinations are O(a)

improved. In Fig. 9 we show the continuum limit of the ratios

between the standard SF determinations of Ref. [22] and the
χSF results of table 7. We here consider both definitions of
this reference, and label them as ZSF

A = ZA,0 and ZSF
A, con =

Z con
A,0, respectively (cf. [22] for the exact definitions).

As one can see in Fig. 9, for their preferred definition, ZSF
A ,

the expected scaling is only setting in around a2/t0 < 0.2,
where the SF and χSF determinations differ by a couple of
per cent. At the coarsest lattice spacing, corresponding to
β = 3.4, the deviation from the O(a2) scaling is significant.
The results for Zg

A show the largest deviation from the SF
determination, which is about 6%. Considering the pertur-
batively improved χSF results this difference is somewhat
reduced to 4–5%, but O(a2) scaling is not observed either.
If we consider instead the alternative definition, ZSF

A, con, the
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deviation is reduced to about 2 per cent at the coarsest lattice
spacing for Zl

A, while, remarkably, the results for Zg
A and

Z con
A,0 are compatible within errors. In particular, the differ-

ence between this SF and both our χSF determinations is per-
fectly compatible with an O(a2) effect over the whole range
of lattice spacings considered. While discretization effects
can only be defined with respect to some reference defini-
tion, we conclude that the alternative SF definition ZSF

A, con is,
within errors, perfectly scaling with a2 for β ≥ 3.4 relative
to all χSF definitions, whereas the preferred definition ZSF

A
of Ref. [22] requires much finer lattices before this expected
asymptotic behaviour sets in. With hindsight, ZSF

A, con seems
to be a better choice within the SF framework and also has
been the preferred SF definition within the Nf = 2 setup of
Refs. [8,44].

6 Summary and conclusions

We have used a new method [20] based on the chirally rotated
Schrödinger functional [14] to obtain high precision results
for the normalization constants of the Noether currents cor-
responding to non-singlet chiral and flavour symmetries. The
matrix elements of these axial and vector currents play a cru-
cial rôle in various contexts of hadronic physics. Our method
differs from the traditional Ward identity method [11,12]
in that it compares correlation functions which are related
by finite chiral or flavour rotations, rather than infinitesimal
ones. The major advantage compared to the Ward identity
method consists in the avoidance of 3- and 4-point functions
in favour of simple 2-point functions. This very significantly
improves on the precision achieved in previous determina-
tions [8,21,22,44,47]. In particular, for the case of ZA, we
obtain a reduction of the error by up to an order of magni-
tude (cf. Figs. 3, 6). The relatively poor precision obtained for
ZA with the traditional Ward identity methods [8,21,22,44]
(around the percent level at the coarsest lattice spacings of
interest), has now become a limiting factor in several appli-
cations. For this reason, our results are in high demand and
have already been used in several works [1,23,48]. In par-
ticular, the precise Nf = 2 + 1 scale setting from a lin-
ear combination of fK and fπ in Ref. [1] crucially relies
on our values of Zl

A in Table 6 and the associated uncer-
tainty is negligible compared to the statistical error of the
bare hadronic matrix elements. In turn, the precise scale set-
ting result of [1] is entering almost all studies done with CLS
gauge configurations: in particular it has enabled the precise

result for the 3-flavour QCD �-parameter and thus αs(mZ )

by the ALPHA-collaboration [2,41,49,50]. Further applica-
tions of our ZA-results include the non-perturbative quark
mass renormalization factor in [23] and the related determi-
nation of the light and strange quark masses [48]. Regarding
the Nf = 2 case, the potential improvement of the scale
setting in Ref. [8] due to our ZA-results would be very sig-
nificant, too. Tentative estimates anticipate a gain by a factor
3–6 in precision, when going from the finest to the coarsest
lattice spacing [51].

In order to maximize the usefulness of our results we have
chosen the same actions and the same β-values for Nf = 2
and Nf = 3 lattice QCD as used by the CLS initiative [8,10].
Hence, anyone working with CLS gauge configurations will
be able to directly use our results: for Nf = 2 we recom-
mend to use Zl

A,V, sub from Table 4, and for Nf = 3 we

recommend using Zl
A,V, sub either of Tables 6 or 7. Although

the results for Zl
A,V, sub are slightly less precise than those for

Zg
A,V, sub, their L/a-interpolations turn out to be more robust.

Furthermore, the effect of the perturbative subtraction of cut-
off effects is rather small and only marginally significant with
current errors. While the precise choice of the χSF results
for the Z -factors is not crucial, it is however very important
to be consistent and to not switch definitions when changing
β. Only then cutoff effects are guaranteed to vanish smoothly
at a rate ∝ a2.

Our determination of ZA,V(β) was carried out for each β-
value independently, in order to avoid adding statistical cor-
relation between physics results at different lattice spacings.
However, it is straightforward to fit our Z -factors to a smooth
function of β (or g2

0), which interpolates to any intermediate
β-value. We have included a few such fits in Appendix C to
our preferred definitions Zl

A,V, sub. We also include fits which
incorporate the expected perturbative behaviour to 1-loop
order. However, the high precision obtained in the β-range
covered by the data cannot be guaranteed outside this range.
If a similar precision is required at higher β, an extension of
our non-perturbative determination will be required. If t0/a2

was known for higher β-values one could extend our chosen
line of constant physics covering another factor of 2 or so in
the lattice spacing. The required simulations of the χSF for
lattice sizes up to L/a = 32 would be feasible with current
resources. Going beyond this range it may be advisable to
choose a different line of constant physics from a finite vol-
ume observable, or at least estimate the errors incurred by
deviating from the original choice.
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In applications to hadronic physics one would also like
to control the O(a) effects cancelled by the countert-
erms to the currents. Close to the chiral limit, one essen-
tially requires the counterterm coefficients cA,V [26,27]. We
emphasize that our method of determining the Z -factors
does not rely on any assumptions about these countert-
erms and can therefore be combined with results for cA,V

from other studies, e.g. [47,52]. The same remark applies to
the b-coefficients multiplying O(am) counterterms, which
have recently been determined for the vector current in
Ref. [53].

