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Abstract In this article we consider simultaneous T-
dualization of the type II superstring action in a pure
spinor formulation. Simultaneous T-dualization means that
we make T-dualization at the same time along some subset of
initial coordinates denoted by xa . The only imposed assump-
tion stems from the applicability of the Buscher T-dualization
procedure—background fields do not depend on the dualized
directions xa . In this way we obtain the full form of the
T-dual background fields and T-dual transformation laws.
Because the two chiral sectors transform differently, there
are two sets of vielbeins and gamma matrices connected by
a local Lorentz transformation. Its spinorial representation is
the same as in the constant background case. We also found
the full expression for the T-dual dilaton field.

1 Introduction

The importance of T-duality rose after M-theory was discov-
ered. Five consistent superstring theories are connected by
a web of T and S dualities and lead to M-theory [1–9]. For
example, T-duality connects type IIA and type IIB super-
string theories in the sense that after an odd number of T-
dualizations type IIA/B turns into IIB/A, while after an even
number of T-dualizations type IIA/B stays unchanged [10–
13].

T-dualization of type II superstrings was a subject of Refs.
[13–16]. In some articles T-dualization along a single direc-
tion is considered [15,16]. Two chirality sectors transform
under T-duality differently and, consequently, in the T-dual
picture there are two sets of vielbeins and gamma matri-
ces. But there is a local Lorentz transformation connecting
them. In Refs. [15,16], in the case of T-dualization along
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one direction, a spinorial representation of that local Lorentz
transformation is found. A detailed derivation is presented in
Ref. [15].

The case of simultaneous T-dualization of pure spinor type
II superstring theory is investigated in Ref. [13]. By simulta-
neous T-dualization we mean T-dualization along some sub-
set of coordinates at the same time [13,17]. In Ref. [13] we
used the action in the approximation of constant background
fields obtained from the general one given in Ref. [18] after
some assumptions. First, we took all background fields to
be xμ independent, justifying such an assumption with the
possibility of making simultaneous T-dualization along any
subset of coordinates including full T-dualization. The sec-
ond crucial assumption was a technical one. Because the full
action of Ref. [18] is in the form of an expansion in powers
of θα and θ̄ α , for technical simplicity, we took into consid-
eration only basic terms which are θα and θ̄ α independent.
Effectively, only physical superfields (their first components
are identified with supergravity fields) survive and they are
constant. Using the obtained action, in Ref. [13] we investi-
gated simultaneous T-dualization and obtained the transfor-
mation laws connecting initial and T-dual coordinates and
the expressions for T-dual background fields. We presented a
detailed derivation of the local Lorentz transformation in the
spinorial representation. Also we discussed the case of time-
like T-dualization and prove the results of Ref. [19] obtained
in the analysis of an effective action.

The mathematical framework for T-dualization was devel-
oped by Buscher [20,21]. The standard Buscher T-dualization
procedure is applicable if the theory has a shift symmetry.
This means that it is possible to find a coordinate basis such
that the background fields do not depend on some directions
[20–27]. Localization of the symmetry is done in a standard
way—by replacing the world-sheet derivatives ∂±xμ with
covariant ones, D±xμ = ∂±xμ + v

μ
±, where v

μ
± are gauge

fields. In order to make the T-dual theory physically equiv-
alent to the initial one, a term with Lagrange multiplier is
added to the action so that the field strength should be zero.
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As a consequence of the shift symmetry, we can fix the ini-
tial coordinates and obtain the so-called gauge fixed action.
Variation of this action with respect to the Lagrange multi-
plier produces the initial action, while variation with respect
to the gauge fields gives the T-dual action. When one applies
the procedure in the open string case [28,29], then one has
to consider both the equations of motion and the boundary
conditions. Consequently, Dp-branes appear in the analysis.

There are two main approaches in superstring theory—the
Neveu–Schwarz–Ramond (NSR) and the Green–Schwarz
(GS) formalism [22–24]. The former contains explicit world-
sheet supersymmetry, while the latter has explicit space-
time supersymmetry. There are some disadvantages of these
approaches: in the NSR formalism the Ramond–Ramond (R–
R) sector is missing and spacetime supersymmetry is not
manifest, while in the GS formalism quantization can be
performed just in light-cone gauge. In the last two decades
a new approach has appeared, the pure spinor formalism
[18,30–39]. It is pretty similar to the GS approach in the
sense that spacetime supersymmetry is manifest but it con-
tains pure spinors λα and λ̄α satisfying the so-called pure
spinor constraints, λα(�μ)αβλβ = λ̄α(�μ)αβλ̄β = 0. The
pure spinor formalism uses the advantages of the previous
two formalisms and avoids some disadvantages. In this arti-
cle we will use the pure spinor action of type II superstring
from Ref. [18], where a detailed derivation of the action is
presented. The action is given in the form of an expansion
in powers of θα and θ̄ α obtained using (anti)holomorphicity
and nilpotency conditions.

In this article we study simultaneous T-dualization of
the pure spinor superstring type II theory with only one
assumption—background fields are independent of the coor-
dinates xa along which we make T-dualization. This assump-
tion stems from the applicability of the Buscher procedure.
Our main goal is to find the full form of all T-dual background
fields and T-dual transformation laws.

We start with the action (2.1) and decompose the vari-
ables XM and X̄ M (3.1) extracting directions xa along which
we make T-dualization. Then we perform a Buscher T-
dualization procedure along xa obtaining the T-dual trans-
formation laws and T-dual action. The two chirality sec-
tors transform differently under T-dualization. Consequently,
there are two sets of vielbeins and gamma matrices, which
are connected by the local Lorentz transformation repre-
sented by the matrix a�. In order to work with a unique
set of gamma matrices, we introduce proper fermionic vari-
ables keeping unbar fermionic variables unchanged, while
bar variables are corrected by the matrix a�. After introduc-
ing proper fermionic variables, we read the full form of the
T-dual background fields.

