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Abstract In the framework of QED with a strong back-
ground, we study particle creation (the Schwinger effect)
by a time-dependent inverse square electric field. To this
end corresponding exact in- and out-solutions of the Dirac
and Klein–Gordon equations are found. We calculate the
vacuum-to-vacuum probability and differential and total
mean numbers of pairs created from the vacuum. For elec-
tric fields varying slowly in time, we present detailed calcula-
tions of the Schwinger effect and discuss possible asymptotic
regimes. The obtained results are consistent with universal
estimates of the particle creation effect by electric fields in the
locally constant field approximation. Differential and total
quantities corresponding to asymmetrical configurations are
also discussed in detail. Finally, the inverse square electric
field is used to imitate switching on and off processes. Then
the case under consideration is compared with the one where
an exponential electric field is used to imitate switching on
and off processes.

1 Introduction

Particle creation from the vacuum by strong external elec-
tromagnetic and gravitational fields (sometimes we call this
effect a violation of the vacuum stability) has been studied for
a long time, see, for example, Refs. [1–15]. The effect can be
observable if the external fields are sufficiently strong, e.g. the
magnitude of an electric field should be comparable with the
Schwinger critical field Ec = m2c3/e� � 1016 V/cm. Nev-
ertheless, recent progress in laser physics allows one to hope
that an experimental observation of the effect can be possi-
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ble in the near future, see Refs. [16–20] for a review. More-
over, electron-hole pair creation from the vacuum becomes
also an observable in laboratory conditions effect in graphene
and similar nanostructures, see, e.g. Refs. [21,22]. Depend-
ing on the strong field structure, different approaches have
been proposed for calculating the effect nonperturbatively.
When a semiclassical approximation is not applicable, the
most consistent consideration is formulated in the framework
of a quantum field theory, in particular, in the framework of
QED, see Refs. [4–6,14]. A calculation technics is based on
the existence of exact solutions of the Dirac equation with the
corresponding external field. Until now, there are known only
few exactly solvable cases that allow one to apply directly
such a technics. In such a way can be calculated particle
creation in the constant uniform electric field [1–3], in the
adiabatic electric field E (t) = E cosh−2 (t/TS) [23], in the
so-called T -constant electric field [10,24], in a periodic alter-
nating in time electric field [25,26], in an and exponentially
growing and decaying electric fields [27–29] (see Ref. [30]
for the review), and in several constant inhomogeneous elec-
tric fields of similar forms where the time t is replaced by the
spatial coordinate x . An estimation of the role of switching
on and off effects for the pair creation effect was done in
Ref. [31].

In the present article we study the vacuum instability in an
inverse square electric field (an electric field that is inversely
proportional to time squared); see its exact definition in the
next section. This behavior is characteristic for an effective
mean electric field in graphene, which is a deformation of
the initial constant electric field by backreaction due to the
vacuum instability; see Ref. [32]. From the technical point of
view, it should be noted that the problem of the vacuum insta-
bility caused by a constant electric field in the de Sitter space
considered in Refs. [33–43] shares some similarities to the
above problem in the Minkowski space-time. In addition,
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Fig. 1 The electric field (left
panel – red lines) and its
potential (right panel – blue
lines) for some pulse durations
τ j and a fixed amplitude E . In
both pictures, τ1 < τ2

an inverse square electric field is useful to study the one-
loop Heisenberg–Euler effective action in the framework of
a locally constant field approximation [44]. At last, results of
our study allow one to better understand the role of switching
on and off effects in the violation of the vacuum stability. In
Sect. 2 we present, for the first time, exact solutions of the
Dirac and Klein–Gordon equations with the inverse square
electric field in the Minkowski space-time. With the help of
these solutions, we study in detail the vacuum instability in
such a background in the framework of QED with t-electric
potential steps, using notation and some technical results of
our review article [30]. In particular, differential and total
mean numbers of particles created from the vacuum are cal-
culated in Sect. 3 within the slowly varying approximation.
The case of an asymmetric configuration of the inverse square
electric field is discussed in Sect. 4. In Sect. 5, the inverse
square electric fields is used to imitate switching on and off
processes. The obtained results are compared with the case
when the form of switching on and off is exponential. Sect. 6
contains some concluding remarks.