Looking beyond direct applications of our results in the
CLS context, it is quite obvious that the precision gains of this
method are generic and could be implemented with any other
choice of Wilson type fermions. One would need to imple-
ment the χSF boundary conditions following Ref. [14], as
well as the χSF correlation functions [20]. We also note that
the computer resources required are rather modest: in fact
our largest lattice size was 164; indeed, the main work for
the present results went into painstakingly following lines of
constant physics and the determination of the corresponding
uncertainties and their propagation to the Z -factors. We have
reported many technical details in the hope that any further
applications of the method will be able to benefit from our
experience. One possible improvement we did not explore
was to measure the derivatives (3.9), (3.10) by computing the
corresponding operator insertions into the correlation func-
tions directly on the tuned ensembles; this was done e.g. in
Refs. [1,2] for the PCAC mass, t0, and other observables,
and this would certainly allow one to further improve on the
precision, as no assumptions on the derivatives need to be
made.

Possible future applications of the χSF include the deter-
mination of the ratio between pseudo-scalar and scalar renor-
malization constants, ZP/ZS. Advantages of the χSF are also
expected for scale-dependent problems, such as the renor-
malization of 4-quark operators, where the contamination by
O(a) effects could be significantly reduced by the mecha-
nism of automatic O(a) improvement [19]. Finally the χSF
offers new methods for the determination of O(a) improve-
ment coefficients, which we hope to explore in the future.
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Table 8 Parameters of the Nf = 2 ensembles and corresponding results for mL and gudA (L/2). The total number of measurements we collected is
given by Nms; these are spaced by 10 MDUs. In the table we also give the percentage PQ of gauge fields with Q = 0

L/a β κ z f mL × 103 gudA (L/2) × 103 PQ (%) Nms

8 5.2 0.1356450 1.28300 − 0.8(1.4) − 2.9(2.2) 99.8 8002

8 5.3 0.1361712 1.28680 0.9(1.0) 1.0(1.5) 99.9 12,002

10 5.3 0.1362811 1.30900 − 3.1(1.7) 6.6(2.3) 98.6 4004

12 5.3 0.1363310 1.32280 0.1(2.3) 7.5(2.8) 93.8 2403

12 5.5 0.1367093 1.31120 1.8(1.6) − 2.0(1.9) 99.4 2403

16 5.7 0.1367058 1.30600 − 0.2(1.4) 1.4(1.6) 100 1803

Table 9 Parameters of the Nf = 3 ensembles and corresponding results for mL and gudA (L/2). The total number of measurements we collected is
given by Nms; these are spaced by 10 MDUs. In the table we also give the percentage PQ of gauge fields with Q = 0

L/a β κ z f mL × 103 gudA (L/2) × 103 PQ (%) Nms

6 3.40 0.1364794 1.33331 −0.19(99) 3.1(1.6) 99.9 31,208

8 3.40 0.1366405 1.37100 −0.3(1.0) −1.4(1.6) 98.4 18,620

10 3.40 0.1367529 1.40741 −2.0(1.8) −2.7(2.5) 92.3 14,416

12 3.40 0.1368158 1.43650 0.5(2.0) −2.0(2.8) 72.9 21,685

6 3.46 0.1367283 1.33580 0.06(84) −0.9(1.5) 99.95 31,208

8 3.46 0.1368457 1.36250 1.2(1.5) 0.2(2.1) 99.4 8002

10 3.46 0.1369430 1.39170 −3.7(1.5) 3.4(2.1) 96.1 12,441

12 3.46 0.1369731 1.40600 2.9(2.2) −0.5(2.8) 83.1 5109

8 3.55 0.1370247 1.35500 −0.3(1.3) −0.4(1.8) 99.85 8002

10 3.55 0.1370827 1.37200 −0.45(95) 0.7(1.3) 99.1 7712

12 3.55 0.1371100 1.38320 −0.6(1.6) 2.0(2.1) 96.4 4004

16 3.55 0.1371487 1.40530 −0.3(1.7) −3.3(1.9) 71.2 6404

8 3.70 0.1370673 1.34250 −0.55(99) 0.8(1.5) 100 8002

10 3.70 0.1370938 1.35164 0.9(1.6) −3.9(2.4) 99.4 3208

12 3.70 0.1371160 1.35860 −2.2(1.3) 0.0(2.0) 99.9 8000

16 3.70 0.1371370 1.36790 −1.0(1.2) 0.7(1.3) 91.9 4004

16 3.85 0.1369595 1.34540 0.6(1.0) 1.4(1.1) 99.1 4354

Table 10 Renormalization constants Zg,l
A,V for the different Nf = 2

ensembles. The four errors refer to (cf. Appendix B): statistical, sys-
tematic coming from the uncertainty on amcr (�m0 ZA,V), systematic

coming from the uncertainty on z∗f (�z f ZA,V), and systematic com-
ing from maintaining the condition (4.2) (�x ZA,V); the latter is only
relevant for the last two ensembles

L/a β κ z f Zg
A Zl

A Zg
V Zl

V

8 5.2 0.1356450 1.28300 0.78022(24)(44)(22) 0.76944(19)(43)(82) 0.746732(128)(443)(94) 0.73849(21)(46)(83)