We get the explicit expressions for T-dual physical super-
fields. For constant background they turn into the result of
Ref. [13]. The expressions for the auxiliary superfields and

field strengths are completely new in the sense that they are
missed in the constant background case. In order to avoid
long expressions, we will give explicitly just the expression
for the T-dual auxiliary field a Aa

α , (5.25), and the expression
for the field strength a�

a,μ̂ν̂ , (5.26).
The dilaton field is treated within the quantum formalism.

We obtain the most general expression for the T-dual dilaton
field within a pure spinor formulation of type II superstring
theory.

2 Type II pure spinor superstring theory

In this section we will introduce the type II pure spinor super-
string action in compact and expanded form.

The sigma model action for type II superstring of Ref. [18]
is of the form

S =
∫




d2ξ(XT )M AMN X̄ N + Sλ + Sλ̄, (2.1)

where XM and X̄ N are left and right chiral supersymmetric
variables,

XM =

⎛
⎜⎜⎝

∂+θα

�μ

dα
1
2 N

μν

⎞
⎟⎟⎠ , X̄ M =

⎛
⎜⎜⎝

∂−θ̄ α

�̄μ

d̄α
1
2 N̄

μν

⎞
⎟⎟⎠ ,

[M = (α, μ, α, μν)] , (2.2)

of which the components are defined as

�μ = ∂+xμ + 1

2
θα(�μ)αβ∂+θβ,

�̄μ = ∂−xμ + 1

2
θ̄ α(�μ)αβ∂−θ̄ β , (2.3)

dα = πα − 1

2
(�μθ)α

[
∂+xμ + 1

4
(θ�μ∂+θ)

]
,

d̄α = π̄α − 1

2
(�μθ̄)α

[
∂−xμ + 1

4
(θ̄�μ∂−θ̄ )

]
, (2.4)

Nμν = 1

2
wα(�[μν])αβλβ, N̄μν = 1

2
w̄α(�[μν])αβλ̄β .

(2.5)

In the analysis we will use the action in the form (2.1). Just
for completeness, the expanded form of the action is

S =
∫

d2ξ

[
∂+θαAαβ∂−θ̄ β + ∂+θαAαμ�̄μ

+ �μAμα∂−θ̄ α + �μAμν�̄
ν + dαE

α
β∂−θ̄ β

+ dαE
α

μ�̄μ + ∂+θαEα
β d̄β + �μ Ēμ

β d̄β + dαPαβ d̄β

+ 1

2
Nμν�μν,β∂−θ̄ β + 1

2
Nμν�μν,ρ�̄ρ
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+ 1

2
∂+θα�α,μν N̄

μν + 1

2
�μ�μ,νρ N̄

νρ + 1

2
NμνC̄μν

β d̄β

+ 1

2
dαC

α
μν N̄

μν + 1

4
NμνSμν,ρσ N̄

ρσ

]
+ Sλ + Sλ̄,

(2.6)

where we used matrix AMN in explicit form

AMN =

⎛
⎜⎜⎜⎜⎝

Aαβ Aαν Eα
β �α,μν

Aμβ Aμν Ēμ
β �μ,νρ

Eα
β Eα

ν Pαβ Cα
μν

�μν,β �μν,ρ C̄μν
β Sμν,ρσ

⎞
⎟⎟⎟⎟⎠ . (2.7)

The matrix AMN , containing type II superfields, generally
depends on xμ, θα and θ̄ α . The superfields Aμν , Ēμ

α , Eα
μ

and Pαβ are physical superfields, because their first compo-
nents are supergravity fields. The fields in the first column
and first row are auxiliary superfields because they can be
expressed in terms of the physical ones [18]. The remaining
ones, �α,μν , �μν,α , �μ,νρ(�μν,ρ),Cα

μν(C̄μν
α) and Sμν,ρσ ,

are curvatures (field strengths).
The world sheet 
 is parameterized by ξm = (ξ0 =

τ, ξ1 = σ) and ∂± = ∂τ ± ∂σ . The superspace is spanned by
bosonic coordinates xμ (μ = 0, 1, 2, . . . , 9) and fermionic
ones θα and θ̄ α (α = 1, 2, . . . , 16). The variables πα and
π̄α are the momenta canonically conjugated to θα and θ̄ α ,
respectively. The actions for the pure spinors, Sλ and Sλ̄, are
free field actions,

Sλ =
∫

d2ξwα∂−λα, Sλ̄ =
∫

d2ξw̄α∂+λ̄α, (2.8)

where λα and λ̄α are pure spinors and wα and w̄α are their
canonically conjugated momenta, respectively. The pure
spinors satisfy the so-called pure spinor constraints,

λα(�μ)αβλβ = λ̄α(�μ)αβλ̄β = 0. (2.9)

We are going to perform T-dualization along some subset
of the bosonic coordinates xa . So, we will assume that these
directions are Killing vectors and that the background fields
do not depend on them.

3 T-dualization along arbitrary number of coordinates

In this section we will make T-dualization along an arbitrary
subset of the coordinates xa . First we will make a mathemat-
ical preparation extracting the desired directions from vari-
ables XM and X̄ M . Then we will apply a standard Buscher
procedure assuming that the background fields do not depend
on xa .