2 Solutions of wave equations with the background
under consideration

In this section we introduce the time dependent external
electric field (in D spatial dimensions), that switches on
at the infinitely remote past t = −∞, switches off at the
infinitely remote future t = +∞ and it is inversely propor-
tional to time squared. In what follows, we call such a field
inverse square electric field. The field is homogeneously dis-
tributed over space, directed along the axis x1 = x, i.e.,
E = (E (t) , 0, . . . , 0), Ei = 0, i = 2, . . . , D,

E (t) = E

{
(1 − t/τ1)

−2 , t ∈ I = (−∞, 0) ,

(1 + t/τ2)
−2 , t ∈ II = [0,+∞) .

(1)

and is specified by the potentials A0 = 0, A = (Ax (t) , 0,

. . . , 0), Ai = 0,

Ax (t) = E

{
τ1
[
1 − (1 − t/τ1)

−1] , t ∈ I,
τ2
[
(1 + t/τ2)

−1 − 1
]
, t ∈ II.

(2)

The inverse square electric field belongs to the so-called
class of t-electric potential steps [30]. It is parameterized by
two constants τ1,2 which play the role of time scales for the
pulse durations, respectively. The electric field (1) and its
potential (2) are pictured on Fig. 1 for some values of τ1,2.

For the field under consideration, Dirac spinors in a d =
D + 1 dimensional Minkowski space-time can always be
presented in the following form [10,30],1

ψn (x) = [i∂t + H (t)] γ 0 exp (ipr) ϕn (t) vχ,σ ,

H (t) = γ 0
{
γ 1 [px −U (t)] + γp⊥ + m

}
, (3)

where vχ,σ is a set of constant and orthonormalized spinors,
ϕn (t) is a scalar function, and U (t) = −eA (t) is the poten-
tial energy of an electron (e > 0). The constant spinors obey
the identities γ 0γ 1v±,σ = ±v±,σ , v†

χ,σ vχ ′,σ ′ = δχ,χ ′δσ,σ ′ ,
in which σ = {

σ1, σ2, . . . , σ[d/2]−1
}

represents a set of
eigenvalues of additional spin operators compatible with
γ 0γ 1, while the scalar function ϕn (t) satisfy the second-
order ordinary differential equation{

d2

dt2 + [px −U (t)]2 + π2⊥ − iχU̇ (t)

}
ϕn (t) = 0,

π⊥ =
√
p2⊥ + m2. (4)

Introducing new variables,

z1 (t) = 2iω1τ1 (1 − t/τ1) , t ∈ I,

z2 (t) = 2iω2τ2 (1 + t/τ2) , t ∈ II, (5)

one can reduce Eq. (4) to the Whittaker differential equation2

[45,46,49](
d2

dz2
j

− 1

4
+ κ j

z j
+ 1/4 − μ2

j

z2
j

)
ϕn (t) = 0, (6)

where

κ j = − (−1) j ieEτ 2
j π j/ω j , μ j = (−1) j

(
ieEτ 2

j + χ/2
)

,

1 ψ(x) is a 2[d/2]-component spinor ([d/2] stands for the integer part
of d/2), m denotes the electron mass and γ μ are Dirac matrices in d
dimensions. We use the relativistic units � = c = 1, in which the fine
structure constant is α = e2/�c = e2.
2 Hereafter, the index j = (1, 2) distinguish quantities associated with
the first interval I ( j = 1) from the second interval II ( j = 2).
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ω j =
√

π2
j + π2⊥, π j = px − (−1) j eEτ j . (7)

A fundamental set of solutions of Eq. (6) can then be repre-
sented as a linear combination of Whittaker functions,

ϕn (t) = b j
1Wκ j ,μ j

(
z j
) + b j

2W−κ j ,μ j

(
e−iπ z j

)
,

Wκ j ,μ j

(
z j
) = e−z j /2z

c j /2
j �

(
a j , c j ; z j

)
,

W−κ j ,μ j

(
e−iπ z j

)
= e−iπc j /2ez j /2z

c j /2
j

×�
(
c j − a j , c j ; e−iπ z j

)
, (8)

where a j = μ j −κ j +1/2, c j = 1+2μ j , b
j
1,2 are some arbi-

trary constants, and � (a, c; z) are confluent hypergeometric
functions (CHFs) [47].