8 5.3 0.1361712 1.28680 0.78767(16)(34)(15) 0.77754(13)(33)(55) 0.756611(93)(346)(62) 0.74806(14)(36)(55)

10 5.3 0.1362811 1.30900 0.78204(22)(76)(36) 0.77505(18)(74)(135) 0.75000(12)(77)(15) 0.74539(19)(80)(136)

12 5.3 0.1363310 1.32280 0.77957(30)(55)(33) 0.77331(22)(54)(124) 0.74639(15)(56)(14) 0.74327(25)(58)(126)

12 5.5 0.1367093 1.31120 0.79450(18)(57)(24)(111) 0.78955(13)(56)(88)(79) 0.76634(12)(58)(10)(131) 0.76253(15)(60)(89)(86)

16 5.7 0.1367058 1.30600 0.80526(12)(35)(16)(88) 0.802768(86)(345)(587)(624) 0.779955(88)(358)(67)(1039) 0.778014(99)(371)(595)(676)
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Table 11 Renormalization constants Zg,l
A,V, sub for the different Nf = 2

ensembles. Lattice artefacts have been subtracted at O(g2
0) in pertur-

bation theory. The four errors refer to (cf. Appendix B): statistical,
systematic coming from the uncertainty on amcr (�m0 ZA,V), system-
atic coming from the uncertainty on z∗f (�z f ZA,V), and systematic
coming from maintaining the condition (4.2) (�x ZA,V); the latter is
only relevant for the last two ensembles. Comparing with the results of
Table 10, only the mean values, statistical errors, and errors associated

with maintaining the condition (4.2), are different. The mean values and
corresponding statistical errors can be obtained from those of Table 10
through Eq. (3.6). For determining the systematic errors associated with
the uncertainty on amcr and z∗f we use the same estimates for the rele-
vant derivatives as for the results in Table 10: we thus obtain the same
values. The systematic errors associated with maintaining the condition
(4.2), instead, involve different derivatives for the data in Table 10 and
the perturbatively improved ones (cf. Appendix B)

L/a β κ z f Zg
A, sub Zl

A, sub Zg
V, sub Zl

V, sub

8 5.2 0.1356450 1.28300 0.77262(24)(44)(22) 0.76963(19)(43)(82) 0.739864(127)(443)(94) 0.73890(21)(46)(83)

8 5.3 0.1361712 1.28680 0.78016(15)(34)(15) 0.77772(13)(33)(55) 0.749804(92)(346)(62) 0.74846(14)(36)(55)

10 5.3 0.1362811 1.30900 0.77738(22)(76)(36) 0.77519(18)(74)(135) 0.74570(12)(77)(15) 0.74562(19)(80)(136)

12 5.3 0.1363310 1.32280 0.77638(30)(55)(33) 0.77342(22)(54)(124) 0.74343(15)(56)(14) 0.74342(25)(58)(126)

12 5.5 0.1367093 1.31120 0.79138(18)(57)(24)(62) 0.78965(13)(56)(88)(80) 0.76343(12)(58)(10)(88) 0.76268(15)(60)(89)(89)

16 5.7 0.1367058 1.30600 0.80358(12)(35)(16)(49) 0.802833(86)(345)(587)(631) 0.778359(87)(358)(67)(693) 0.778097(99)(371)(595)(699)

Table 12 Renormalization constants Zg,l
A,V for the different Nf = 3

ensembles. The three errors refer to (cf. Appendix B): statistical, sys-
tematic coming from the uncertainty on amcr (�m0 ZA,V), and system-
atic coming from the uncertainty on z∗f (�z f ZA,V). The corresponding

results with the O(g2
0) lattice artefacts subtracted are obtained from those

below by applying Eq. (3.6) to the mean values and corresponding sta-
tistical errors. The systematic uncertainties are instead left unchanged
(cf. Table 11)

L/a β κ z f Zg
A Zl

A Zg
V Zl

V

6 3.40 0.1364794 1.33331 0.77905(18)(38)(15) 0.75899(15)(29)(69) 0.74294(11)(32)(11) 0.72534(18)(33)(71)

8 3.40 0.1366405 1.37100 0.768471(184)(286)(98) 0.75446(14)(32)(58) 0.729230(84)(253)(35) 0.71940(15)(37)(58)

10 3.40 0.1367529 1.40741 0.76315(28)(68)(20) 0.75190(20)(77)(120) 0.721224(93)(603)(72) 0.71552(27)(88)(119)

12 3.40 0.1368158 1.43650 0.76227(41)(54)(18) 0.75037(22)(61)(105) 0.716639(76)(478)(63) 0.71220(33)(70)(104)

6 3.46 0.1367283 1.33580 0.784318(159)(294)(57) 0.76501(13)(22)(44) 0.750160(100)(263)(46) 0.73259(15)(26)(44)

8 3.46 0.1368457 1.36250 0.77445(25)(46)(17) 0.76154(21)(60)(76) 0.738058(142)(416)(69) 0.72806(22)(60)(70)

10 3.46 0.1369430 1.39170 0.76852(21)(75)(27) 0.75933(18)(98)(126) 0.730708(84)(677)(114) 0.72552(21)(97)(116)

12 3.46 0.1369731 1.40600 0.76711(41)(81)(27) 0.75760(29)(105)(123) 0.72743(14)(72)(11) 0.72293(27)(104)(113)

8 3.55 0.1370247 1.35500 0.78311(20)(35)(12) 0.77108(16)(31)(46) 0.749621(124)(301)(68) 0.73993(17)(35)(46)

10 3.55 0.1370827 1.37200 0.77803(13)(29)(10) 0.76936(10)(26)(38) 0.743999(68)(249)(56) 0.73813(11)(29)(38)