3.1 Mathematical preparation

In order to make T-dualization along arbitrary bosonic direc-
tions xa , let us split the spacetime index μ into a and the
undualized ones, i . We write the variables XM and X̄ N in
the appropriate form, separating derivatives of T-dualized
coordinates xa ,

XM = PM
a∂+xa + a j

M+ ≡ PM
a∂+xa + PM

i∂+xi + j M+ ,

X̄ M = P̄M
a∂−xa + a j

M− ≡ P̄M
a∂−xa + P̄M

i∂−xi + j M− ,

(3.1)

where

PM
b =

⎛
⎜⎜⎜⎜⎜⎜⎝

0

δab

0

− 1
2 (�bθ)α

0

⎞
⎟⎟⎟⎟⎟⎟⎠

, P̄M
b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

δab

0

− 1
2 (�bθ̄ )α

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (3.2)

PM
j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

0

δi j

− 1
2 (� jθ)α

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, P̄M
j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

0

δi j

− 1
2 (� j θ̄ )α

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (3.3)

a j
M+ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂+θα

1
2 (�aθ)α∂+θα

�i

πα − 1
2 (�iθ)α∂+xi − 1

8 (�μθ)α(θ�μ∂+θ)

1
2 N

μν

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(3.4)

a j
M− =

⎛
⎜⎜⎜⎜⎝

∂−θ̄ α

1
2 (�a θ̄ )α∂−θ̄ α

�̄i

π̄α − 1
2 (�i θ̄ )α∂−xi − 1

8 (�μθ̄)α(θ̄�μ∂−θ̄ )
1
2 N̄

μν

⎞
⎟⎟⎟⎟⎠ .

(3.5)

In comparison with (2.2) we split �μ into �a and �i and
�μ into �a and �i . Consequently, the variables XM and X̄ M

have five block components and AMN is a 5×5 block matrix,
where the index M = (α, a, i, α, μν).

Let us introduce the notation

Ãab = Pa
M AMN P̄N

b = Aab − 1

2
Ēa

α(�bθ̄ )α

− 1

2
(�aθ)αE

α
b + 1

4
(�aθ)αP

αβ(�bθ̄ )β, (3.6)

123
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�̃+ab ≡ 1

κ
Ãab, �̃±ab = B̃ab ± 1

2
G̃ab, (3.7)

J+a = 2

κ
a j

M+ AMN P̄N
a, J−a = − 2

κ
Pa

M AMNa j
N− .

(3.8)

The field B̃ab plays the role of a Kalb–Ramond field and G̃ab

the role of the metric in the process of T-dualization.
Applying this decomposition to the action (2.1), it gets the

form

S =
∫

d2ξ
(
κ∂+xa�̃+ab∂−xb − κ

2
∂+xa J−a

+κ

2
J+a∂−xa + a j

M+ AMNa j
N−
)

, (3.9)

where all terms with derivatives ∂±xa are written explicitly.

3.2 Buscher procedure

Let us perform T-dualization of the action (3.9) along the
xa directions. We assume that the xa directions are Killing
ones; therefore, background fields do not depend on them.
Applying the standard procedure of Buscher T-dualization
we replace ordinary world-sheet derivatives ∂±xa by covari-
ant ones,

D±xa = ∂±xa + va±. (3.10)

In order to make the fields va± unphysical we add the term

SL = κ

2

∫
d2ξ(va+∂−ya − va−∂+ya), (3.11)

where the ya are Lagrange multipliers. Taking into account
that xa are isometry directions we choose the gauge xa = 0,
so that the gauge fixed action takes the form

S f i x =
∫

d2ξ
(
κva+�̃+abv

b− − κ

2
va+ J−a + κ

2
J+av

a−

+ a j
M+ AMNa j

N−
)

+ κ

2

∫
d2ξ(va+∂−ya − va−∂+ya).

(3.12)

By the equations of motion for ya we find that the field
strength is equal to zero,

∂+va− − ∂−va+ = 0; (3.13)

its solution is va± = ∂±xa . In this way the action S f i x turns
to the initial action S.

On the equations of motion for gauge fields va± we have

∂+ya = 2vb+�̃+ba + J+a, (3.14)

∂−ya = −2�̃+abv
b− + J−a . (3.15)

Substituting the expressions for va±,

va+ = 1

2
(∂+yb − J+b) (�̃−1+ )ba, (3.16)

va− = −1

2
(�̃−1+ )ab (∂−yb − J−b) , (3.17)

into S f i x we get the T-dual action

a S =
∫

d2ξ

[
κ

4
∂+ya(�̃

−1+ )ab∂−yb

+ 1

2
∂+ya(�̃

−1+ )ab AbN a j
N− − 1

2
a j

M+ ĀMa(�̃
−1+ )ab∂−yb

+ a j
M+

(
AMN − 1

κ
ĀMa(�̃

−1+ )ab AbN

)
a j

N−
]

, (3.18)

where we used the expressions for the currents (3.4) and (3.5)
and introduced the definitions

ĀMa ≡ AMN P̄N
a, AaM ≡ Pa

N ANM . (3.19)

3.3 T-dual transformation laws

In order to obtain the relation between the initial coordinates
xa and the corresponding T-dual ones ya , we eliminate v±
from the equations of motion for the Lagrange multipliers
ya , va± = ∂±xa , and the other ones for the gauge fields va±
(3.14) and (3.15),

∂±ya ∼= −2�̃∓ab∂±xb + J±a . (3.20)

Using the expressions for the currents a j M± = j M± +
PM

i ∂±xi given in Eq. (3.1), we get the currents (3.8) in
the form

J±a = J̄±a − 2�̃∓ai∂±xi , (3.21)

where we introduced the notation

J̄+a = 2

κ
j M+ AMN P̄N

a, J̄−a = − 2

κ
Pa

M AMN j N− ,

(3.22)

�̃+ia ≡ 1

κ
Pi

M AMN P̄N
a, �̃+ai = 1

κ
Pa

M AMN P̄N
i .

(3.23)

Now we can rewrite the transformation law (3.20) in the
form

∂±ya ∼= −2�̃∓ab∂±xb − 2�̃∓ai∂±xi + J̄±a, (3.24)

while the inverse one is

∂±xa ∼= −2κθ̃ab± �̃∓bi∂±xi − κθ̃ab± (∂±yb − J̄±b). (3.25)

Here we introduced the field θ̃ab± :

θ̃ab± = − 2

κ
(ĝ−1�̃±G̃−1)ab, ĝab = (G̃ − 4B̃G̃−1 B̃)ab,

(3.26)

such that

θ̃ab± �̃∓bc = 1

2κ
δac. (3.27)

123



Eur. Phys. J. C (2018) 78 :1030 Page 5 of 11 1030

Note that the form of the transformation laws is the same
as in the case of constant background fields [13]. But now
all background fields depend on the undualized coordinates
(θα , θ̄ α , xi ).