By definition, the electric field (1) vanishes at the infinitely
remote past (t = −∞) and at the infinitely remote future
(t = +∞), which means that particles must be free at these
limits. From the asymptotic properties of Whittaker functions
with large argument3 [49],

Wκ,μ (z) = e−z/2zκ
[
1 + O

(
z−1

)]
, z → ∞,

|arg z| ≤ 3π/2 − 0+, (9)

one may classify exact solutions for first I and second II inter-
vals according to their asymptotic behavior as free particles{

+ϕ (t) , +ϕ (t)
}

or free antiparticles
{

−ϕ (t) , −ϕ (t)
}

as
follows:

+ϕn (t) = +NW−κ1,μ1

(
e−iπ z1

)
,

−ϕn (z1) = −NWκ1,μ1 (z1) , t ∈ I,

−ϕn (t) = −NW−κ2,μ2

(
e−iπ z2

)
,

+ϕn (z2) = +NWκ2,μ2 (z2) , t ∈ II. (10)

Here, the constants ±N , ±N are conveniently chosen in
order to normalize Dirac spinors with respect to the equal-
time inner product

(
ψ,ψ ′) = ∫

dxψ† (x) ψ ′ (x). After the
usual volume regularization, we obtain

| ±N | = exp (−iπκ1/2)√
2ω1V(d−1)q

∓χ
1

,
∣∣ ±N ∣∣ = exp (−iπκ2/2)√

2ω2V(d−1)q
∓χ
2

,

where q∓χ
j = ω j ∓ χπ j and V(d−1) is the volume of the

D-dimensional Euclidean space.
With the help of Eq. (10), we use Eq. (3) to introduce IN{

ζ ψ (x)
}

and OUT
{

ζ ψ (x)
}

sets of solutions of Dirac equa-
tion corresponding to free electrons (ζ = +) or free positrons

3 Originally, Whittaker [45,46] wrote this asymptotic form for a differ-
ent domain in the z-complex plane, namely |arg z| ≤ π−0+, by expand-
ing the binomial inside of his integral representation for Wκ,μ (z). How-
ever, as discussed in [48], the domain changes to |arg (z)| ≤ 3π/2−0+
by rotating the path of integration over an angle near π/2 in any direc-
tion.

(ζ = −) at t → ±∞. Both sets are related via linear trans-
formations, for instance ζ ψn (x) = ∑

ζ ′ g
(
ζ ′ |ζ ) ζ ′ψn (x),

where coefficients g
(

ζ |ζ ′)
are diagonal

(
ζ ψn,

ζ ′
ψn′

)
=

g
(

ζ |ζ ′)
δnn′ and obey the properties

g
(

ζ ′ |ζ
)∗ = g

(
ζ |ζ ′)

,
∑
ζ ′

g
(
ζ |ζ ′

)
g
(

ζ ′ |ζ ′′) = δζ,ζ ′′ . (11)

This implies decompositions for scalar functions as follows4

+ϕn (t) = g
(
+|+) +ϕn (t) + κg

(
−|+) −ϕn (t) ,

−ϕn (t) = g
(+|−

) +ϕn (t) + κg
(−|−

) −ϕn (t) .

Using these decompositions and continuity conditions

+−ϕn (t)
∣∣
t=0+ε

= +−ϕn (t)
∣∣
t=0−ε

,

∂t
+−ϕn (t)

∣∣
t=0−ε

= ∂t
+−ϕn (t)

∣∣
t=0+ε

,

one can calculate basic coefficients,

g
(
−|+) = 2κe

iπχ
2 eiθ+

√√√√τ1q
+χ
1 τ2

q−χ
2

(
ω2τ2

ω1τ1

) χ
2

× e− π
2

(
ν−

1 +ν+
2

)
�(t)

� (t) = � (a2, c2; z2) f +
1 (t)

+�
(
c1 − a1, c1; e−iπ z1

)
f −
2 (t); (12)

g
(+|−

) = 2e− iπχ
2 eiθ−

√√√√τ1q
−χ
2 τ2

q+χ
1

(
ω2τ2

ω1τ1

) χ
2

× e
π
2

(
ν+

1 +ν−
2

)
�̃(t),

�̃ (t) = � (a1, c1; z1) f +
2 (t)

+�
(
c2 − a2, c2; e−iπ z2

)
f −
1 (t). (13)

Here κ = +1,

ν±
j = eEτ 2

j

(
1 ± π j

ω j

)
, θ± = ± (ω1τ1 − ω2τ2)

− eE
[
τ 2

1 ln (2ω1τ1) − τ 2
2 ln (2ω2τ2)

]
,

and f ±
j (t) are combinations of CHFs and their derivatives

f +
j (t) = ω j

[
1

2

(
1 + c j

z j

)
+ d

dz j

]