12 3.55 0.1371100 1.38320 0.77595(25)(45)(17) 0.76786(21)(40)(64) 0.740868(125)(393)(94) 0.73692(17)(46)(65)

16 3.55 0.1371487 1.40530 0.77378(42)(47)(19) 0.76676(28)(41)(69) 0.73723(10)(40)(10) 0.73456(20)(47)(70)

8 3.70 0.1370673 1.34250 0.796626(144)(279)(61) 0.78571(12)(25)(38) 0.766997(103)(304)(62) 0.75716(12)(27)(38)

10 3.70 0.1370938 1.35164 0.79223(18)(44)(11) 0.78454(16)(39)(71) 0.76247(12)(48)(12) 0.75626(18)(43)(71)

12 3.70 0.1371160 1.35860 0.789547(139)(539)(96) 0.78386(11)(47)(60) 0.759810(87)(588)(98) 0.75576(13)(53)(61)

16 3.70 0.1371370 1.36790 0.787298(140)(372)(70) 0.78283(15)(33)(44) 0.757196(76)(405)(71) 0.754818(99)(363)(440)

16 3.85 0.1369595 1.34540 0.799848(82)(294)(62) 0.796571(88)(259)(386) 0.773042(58)(321)(63) 0.770607(70)(287)(387)

Appendix B: Error propagation, systematic error esti-
mates and comparison with perturbation theory

In this appendix we describe in some detail the elements
required to carry out the steps 2, 3 and 4 sketched in Sect. 3.6,
for the propagation of uncertainties. We first report on the
numerical estimates of the various derivatives (steps 2, 3)
for both Nf = 2 and Nf = 3. These estimates are obtained
on smaller lattices L/a = 8 and L/a = 6, 8 respectively,
and then used for all lattice sizes. We therefore also sum-
marize the expected scaling with L/a of these derivatives

and confirm this to first non-trivial order in perturbation the-
ory. Finally, the interpolation of the Z -factors in L/a (step
4, where necessary) is discussed, first for Nf = 2, where this
step is almost avoidable, and then for Nf = 3, where interpo-
lations are necessary at most β-values, thus requiring a more
thorough analysis.

B.1: Estimating the derivatives: Nf = 2

As described in Sect. 3.6, to estimate the uncertainty in ZA,V

originating from those of amcr and z∗f , we require the deriva-
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tives (3.9) and (3.10). We estimated these through dedicated
simulations at L/a = 8 and β = 5.2, measuring the relevant
quantities for several different values of κ (z f ) at fixed z f
(κ), straddling the tuned values given in Table 8. The results
we obtained for the derivatives (3.9) are:

∂mL

∂m0L
= 1.251(68),

∂mL

∂z f
= 0.048(73),

∂gudA

∂m0L
= −2.719(96),

∂gudA

∂z f
= −2.39(10). (B.1)

We observe that the z f -derivative of mL vanishes within an
uncertainty much smaller than the values of the other deriva-
tives, so that we may safely set it to zero. These results were
then used for all other ensembles and lattice sizes listed in
Table 8. The uncertainty in the tuning of mL and gudA (L/2)

is thus converted to one in mcrL and z∗f . Specifically, one has
that,
(

�(mcrL)

�z∗f

)
= A−1

(
�(mL)

�gudA

)

where A =
( ∂mL

∂m0L
∂mL
∂z f

∂gudA
∂m0L

∂gudA
∂z f

)
, (B.2)

and �(mL), �gudA , �(mcrL) and �z∗f , are the uncertainties

in mL , gudA (L/2), mcrL and z∗f , respectively. For the uncer-

tainties �(mL) and �gudA we took the (absolute) values of
mL and gudA (L/2) measured on the given ensemble (cf. Table
8), plus 2 times the corresponding statistical errors. The cor-
responding systematic errors on the Z -factors can then be
estimated as,

(�m0 ZX)2 + (�z f ZX)2 =
(

∂ZX

∂m0L

)2

(�mcrL)2

+
(

∂ZX

∂z f

)2

(�z∗f )2, X = A, V. (B.3)

Through the very same simulations used to determine the
derivatives (B.1) we obtained,

∂Zg
A

∂m0L
= 0.126(11),

∂Zl
A

∂m0L
= −0.1266(88),

∂Zg
V

∂m0L
= 0.1376(60),

∂Zl
V

∂m0L
= −0.1356(98), (B.4)

and

∂Zg
A

∂z f
= −0.011(12),

∂Zl
A

∂z f
= −0.1092(93),

∂Zg
V

∂z f
= −0.0017(65),

∂Zl
V

∂z f
= −0.108(11). (B.5)

We then used these values at all other L/a- and β-values of
Table 8. More precisely, we propagated the errors accord-
ing to Eq. (B.3) using the measured absolute mean values
to which we added twice the statistical errors. Taking these
results at the coarsest available lattice spacing is a conser-
vative choice which should be safe, also given that some
favourable expected scaling of the derivative towards larger
L/a (s. below) is not taken advantage of. Complementary
information obtained during the tuning runs for finding mcr

and z∗f , further corroborates this assumption. Looking at
Eqs. (B.4), (B.5) it is clear that the l-definitions have in gen-
eral larger systematic uncertainties due to their larger sensi-
tivity to z f . This is then reflected in the Z -factors in Tables
10 and 11 where the uncertainties are listed separately.