Let us find the relation between the complete T-dual coor-
dinates a Xμ̂ = {ya, xi } and the initial ones xμ. Together with
T-dual transformation laws (3.24), which relate ya with xμ,
we can simply add ∂±xi = ∂±xi and rewrite both relations
in the form

∂+(a X)μ̂ = (Q̄−1T )μ̂ν∂+xν + J̄+μ̂,

∂− (a X)μ̂ = (Q−1T )μ̂ν∂−xν + J̄−μ̂. (3.28)

The matrices

Qμ̂ν =
(

κθ̃ab+ 0
−2κ�̃−icθ̃

cb+ δij

)
,

Q̄μ̂ν =
(

κθ̃ab− 0
−2κ�̃+icθ̃

cb− δij

)
, (3.29)

and theirs inverses

Q−1
μν̂

=
(

2�̃−ab 0

2�̃−ib δ
j
i

)
, Q̄−1

μν̂
=

(
2�̃+ab 0

2�̃+ib δ
j
i

)
,

(3.30)

perform T-dualization for the vector indices. The currents are
defined as

J̄±μ̂ =
(
J̄±a

0

)
. (3.31)

3.4 Two sets of vielbeins and gamma matrices

Different chiralities transform differently as in Refs. [13,15,
16]. Consequently, there are two types of T-dual vielbeins,
defined by

ae
aμ̂ = eaν(Q

T )νμ̂, aē
aμ̂ = eaν(Q̄

T )νμ̂, (3.32)

producing the same T-dual metric aGμ̂ν̂ , where hat indices
are from the T-dual picture. Two types of vielbeins produce
two sets of gamma matrices in the T-dual picture,

a�μ̂ = (ae
−1)μ̂a �a = (ae

−1�)μ̂,

a�̄μ̂ = (aē
−1)μ̂a �a = (aē

−1�)μ̂, (3.33)

which are connected by the local Lorentz transformation

a�̄μ̂ = a�
−1

a�μ̂ a�. (3.34)

Here a� is the spinorial representation of the Lorentz trans-
formation

a�
−1 �a

a� = (�−1)ab �b. (3.35)

The underlined indices are Lorentz ones (denoted by a, b).
The matrix �a

b is a matrix of the Lorentz transformation and
it is given by the expression

�a
b = eaμ(Q−1 Q̄)Tμ

ν(e
−1)νb. (3.36)

In T-dual theory, as a consequence of two types of � matri-
ces, there are two types of T-dual supersymmetry invariant
variables:

adα = aπα − 1

2
(a�

μ̂
aθ)α(∂+ a Xμ̂ + 1

4
aθa�μ̂∂+ aθ),

(3.37)

ad̄α = aπ̄α − 1

2

(
a�̄

μ̂
a θ̄

)
α

(
∂− a Xμ̂ + 1

4
a θ̄a�̄μ̂∂− a θ̄

)
.

(3.38)

In order to work with one set of gamma � matrices we have to
introduce proper variables. We can rewrite the bar expression
as

(a� ad̄)α = (a� aπ̄)α − 1

2
(a�

μ̂
a� a θ̄ )α

×
(

∂− a Xμ̂ + 1

4
a θ̄ a�

−1
a�μ̂ a� ∂−a θ̄

)
.

(3.39)

Let us preserve the expressions for the unbar variables, aθα =
θα and aπα = πα , and change the bar variables,

•θ̄ α ≡ a�
α

β a θ̄
β , •π̄α ≡ a�α

β
aπ̄β . (3.40)

Now the forms of the transformation of the supersymmetric
invariants are the same. In short, the fermionic index without
bar is unchanged, while the bar fermionic index is multiplied
by a�.

The further story, finding the spinorial representation of
the local Lorentz symmetry a� connecting the two kinds of
vielbeins, is the same as in [13,15,16] and we will not repeat
it. We will just write the final expression for the matrix a�

in the spinorial representation,

a� =
√√√√ d∏

i=1

Gaiai a� (i �11)d , (3.41)

�11 = (i)
D(D−1)

2
1∏D−1

μ=0 Gμμ

εμ1μ2...μD�μ1�μ2 . . . �μD .

(3.42)

The matrix �11 has a normalization constant to satisfy the
condition (�11)2 = 1. Also we have

a� = (i)
d(d−1)

2

d∏
i=1

�ai = (i)
d(d−1)

2 �a1�a2 · · · �ad , (3.43)

123
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so that

(a�)2 =
d∏

i=1

Gaiai = 1∏d
i=1 Gaiai

. (3.44)

This matrix is introduced in analogy to �11 in the sub-
space spanned by the T-dualized directions xa . The symbol
d denotes the number of T-dualized coordinates xa (a =
1, 2, . . . , d).

4 Relations between initial and T-dual background
fields

In this section we will find the most general form of the T-
dual background fields in terms of the initial ones in the type
II pure spinor superstring under simultaneous T-dualization.
We will also discuss the form of the T-dual dilaton field
obtained in the quantization procedure.

We expect that the T-dual action (3.18) has the form of
the initial action (2.1) but expressed in terms of the T-dual
variables and background fields,

a S =
∫

d2ξ a X
T
M̂a A

M̂ N̂
a X̄ N̂ , (4.1)

where in analogy with (3.1) we have

a X M̂ = a P̂M̂
a∂+ya + �

a j+M̂ ,

a X̄ M̂ = a
ˆ̄PM̂a∂−ya + �

a j̄−M̂ ,
[
M̂ = (α, μ̂, α, μ̂ν̂)

]
.

(4.2)

Let us recall that the index μ̂ means that the index of the
T-dualized direction, a, goes up if it was down in the initial
theory and vice versa, while the index i keeps the position.

The decomposition of the T-dual variables a X M̂ and a X̄ M̂
has a similar form to the initial ones, XM and X̄ M . We express
the T-dual currents �

a j+M̂ and �
a j̄−M̂ in terms of the initial ones

a j M± as

�
a j+M̂ = ωM̂N a j

N+ , �
a j̄−M̂ = ω̄M̂N a j

N− , (4.3)

in order to make a comparison of the actions (4.1) and (3.18),
which will produce the relations between T-dual and initial
background fields. We did not write free field actions for the
pure spinors, Sλ and Sλ̄, because they carry fermionic indices
while we T-dualize along some subset of bosonic indices.
Thus, they are not changed in the process of T-dualization.

Following the form of the initial theory we introduced for
the T-dual case, we have

a P̂M̂
a =

⎛
⎜⎜⎜⎜⎝

0
δa

b

0
κ
2 θ̃ab− (�bθ)α

0,

⎞
⎟⎟⎟⎟⎠ , a

ˆ̄PM̂a =

⎛
⎜⎜⎜⎜⎝

0
δa

b

0
κ
2 θ̃ab+ (�b

•θ̄ )β�β
α

0

⎞
⎟⎟⎟⎟⎠ . (4.4)

The matrices ω and ω̄ are of the form

ωM̂N =

⎛
⎜⎜⎜⎜⎝

δα
β 0 0 0 0

�̃−ai (θ�i )α 2�̃−ab 0 0 0
−(θ�i )α 0 δi j 0 0

κ
2 �̃+ic θ̃

cb− (�bθ)α(θ�i )β − 1
2 (�i θ)α(θ�i )β 0 (�i θ)α − κ�̃+ic θ̃

cb− (�bθ)α δα
β 0

0 0 0 0 (Q̄−1)T
μ̂ρ

(Q̄−1)T
ν̂λ

⎞
⎟⎟⎟⎟⎠ , (4.5)

ω̄M̂N =

⎛
⎜⎜⎜⎜⎝

�α
β 0 0 0 0

�̃+ai (
•θ̄�i )β �β

α 2�̃+ab 0 0 0
−(•θ̄�i )β�β

α 0 δi j 0 0
( κ

2 �̃−ic θ̃
cb+ (�b

•θ̄ )γ (•θ̄�i )δ − 1
2 (�i •θ̄ )γ (•θ̄�i )δ)�

γ
α�δ

β 0 [(�i •θ̄ )β − κ�̃−ic θ̃
cb+ (�b

•θ̄ )β ]�β
α a�α

β 0
0 0 0 0 (Q−1)T

μ̂ρ
(Q−1)T

ν̂λ

⎞
⎟⎟⎟⎟⎠ .

(4.6)

We also will need the inverse matrices, ω−1 and ω̄−1,

(ω−1)MN̂ =

⎛
⎜⎜⎜⎜⎝

δα
β 0 0 0 0

− 1
2 (�̃−1− )ab�̃−bi (θ�i )α

1
2 (�̃−1− )ab 0 0 0

(θ�i )α 0 δi j 0 0
κ
2 �̃+ic θ̃

cb− (�bθ)α(θ�i )β − (�i θ)α(θ�i )β 0 κ�̃+ic θ̃
cb− (�bθ)α − (�i θ)α δα

β 0

0 0 0 0 (Q̄T )μρ̂ (Q̄T )νλ̂

⎞
⎟⎟⎟⎟⎠ , (4.7)

(ω̄−1)MN̂ =

⎛
⎜⎜⎜⎜⎜⎝

�α
β 0 0 0 0

− 1
2 (�̃−1+ )ab�̃+bi (

•θ̄�i )α�α
β

1
2 (�̃−1+ )ab 0 0 0

(• θ̄�i )α�α
β 0 δi j 0 0[

κ
2 �̃−ic θ̃

cb+ (�b
• θ̄ )α(• θ̄�i )β − (�i

• θ̄ )α(• θ̄�i )β

]
�α

γ �β
δ 0 [κ�̃−ic θ̃

cb+ (�b
•θ̄ )α − (�i

• θ̄ )α]�α
β �α

β 0

0 0 0 0 (QT )μρ̂ (QT )νλ̂

⎞
⎟⎟⎟⎟⎟⎠

. (4.8)
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During the calculation of the above matrices we used the
expressions for the T-dual gamma matrices with upper and
lower indices,

a�μ̂ = −(Q−1)T
μ̂ν

�ν =
(
a�a

a�
i

)
=

(
2�̃+ab�

b + 2�̃+ai�
i

−�i

)
,

(4.9)

a�
μ̂ = −Qμ̂ν�ν =

(
a�

a

a�i

)
=

( −κθ̃ab+ �b
−�i + 2κ�̃−ic θ̃

cb+ �b

)
,

(4.10)

a �̄μ̂ = −(Q̄−1)T
μ̂ν

�ν =
(
a �̄a
�̄i

)
=

(
2�̃−ab�

b + 2�̃−ai�
i

−�i

)
,

(4.11)

a �̄
μ̂ = −Q̄μ̂ν�ν =

(
a �̄

a

a �̄i

)
=

( −κθ̃ab− �b
−�i + 2κ�̃+ic θ̃

cb− �b

)
.