B.2: Estimating the derivatives: Nf = 3

For Nf = 3 we proceeded in very much the same way, except
that we carried out a more complete study of L/a = 8 lat-
tices at all β-values, except β = 3.85, and also included
additional L/a = 6 lattices at β = 3.4 and 3.46. As before
for the derivatives (3.9) we used their mean values and set
dmL/dz f = 0, while for the derivatives (3.10) we consid-
ered their (absolute) mean values plus twice their statistical
errors. However, here we did this separately for all β-values,
with β = 3.7 results also applied at β = 3.85. Table 12 con-
tains the results for Zg,l

A,V for all ensembles of Table 9, includ-
ing the different estimated uncertainties. As with Nf = 2,
the soundness of our assumption is supported by experience
gained during the tuning runs to find mcr and z∗f .

B.3: Expected scaling with L/a and perturbative
calculations

B.3.1: Expected L/a-scaling

Using general arguments based on the Symanzik expansion
and P5 parity [20] one may obtain the expected scaling with
the lattice spacing a of the derivatives of the PCAC mass and
gudA with respect to m0 and z f ,

∂gudA

∂z f
= O(1),

∂gudA

∂m0L
= O(1), (B.6)

and

∂mL

∂m0L
= O(1),

∂mL

∂z f
= O(a2). (B.7)

To explain how one arrives at these scaling properties we go
through the example of the PCAC mass:
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∂mL

∂z f
= L

∂

∂z f

(
∂̃0gudA

2gudP

)
= L

(
m′ − m

) ×
gudP;z f
gudP

, (B.8)

where we have introduced the modified PCAC mass m′
through the equation

∂̃0g
ud
A;z f = 2m′gudP;z f , (B.9)

and the notation ; z f indicates differentiation with respect to
z f [20]. The crucial point to note is that this differentiation
merely modifies the fields at the time boundaries and thus
produces a different matrix element for the PCAC relation
and hence the modified PCAC mass m′. Since the difference
m′ −m between two PCAC masses is of O(a) in general, and
the z f -derivative of the P5-even correlation function gudP is
P5-odd and thus of O(a), we arrive at O(a2) for the complete
expression. It is re-assuring to see that this derivative is indeed
found to be small in the simulations.

Similar arguments lead to

∂Zg,l
A,V

∂m0L
= O(a),

∂Zg,l
A,V

∂z f
= O(a), (B.10)

where the derivatives are taken at fixed β, z f and β, am0,
respectively.

B.3.2: Comparison with perturbation theory

Perturbation theory confirms all of these expected scaling
properties.5 The derivatives (3.9) have only been considered
to tree-level, which gives,

∂mL

∂m0L
= 1 + O(g2

0),
∂mL

∂z f
= O(g2

0),

∂gudA

∂m0L
= −3 + O(g2

0),
∂gudA

∂z f
= −6 + O(g2

0). (B.11)

For the mass sensitivity of the axial current we have, to one-
loop order,

∂Zg
A

∂m0L
≈ a

L
×

{
1 − 0.47 × g2

0 + · · · (Wilson action),

1 − 0.43 × g2
0 + · · · (LW action),

(B.12)

∂Zl
A

∂m0L
≈ a

L
× (−0.16 × g2

0 + · · · ) (LW&Wilson action),

(B.13)

and, for the vector current,

∂Zg
V

∂m0L
≈ a

L
×

{
1 − 0.48 × g2

0 + · · · (Wilson action),

1 − 0.44 × g2
0 + · · · (LW action),

(B.14)

5 Note that perturbative results without explicit group factors assume
gauge group SU(3) and fermions in the fundamental representation.

∂Zl
V

∂m0L
≈ a

L
×

{
−0.20 × g2

0 + · · · (Wilson action),

−0.19 × g2
0 + · · · (LW action).

(B.15)

Here, the one-loop coefficients are the values at L/a = 12
and are stable within 3–10% for the range L/a from 8 to
16. Incidentally, this result resolves qualitatively a puzzle
posed by the non-perturbative results, Eq. (B.4), where the
derivatives of the g- and l-definitions are almost the same in
magnitude and opposite in sign, whereas the tree level results
are 1 and 0, respectively, as first noticed in [20].

The z f -sensitivity of the Z -factors is easily described:
all z f -derivatives vanish at tree level and the one-loop
coefficients for the g-definitions are very small and vanish
with a rate roughly proportional to a3 for Zg

A,V and both
gauge actions. On the other hand, the l-definitions behave as
expected (s. above): very similar numbers are obtained which
are, for both gauge actions, within a few percent given by

∂Zl
A,V

∂z f
= −0.32 × g2

0
a

L
+ O(g4

0). (B.16)

For completeness we report the perturbative results for amcr

and z∗f we obtain from the same computation. For the criti-

cal mass to order g2
0, the known values [32,35,54,55] (with

CF = 4/3 for gauge group SU(3)),

amcr = g2
0CF ×

{
−0.2025565(3), (Wilson action),

−0.1509201(1), (LW action),

(B.17)

are already reproduced to 4–5 digits on lattices with L/a in
the range from 8 to 16. As for z∗f , we have, to order g2

0 and
for a/L → 0,

z∗f = 1 + g2
0CF ×

{
0.16759(1), (Wilson action),

0.12923(5), (LW action),
(B.18)

where the Wilson action result is from Ref. [20], whereas the
LW action value is the one of L/a = 16 with a generous
guess for the error. Also in this case the values at finite L/a
from 8 and 16 coincide with these numbers to 4–5 digits
precision.