(4.12)

The explicit form of the action given in (4.1) is

a S =
∫

d2ξ
(
∂+ya P̂

T a
M̂ a A

M̂ N̂ ˆ̄PN̂ b∂−yb

+ ∂+ya P̂
T a

M̂ a A
M̂ N̂ ω̄N̂ P a j

P−
+ a j

N+ ωT
N M̂ a A

M̂ N̂ ˆ̄PN̂ b∂−yb

+ a j
M+ ωT

M P̂ a A
P̂ Q̂ω̄Q̂N a j

N−
)

. (4.13)

Comparing this action with that from Eq. (3.18) we obtain
the T-dual fields in terms of the initial ones,

P̂T a
M̂ a A

M̂ N̂ ˆ̄PN̂ b = κ

4
(�̃−1+ )ab �⇒ a�̃

ab+ = 1

4
(�̃−1+ )ab,

(4.14)

a A
aM̂ = 1

2
(�̃−1+ )ab AbP (ω̄−1)PM̂ , (4.15)

a Ā
M̂a = −1

2
(ωT )−1 M̂N

ĀNb(�̃
−1+ )ba, (4.16)

a A
M̂ N̂ = (ωT )−1 M̂ P

(
APQ − 1

κ
ĀPa(�̃

−1+ )ab AbQ

)
(ω̄−1)QN̂ ,

(4.17)

where

a A
aN̂ ≡ P̂T a

M̂ a A
M̂ N̂ , a Ā

M̂a ≡ a A
M̂ N̂ ˆ̄PN̂ a . (4.18)

The next step is to express the components of the T-dual
fields in terms of the components of the initial background
fields. Also in order to find the transformation law for the
physical superfield components in AMN we need the explicit
expressions

a A
aN̂ =

⎛
⎜⎜⎜⎜⎜⎜⎝

a Aa
α + κ

2 θ̃ab− (�bθ)β a Eβ
α

a Aab + κ
2 θ̃ab− (�bθ)β a Eβb

a Aa
i + κ

2 θ̃ab− (�bθ)β a Eβ
i

a Ēaβ + κ
2 θ̃ab− (�bθ)α a Pαβ

a�
a,μ̂ν̂ + κ

2 θ̃ab− (�bθ)α aCα,μ̂ν̂

⎞
⎟⎟⎟⎟⎟⎟⎠

T

, (4.19)

a Ā
M̂a =

⎛
⎜⎜⎜⎜⎜⎜⎝

a Aα
a + κ

2 a Eα
β θ̃ab+ (�b

•θ̄ )γ �γ
β

a Aab + κ
2 a Ēaβ θ̃bc+ (�c

•θ̄ )γ �γ
β

a Ai
a + κ

2 a Ēi
β θ̃ab+ (�b

•θ̄ )γ �γ
β

a Eαa + κ
2 a Pαβ θ̃ab+ (�b

•θ̄ )γ �γ
β

a�
μ̂ν̂,a + κ

2 aC̄ μ̂ν̂,β θ̃ab+ (�b
•θ̄ )γ �γ

β

⎞
⎟⎟⎟⎟⎟⎟⎠

, (4.20)

AaM =

⎛
⎜⎜⎜⎜⎜⎜⎝

Aaα − 1
2 (�aθ)βEβ

α

Aab − 1
2 (�aθ)αEα

b

Aai − 1
2 (�aθ)αEα

i

Ēa
α − 1

2 (�aθ)β Pβα

�a,μν − 1
2 (�aθ)αCα

μν

⎞
⎟⎟⎟⎟⎟⎟⎠

T

, (4.21)

ĀMa =

⎛
⎜⎜⎜⎜⎜⎜⎝

Aαa − 1
2 Eα

β(�a θ̄ )β

Aab − 1
2 Ēa

β(�bθ̄ )β

Aia − 1
2 Ēi

β(�a θ̄ )β

Eα
a − 1

2 P
αβ(�a θ̄ )β

�μν,a − 1
2 C̄μν

β(�a θ̄ )β

⎞
⎟⎟⎟⎟⎟⎟⎠

. (4.22)

In order to describe the dilaton field � in the standard
formulation one should add a Fradkin–Tseytlin term, as in
[16]

S� =
∫

d2ξ
√−gR(2)�, (4.23)

to the initial action. Here R(2) is the scalar curvature of
the world sheet. It is well known that the dilaton field
transformation under T-dualization is considered within the
path integral formalism [13–16,20,21]. For a constant back-
ground the Gaussian path integral produces the expression
(det �̃+ab)

−1.
In this article we T-dualize just along a subset of coordi-

nates xa and assume that all background fields are indepen-
dent of xa . Consequently, gaussian integration over gauge
fields va± in a path integral produces the same result as in
the so-called constant background case [13]; thus we get the
form of the T-dual dilaton field,

a�(xi , θα, θ̄α) = �(xi , θα, θ̄α) − ln det(2�̃+ab). (4.24)

Using the expression for �̃+ab (3.7) in the form

�̃+ab = �+ab − �ab, (4.25)

where �ab is defined as

�ab = 1

2κ
Ēa

α(�bθ̄ )α + 1

2κ
(�aθ)αE

α
b

− 1

4κ
(�aθ)αP

αβ(�bθ̄ )β, (4.26)

we get

a�(xi , θα, θ̄α) = �(xi , θα, θ̄α) − ln det(2�+ac)

− ln det(1 − �−1+ �)cb. (4.27)

The quantity �ab measures the difference between general
case considered in this article and the case considered in
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Ref. [13]. Note that the expressions for the background fields
in Ref. [13] have been obtained from the general ones in
Ref. [18] after elimination of all θα and θ̄ α dependent terms
in the action. In that manner in Ref. [13] we omitted all
terms in �ab. From Eq. (4.26) we see that ignoring θα and θ̄ α

dependent terms in [13] prevents us from getting a complete
solution for the T-dual dilaton.

5 The components of the T-dual matrix a AM̂ N̂

In this section we will write explicit expressions for the T-
dual superfields and, considering that the background fields
are constant, compare the results with the already known
constant background case.

5.1 The physical superfields and comparison with constant
background case

In order to find the T-dual field a Aab we take into consider-
ation some particular component of Eqs. (4.15)–(4.17).