We observe that the quantitative comparison of non-
perturbative data with bare perturbation theory to order g2

0
works quite well in certain cases. For instance, for Nf = 2
at β = 5.2, we compare the non-perturbative value amcr =
−0.3282 to amcr = −0.3116 + O(g4

0), and similarly for
z∗f = 1.288 we need to compare to z∗f = 1.258+O(g4

0). Also
the non-perturbative current normalization constants them-
selves are reproduced by one-loop perturbation theory at the
5–10% level (compare Table 1 with Tables 4 and 6, 7). On
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the other hand, the majority of the derivatives differ very
significantly, for instance,

∂Zg
A

∂m0L

∣∣∣∣∣
β=5.2,L/a=8

= 0.126(11) vs. 0.057 + O(g4
0),

(B.19)

is off by a factor 2, and for the l-definition the comparison
is between −0.127(9) and −0.023, which differs by a factor
5. For the z f -derivatives we note that perturbation theory
correctly predicts the smallness of the sensitivity in the g-
definition. Quantitatively, the perturbative z f -derivatives of
Zl

A,V at β = 5.2 and L/a = 8 are −0.046 + O(g4
0), to be

compared with Eq. (B.5), so again we observe a difference
by a factor 2.

Finally, for the interpolations in L/a of the data (s. below)
we are also interested in the derivatives of the Z -factors with
respect to x = (a/L)2 at fixed bare coupling. In perturba-
tion theory we can obtain approximate results from Table 1.
Expanding

Rg,l
A,V = 1 + g2

0

(
Z (1)

A,V + kg,lA,V × a2

L2 + O(a3)

)
+ O(g4

0),

(B.20)

the x-derivatives to order g2
0 are approximately given by

∂Zg,l
A,V

∂x
≈ g2

0 × kg,lA,V, (B.21)

provided higher order cutoff effects are small. We find that
this is quite well satisfied, with very similar coefficients for
both Wilson and LW actions, given approximately by

kgA ≈ 0.45, kgV ≈ 0.43, (B.22)

whereas klA,V are ca. 20–30 times smaller in magnitude, for
axial and vector cases, respectively, and come with the oppo-
site sign. Comparing this with the β = 5.3 non-perturbative
data in Eq. (B.23) we see again that for the g-definitions
these derivatives are reproduced by perturbation theory up
to a factor 2, while for the l-definitions, perturbation theory
to O(g2

0) is clearly missing the bulk of the effect. While, as
expected, the non-perturbative derivatives are smaller than
for the g-definitions, it seems that the smallness of the O(g2

0)
term is an accident and higher orders are dominating at these
values of β.

To conclude this comparison, perturbation theory often
gives valuable qualitative information and may provide rea-
sonable starting values for the tuning of am0 and z f . How-
ever, quantitatively, the agreement with non-perturbative data
at lattice spacings of interest for hadronic physics hugely

varies for different observables. Hence, the main practical
use of perturbation theory consists in the perturbative sub-
traction of cutoff effects. Here, even a qualitative agreement,
which may be quantitatively off by a factor 2, still means a
welcome reduction of cutoff effects by 50 percent, and our
data analysis does indeed point to such benefits.

Given this situation, we have refrained from using pertur-
bative data in our estimates of the derivatives, and we have
decided to ignore the favourable O(a) scaling, Eq. (B.10),
when applying the results obtained at L/a = 8 at all other
L/a-values, too. In this respect, the tuning runs for am0 and
z f , both for Nf = 2 and Nf = 3, provided some consistency
checks which make us confident that the chosen procedure
is indeed sound and rather conservative.

B.4: Interpolation in L/a for Nf = 2

Once the uncertainties associated with the conditions (2.13)
have been propagated to ZA,V at given β and L/a, one needs
to keep the LCP condition (4.2) and also take into account the
corresponding uncertainties. The choice (4.2) is made such
that the L/a = 8 results at β = 5.2 satisfy this condition
by definition, while at β = 5.3 we needed to interpolate the
results for L/a = 8, 10, 12 to the target value (L/a)(5.3) =
9.18(21) (cf. Table 3). We have performed a simple linear
interpolation in (a/L)2 which describes the data very well,
similarly to the case Nf = 3 which will be discussed in
more detail below. For β = 5.5 and 5.7, the simulated L/a
values are, within errors, compatible with the target values
in Table 3. Systematic errors related to the condition (4.2)
were then estimated by using the slope of the interpolation
in x = (a/L)2 at β = 5.3 also for the higher β-values. Note
that we interpolate results with bare parameters amcr and z∗f
tuned at the given β- and L/a-values. Hence the derivative
defines the sensitivity to a change of the physical size of
the system. This is a pure cutoff effect of O(a2) on the Z -
factors. Since, by the choice of the variable x , a factor a2 is
also divided out, the x-derivative is expected to be of O(1)
and we expect a smooth dependence of this derivative on β;6

this expectation is in fact confirmed by the results for Nf = 3
where the slope shows a very mild β-dependence over the
whole range (cf. Table 13). As we are looking at an O(a2)

effect in disguise, it is no surprise that the results depend
on whether or not the cutoff effects have been subtracted
perturbatively.

Without perturbative subtraction we obtained the results,

∂Zg
A

∂x
= 0.946(89),

∂Zl
A

∂x
= 0.48(16),

6 We recall that at leading order in PT the x-derivatives of the Z -factors
are of O(g2

0) (cf. Eq. (B.21)). They are thus expected to diminish, and
eventually vanish, as g0 → 0.
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∂Zg
V

∂x
= 1.177(77),

∂Zl
V

∂x
= 0.54(17), (B.23)

while for the perturbatively improved ones we obtain,

∂Zg
A

∂x
= 0.447(89),

∂Zl
A

∂x
= 0.49(16),

∂Zg
V

∂x
= 0.734(77),

∂Zl
V

∂x
= 0.56(17). (B.24)

The corresponding systematic error is then simply taken to
be,

(�x ZX)2 =
(

∂ZX

∂x

)2

(�x)2, X = A, V, (B.25)

which is summed in quadrature to (B.3) and the statistical
error from the Monte Carlo simulations. The uncertainly �x
was estimated as:

�x = |x − x(β)| + 2 σ(x(β)), (B.26)

where x(β) = ((a/L)(β))2 and σ(x(β)) is the associated
error. As a further safeguard we took for the derivatives (B.23)
and (B.24) the (absolute) mean value plus twice their statis-
tical error. We observe that the l-definitions have a milder
L/a-dependence than the g-based ones, unless perturbative
improvement is implemented.