The second component of Eq. (4.15) (M̂ → b). It produces
the equation

a A
ab + κ

2
θ̃ab− (�bθ)α a E

αb

= 1

2
(�̃−1+ )ac

[
Acd − 1

2
(�cθ)αEα

d

]
· 1

2
(�̃−1+ )db. (5.1)

We treat the left-hand side and the right-hand side of this
equation as an expansion in powers of θα . Equating appro-
priate coefficients we obtain the T-dual fields a Aab and a Eαa ,

a A
ab = 1

4
(�̃−1+ )ac Acd(�̃

−1+ )db,

a E
αa = 1

2
(�̃−1− )abEb

α.
(
�̃− = −�T+

)
. (5.2)

Using the redefinitions Aab = κ�+ab and a Aab = κ a�
ab+

and the relation θ̃ab− �̃+bc = 1
2κ

δac, we get

a�
ab+ = 1

4
(�̃−1+ )ac�+cd(�̃

−1+ )db, (5.3)

a E
αa = κθ̃ab+ Eα

b. (5.4)

In the case of constant background fields (�ab = 0), Eq.
(5.3) transforms into

a�
ab+ = 1

4
(�−1+ )ab = κ

2
θ̂ab− , (5.5)

because in that case �̃+ab = �+ab and θ̃ab± → θ̂ab± .
Equation (5.4) in the limit of constant background fields

is in accordance with the appropriate result obtained in [13].
Here we have in mind that the field �α

μ is a zeroth order term
in the expansion of Eα

μ [18], which produces

a�
αa = κθ̂ab+ �α

b . (5.6)

The second component of Eq. (4.16) (M̂ → a). It produces

a A
ab + κ

2
a Ē

aβ θ̃bc+ (�c
•θ̄ )γ �γ

β

= −1

2

(
−1

2

)
(�̃−1+ )ac

[
Acd − 1

2
Ēc

β(�d θ̄ )β

]
(�̃−1+ )db,

(5.7)

and we again get the expression for a Aab, but we additionally
have

a Ē
aα = κθ̃ab− Ēb

β�β
α. (5.8)

In the constant background case Ēa
α → �̄a

α . Consequently,
here we also have the correct constant background limit,

a�̄
αa = κθ̂ab− �̄b

β�β
α. (5.9)

It is useful to observe the fact that the expressions for
the T-dual fields a Ēaα and a Eaα can be obtained analyz-
ing the fourth components of Eqs. (4.15) and (4.16), respec-
tively. Also note that θ̂ab± appearing in (5.6) and (5.9) is a
constant tensor, defined as the inverse of the constant tensor
�+ab [13].

The third component of Eq. (4.15) (M̂ → i). Let us con-
sider the equation which follows from the third component
of Eq. (4.15) (M̂ → i),

a A
a
i + κ

2
θ̃ab− (�bθ)βa E

β
i

= 1

2
(�̃−1+ )ab

(
Abj − 1

2
(�bθ)βE

β
i

)

+1

2
(�̃−1+ )ab

(
Ēb

α − 1

2
(�bθ)β P

βα

)

×
(
κ�̃−icθ̃

cb+ (�b
•θ̄ )γ − (�i

•θ̄ )γ

)
�γ

α. (5.10)

Extracting the zero components in the expansion we get

a A
a
i = 1

2
(�̃−1+ )ab Abi . (5.11)

In order to make the comparison with the constant back-
ground case easier, we introduce the following notation:

a A
a
i = κ a�

a
+i , Aai = κ�+ai , (5.12)

and, using Eq. (3.27), we obtain

a�
a
+i = κθ̃ab− �+bi . (5.13)

Treating the third component of Eq. (4.16) (M̂ → i),

a Ai
a + κ

2
a Ēi

αθ̃ab+ (�b
•θ̄ )β�β

α

= −1

2

(
Aib − 1

2
Ēi

β(�bθ̄ )β

)
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−1

2

(
κ�̃+icθ̃

cb− (�bθ)α − (�iθ)α

)

×
(
Eα

d − 1

2
Pαβ(�d θ̄ )β

)
(�̃−1+ )da, (5.14)

in the same way as in the previous case, we have

a�+i
a = −κ�+ibθ̃

ba− . (5.15)

The last two expressions, (5.13) and (5.15), in the limit of the
constant background fields are in full correspondence with
the result obtained in the constant background case [13].

The (M̂ → i, N̂ → j) component of Eq. (4.17). Consider-
ing the appropriate component in Eq. (4.17) (M̂ → i, N̂ →
j), we obtain

a Ai j = Ai j − 1

κ

[
Aia − 1

2
Ēi

α(�a θ̄ )α

]
(�̃−1+ )ab

×
[
Abj − 1

2
(�bθ)δE

δ
j

]
. (5.16)

Using the redefinitions, Ai j = κ�+i j and a Ai j = κ a�+i j ,
this relation can be rewritten in the form

a�+i j = �+i j − 1

κ2

[
κ�+ia − 1

2
Ēi

α(�a θ̄ )α

]
(�̃−1+ )ab

×
[
κ�+bj − 1

2
(�bθ)δE

δ
j

]
. (5.17)

In the constant background case explicit θα and θ̄ α depen-
dence disappears and �̃+ab = �+ab. Consequently, we get

a�+i j = �+i j − 2κ�+ia θ̂
ab− �+bj , (5.18)

which is exactly the relation obtained in the constant back-
ground case [13].

Equation (4.17) where (M̂ → i, N̂ → α), (M̂ →
α, N̂ → i) and (M̂ → α, N̂ → β). Also we read in this
case, respectively,

a Ēi
α =

{
Ei

γ − 1

κ

[
Aia − 1

2
Ēi

β(�a θ̄ )β

]
(�̃−1+ )ab

×
[
Ēb

α − 1

2
(�bθ)δP

δγ

]}
�γ

α, (5.19)

a E
α
i = Eα

i − 1

κ

[
Eα

a − 1

2
Pαβ(�a θ̄ )β

]
(�̃−1+ )ab

×
[
Abi − 1

2
(�bθ)γ E

γ
i

]
, (5.20)

a P
αβ =

{
Pαγ − 1

κ

[
Eα

a − 1

2
Pαδ(�a θ̄ )δ

]
(�̃−1+ )ab

×
[
Ēb

γ − 1

2
(�bθ)εP

εγ

]}
�γ

β. (5.21)