B.5: Interpolation in L/a for Nf = 3

Once the systematic errors deriving from the tuning of am0

and z f have been taken into account, the results for ZA,V

at different L/a and fixed β must be interpolated to either
(L1/a)(β) or (L2/a)(β), depending on the LCP; for com-
pleteness the values of ZA,V prior to interpolation are given
in Table 12. We have considered three types of interpola-
tion in x = (a/L)2, these are: linear using all 4 available
values of L/a (cf. Table 5), linear using only the 3 closest
L/a-values to the target (L1,2/a)(β), and quadratic using all
4 L/a-values. Given this choice, the interpolations needed
for the L1- and L2-LCPs only differ for β = 3.4, where, by
definition, L1/a = 8 is exact, and in the case of linear inter-
polations with 3 points at β = 3.55. Recall that for β = 3.85
no interpolation is required, as L2/a = 16 is exact and this
β-value has been excluded for the L1-LCP.

Starting with the L1-LCP, the different interpolations
describe the data quite well in general, particularly so for
the results at the two smallest lattice spacings and for defini-
tions based on the l-correlators. The most relevant exception
is given indeed by the linear interpolation of Zg

V at β = 3.46
using all 4 values of L/a, for which we find a χ2/d.o.f ≈ 2.2.
It should be noted, however, that the χ2-criterion does not
come with the usual probability interpretation due to the

errors being dominated by systematics. In any case, the inter-
polated values are generally compatible at the 1σ level.

Considering the perturbatively improved data, the qual-
ity of the interpolations is generally improved, and all fits
have excellent χ2. The beneficial effect of the perturbative
improvement can be appreciated by comparing Figs. 10 and
11, where the ZA,V interpolations at β = 3.46 are shown for
the cases before and after perturbative improvement, respec-
tively. This example also illustrates the general feature that,
before perturbative improvement, the l-definitions have a sig-
nificantly milder L/a- and hence x-dependence. In addition,
it is interesting to note that the x-dependence of the Z -factors
does not change significantly over the range of β considered,
but seems in general to diminish, as expected, as β → ∞
(cf. Table 13). Based on these observations, we take as our
final estimates for the Z -factors the results of the quadratic
fits, which have the largest errors.

Regarding the L2-LCP, the situation is more complicated
due to the fact that we need to interpolate the data at the
coarsest lattice spacing, β = 3.4. The quality of the interpo-
lations is still good in general, but there are a few significant
exceptions. We note that all these cases involve g-definitions:
indeed, we obtain a pretty large χ2/d.o.f. for the linear fits of
Zg

V at β = 3.4 and 3.46, around 7.8 and 5 respectively. Also
the quadratic fit for Zg

A at β = 3.4 has a large χ2/d.o.f ≈ 1.8.
While in this case, however, the results of the interpolation are
compatible with those of the linear fits within less than one
standard deviation, in the case of Zg

V at β = 3.4 the discrep-
ancy between the linear and quadratic interpolations is close
to 3 standard deviations. The situation definitely improves
when the perturbatively improved data are considered. In this
case, with the exception of the linear interpolations with 4
points of Zg

V,A, sub at β = 3.4, all fits have very good χ2, and
give compatible results within one standard deviation or so.
As in the case of the L1-LCP, we take as our final estimates
for ZA,V the results of the quadratic fits, which have the best
χ2-values and the largest errors.

Appendix C: Fit formulas for ZA,V(g20)

In this appendix we collect some useful fit formulas for the
ZA,V results, both for Nf = 2 and Nf = 3. We will focus on
the data for Zl

A,V, sub, cf. the discussion in Sect. 6.

C.1: Nf = 2

For Nf = 2 the final ZA,V results are given in Table 4. Over
the whole range of β ∈ [5.2, 5.7], the data for Zl

A, sub is well
described by a simple linear fit function,

Zl
A, sub = c1 + c2g

2
0,
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Fig. 10 L/a-interpolations for
β = 3.46 and the L1-LCP. The
upper two sets of points
correspond to the Zg,l

A results
while the lower two sets are the
Zg,l

V results. The dashed lines
are our preferred, quadratic, fits
to the data, and the interpolation
points are marked by a black
vertical line
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Fig. 11 Same as Fig. 10, for
the Z -factors with perturbative
subtraction of the cutoff effects
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Table 13 Results for ∂Zg,l
A,V/∂x , where x = (a/L)2, as a function of β for Nf = 3 quark-flavours. The derivatives are estimated along the L1-LCP

from the linear fits using the 3 closest L/a-values to the target (L1/a)(β)

β ∂Zg
A/∂x ∂Zl

A/∂x ∂Zg
V/∂x ∂Zl

V/∂x

3.46 0.90(11) 0.44(21) 1.25(09) 0.56(20)

3.55 0.69(11) 0.44(15) 1.10(08) 0.56(16)

3.70 0.81(10) 0.29(16) 0.87(11) 0.24(17)

β ∂Zg
A, sub/∂x ∂Zl

A, sub/∂x ∂Zg
V, sub/∂x ∂Zl

V, sub/∂x

3.46 0.16(11) 0.46(21) 0.58(09) 0.61(20)

3.55 −0.01(11) 0.46(15) 0.45(08) 0.60(16)

3.70 0.12(10) 0.31(16) 0.23(11) 0.28(17)
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c1,2 =
(

1.15183
−0.33176

)

Cov = 10−3 ×
(

0.17228874 −0.15443145
−0.15443145 0.13858044

)
, (C.1)

which has a χ2/d.o.f. = 0.759/2.
Similarly, for the vector current renormalization, Zl

V, sub,
a good description of the data is given by,

Zl
V, sub = c1 + c2g

2
0,

c1,2 =
(

1.18984
−0.39138

)

Cov = 10−3 ×
(

0.19505967 −0.17469696
−0.17469696 0.15663400

)
, (C.2)

which has a χ2/d.o.f. = 0.866/2.