In the constant background limit, which effectively means
that we put θα = θ̄ α = 0, Aia = κ�+ia , Abi = κ�+bi ,

(�̃−1+ )ab = 2κθ̂ab− and Pαβ = 1
2κ
e

�
2 Fαβ , we obtain the

relations from [13],

a�̄i
α =

[
�̄i

β − 2κ�+ia θ̂
ab− �̄b

β
]
�β

α, (5.22)

a�
α
i = �α

i − 2κ�α
a θ̂

ab− �+bi , (5.23)

e
a�
2 a F

αβ =
[
e

�
2 Fαγ − 4κ�α

a θ̂
ab− �̄b

γ
]
�γ

β. (5.24)

Our compact result of the general case (4.15)–(4.17) in
components has the form (5.1), (5.7), (5.10), (5.14), (5.16)
and (5.19)–(5.21). It gives the right limit for the constant
background fields (5.5), (5.6), (5.9), (5.13), (5.15), (5.18)
and (5.22)–(5.24).

5.2 T-dual auxiliary background fields and field strengths

The part of the main result beside the full expressions for
the T-dual physical superfields are the expressions for the
T-dual auxiliary superfields (the first column and the first

row in matrix a AM̂ N̂ ) and expressions for the T-dual field

strengths (the last column and the last row in matrix a AM̂ N̂ ).
These background fields are absent in the already considered
constant background case [13], because the imposed assump-
tions eliminated them from the theory (a detailed argumen-
tation is in [13] and [18]).

In order to read all mentioned background fields we use the
appropriate components of (4.15)–(4.17). Fixing the indices
M̂ and N̂ , we get the equations which we treat, as in the pre-
vious cases, as expansions in powers of θα and θ̄ α . Equating
the appropriate coefficients in the expansions, we read the
form of the T-dual background fields. Because there are many
expressions and some of them are long, we write just a few of
them. For example, we give the form of the background field
T-dual to the Aaα and the field strength T-dual to the �a,μν .
Using Eqs. (4.15) and (4.19)–(4.22), after straightforward
calculation, we get

(M̂ → α) a A
a
α = κθ̃ab− Abβ a�

β
α, (5.25)

(M̂ → μ̂ν̂) a�
a,μ̂ν̂ = κθ̃ab− �b,ρλ(Q

T )ρμ̂(QT )λν̂ , (5.26)

while considering the component of Eq. (4.17) where M̂ →
μ̂ν̂ and N̂ → λ̂ρ̂, we obtain

a S
μ̂ν̂,λ̂ρ̂ = Q̄μ̂μ Q̄ν̂ν

[
Sμν,λρ −

(
�μν,a − 1

2
C̄μν

α(�a θ̄ )α

)

· θ̃ab−
(

�b,λρ − 1

2
(�bθ)βC

β
λρ

)]
(QT )λλ̂(QT )ρρ̂ .

(5.27)

6 Concluding remarks

In this paper we have investigated simultaneous T-dualization
of the pure spinor type II superstring described by the action
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of Ref. [18]. We assumed that the background fields do
not depend on the coordinates along which we make the
T-dualization. Our goal was to find the form of the T-
dual background fields, especially T-dual auxiliary fields
and field strengths which are not present in the constant
background case. To be compared to the articles [15,16],
where single direction T-dualization is performed, here we
demonstrated simultaneous T-dualization along some subset,
xa (a = 1, 2, . . . d), of the spacetime directions. Also fol-
lowing Refs. [13,15,16], we found the form of the spinorial
representation of the local Lorentz transformation a� occur-
ring in the T-dual picture.

The action we used in this article is type II superstring
action in the pure spinor formulation of Ref. [18]. It is derived
using nilpotency and (anti)holomorphicity conditions as an
expansion in powers of θα and θ̄ α . In Ref. [13] we considered
a constant background version of this action obtained under
certain assumptions—the background fields are independent
of all xμ coordinates and we take just the first components
in the expansions of the background fields. In this way we
lost information as regards the form of the T-dual auxiliary
background fields and field strengths, and the complete form
of the T-dual physical superfields.

It is difficult to work with the expanded form of the action
(2.6), because it has a large number of terms. We used a con-
densed form of the action (2.1) and extracted in the variables
XM and X̄ M terms containing derivatives of the directions
along which we T-dualize, ∂±xa . The remaining part of these
variables is denoted as the current a j M± . We inserted that
expression into the action and made T-dualization along the
xa direction. On the equation of motion for gauge fields va±
we obtained the T-dual action expressed in terms of T-dual
coordinates ya and currents a j M± . Under T-dualization the
form of the action is preserved and consequently, expressing
the T-dual action in terms of the T-dual variables and fields,
we finally got all T-dual background fields in the considered
general case. In order to compare them with the constant
background case of Ref. [13] we explicitly wrote the expres-
sions for the physical superfields. In the limit of the con-
stant background fields, the obtained expressions turn into
the expressions of Ref. [13].

Combining the equations of motion for the Lagrange mul-
tipliers ya and for the gauge fields va± we obtain the T-dual
transformation laws (3.28) in the most general case of a type
II pure spinor superstring. Let us stress that we consider the
general case and that all background fields now depend on
the undualized directions xi , θα and θ̄ α . Because the two
chiral sectors transform differently, there are two sets of viel-
beins and gamma matrices. We obtain the general form of the
local Lorentz transformation in the spinorial representation

a� connecting the two chiral sectors. In order to work with
properly defined variables and background fields, fermions
with bar index are multiplied by the matrix a�.

The T-dual transformation of the dilaton field �(xi , θα,

θ̄α) is treated within the quantum formalism. In this paper,
using the matrices �̃+ab and a�̃

ab+ , we obtained the general
expression for the T-dual dilaton field (4.24).

Consequently, in this article we performed the Buscher
simultaneous T-dualization of type II superstring in a pure
spinor formulation and found the general form of the T-dual
transformation laws and the full expressions for the T-dual
background fields.
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