C.1.1: Matching with perturbation theory

It is also interesting to consider fit functions with the correct
perturbative 1-loop behaviour for g2

0 → 0 (cf. Sect. 3.2).
In the case of Zl

A, sub this is possible using a 2-parameter
polynomial fit,

Zl
A, sub = 1 − 0.116458 g2

0 + c1g
4
0 + c2g

6
0,

c1,2 =
(−0.015248

−0.049793

)

Cov = 10−3 ×
(

0.12545440 −0.11198363
−0.11198363 0.10005857

)
, (C.3)

which gives a χ2/d.o.f. = 1.519/2. We note that the same
fit ansatz was used to fit the standard SF results of ref. [8].
Similarly, for the vector current data, Zl

V, sub, we have,

Zl
V, sub = 1 − 0.129430 g2

0 + c1g
4
0 + c2g

6
0,

c1,2 =
(−0.005952

−0.068180

)

Cov = 10−3 ×
(

0.14221117 −0.12684203
−0.12684203 0.11324469

)
, (C.4)

which gives a χ2/d.o.f. = 1.866/2. We stress that although
the latter fit functions encode the expected asymptotic
behaviour far outside the β-range covered by the data, it is
not recommended to use them for β values much outside this
range. For β ∈ [5.2, 5.7], the two sets of fit functions agree
within less than 1σ deviations.

C.2: Nf = 3

For the case Nf = 3, our final ZA,V results are given in
Tables 6 and 7. Having one additional β-value, it is natural
to prefer an interpolation of the L2-LCP data of Table 7. The
higher precision of the data compared to Nf = 2, and the

availability of a fifth data point suggests to use 3-parameter
fits in this case. We find that, for the whole range of β ∈
[3.4, 3.85], Zl

A, sub, is well described by the quadratic fit:

Zl
A, sub = c1 + c2g

2
0 + c3g

4
0, (C.5)

with coefficients and covariance given by

c1,2,3 =
⎛

⎝
1.35510

−0.501106
0.091656

⎞

⎠

Cov = 10−1 ×
⎛

⎝
0.229571866 −0.278151898 0.084105454

−0.278151898 0.337131945 −0.101975449
0.084105454 −0.101975449 0.030856380

⎞

⎠ ,

and χ2/d.o.f. = 0.622/2.
For the vector current data, Zl

V, sub, we use the same fit
function,

Zl
V, sub = c1 + c2g

2
0 + c3g

4
0, (C.6)

and obtain

c1,2,3 =
⎛

⎝
1.32353

−0.459016
0.066995

⎞

⎠

Cov = 10−1 ×
⎛

⎝
0.247244906 −0.299424391 0.090493309

−0.299424391 0.362743281 −0.109668066
0.090493309 −0.109668066 0.033167490

⎞

⎠ ,

which gives a χ2/d.o.f. = 1.801/2.

C.2.1: Matching with perturbation theory

Also in this case we consider fit functions with the correct
perturbative 1-loop behaviour for g2

0 → 0 (cf. Sect. 3.2).
Applying a 3-parameter polynomial fit of the form

Zl
A, sub = 1 − 0.090488 g2

0 + c1g
4
0 + c2g

6
0 + c3g

8
0, (C.7)

we obtain

c1,2,3 =
⎛

⎝
0.127163

−0.178785
0.051814

⎞

⎠

Cov = 10−2 ×
⎛

⎝
0.29841165 −0.36050066 0.10868891

−0.36050066 0.43567202 −0.13140137
0.10868891 −0.13140137 0.03964605

⎞

⎠ ,

which gives a χ2/d.o.f. = 0.403/2. We have also tried var-
ious Padé fits e.g. of the type used in [22]. With these fits
we experienced some technical problems with the bootstrap
technique, when trying to determine the covariance matrix for
the fit parameters. We therefore also tried the automatic dif-
ferentiation procedure of Ref. [56] which completely solved
this technical problem. It turns out, however, that the best
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fit function of this type develops a singularity at a β-value
slightly above 4, and therefore does not provide a smooth
interpolation to the perturbative region. Given the good qual-
ity of the linear fits we did not pursue any further non-linear
options.

Regarding the vector current data, Zl
V, sub, we have,

Zl
V, sub = 1 − 0.100567 g2

0 + c1g
4
0 + c2g

6
0 + c3g

8
0, (C.8)

with

c1,2,3 =
⎛

⎝
0.130134

−0.182926
0.051526

⎞

⎠

Cov = 10−2 ×
⎛

⎝
0.32342173 −0.39055319 0.11769835

−0.39055319 0.47179235 −0.14223242
0.11769835 −0.14223242 0.04289459

⎞

⎠ ,

which gives a χ2/d.o.f. = 1.443/2.
To conclude this appendix, we emphasize again that all

given fits to the data are very good if used as interpolations
in the range of the non-perturbative data. Using them outside
this range is at the user’s own risk, even where perturbative
information is used as a constraint.
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