×�
(
c j − a j , c j ; e−iπ z j

)
,

f −
j (t) = ω j

[
1

2

(
−1 + c j

z j

)
+ d

dz j

]
�
(
a j , c j ; z j

)
. (14)

4 We conveniently introduce an auxiliary constant κ to extend results
to scalar QED, in which κ = −1. It should not be confused with the
parameters of the Whittaker functions κ j , defined by Eq. (7).
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It can be seen that the calculated coefficients can be
mapped onto one another through the simultaneous exchanges
px � −px and τ1 � τ2. For example, taking into
account that � (a2, c2; z2) � � (a1 − c1 + 1, 2 − c1; z1)

and �
(
c1 − a1, c1; e−iπ z1

)
� �

(
1 − a2, 2 − c2; e−iπ z2

)
under these exchanges and using some Kummer transforma-
tions (see e.g. [47]),

� (a1 − c1 + 1, 2 − c1; z1) = zc1−1
1 � (a1, c1; z1) ,

�
(

1 − a2, 2 − c2; e−iπ z2

)
= eiπ(1−c2)zc2−1

2 �

×
(
c2 − a2, c2; e−iπ z2

)
,

one finds that �(t) � eiπ(1−c2)zc1−1
1 zc2−1

2 �̃(t). The latter
properties yield the identity

g
(
−|+) � κg

(+|−
)
, (15)

that shall be useful in the calculation of differential quantities,
as discussed below.

3 Quantities characterizing the vacuum instability

The g’s coefficients allow us to find differential mean num-
bers N cr

n of pairs created from the vacuum, the total number
N and the vacuum-to-vacuum transition probability Pv:

N cr
n = ∣∣g (−|+)∣∣2 , N cr =

∑
n

N cr
n , (16)

Pv = exp

[
κ
∑
n

ln
(
1 − κN cr

n

)]
. (17)

Once the mean numbers N cr
n depends on the coefficients

given by Eqs. (12) and (13), its calculation can be simplified
through the properties given by Eqs. (11) and (15). For exam-
ple, with N cr

n calculated for px negative, the corresponding
expression for px positive can be extracted from these results
through simple exchanges −px � px and τ1 � τ2. More-
over, note that all results above can be generalized to discuss
creation of Klein–Gordon particles from the vacuum. To do
so, one has to take into account that n = p and substitute κ =
−1, χ = 0,q∓χ

j = 1 in all formulas throughout in this article.

3.1 Slowly varying field regime

3.1.1 Differential mean numbers

In this subsection we calculate differential mean numbers of
pairs created from the vacuum N cr

n in the most favorable con-
figuration for particle creation, that is when the external field
is sufficiently strong and acts over a sufficiently large time.
We call such configuration as slowly varying field, which
specified by the following condition

min
(
eEτ 2

1 , eEτ 2
2

)
� max

(
1,

m2

eE

)
, (18)

with τ1/τ2 fixed. Within this condition, it is still necessary to
compare parameters involving the quantum numbers with the
numbers above. To this end, it is meaningful to discuss some
general peculiarities underlying the momentum distribution
of pairs created by t -electric steps. First, since the electric
field is homogeneously directed along the x-direction only,
it creates pairs with a wider range of values of px instead
p⊥, once they are accelerated along the direction of the field.
Accordingly, one may consider a restricted range of values
to p⊥, namely

√
λ < K⊥, in which K⊥ is any number within

the interval min
(
eEτ 2

1 , eEτ 2
2

) � K 2⊥ � max
(
1,m2/eE

)
.

As for the longitudinal momentum px , we restrict subsequent
considerations to px negative and generalize results for px
positive using the properties discussed at the end of Sect. 2.
Thus, as px admits values within the half-infinite interval
−∞ < px ≤ 0, the kinetic momentum π1 varies from large
and positive to large and negative values eEτ1 ≥ π1 > −∞.
However, differential mean numbers N cr

n are significant only
in the range − |π⊥| β1 ≤ π1 ≤ eEτ1, whose main contribu-
tions lies in four specific subranges

(a)
√
eEτ1 − δ1√

2
≤ π1√

eE
≤ √

eEτ1,

(b)
√
eEτ1 (1 − ϒ1) <

π1√
eE

<
√
eEτ1 − δ1√

2
,

(c)
√

λβ1 ≤ π1√
eE

≤ √
eEτ1 (1 − ϒ1) ,

(d)
|π1|√
eE

<
√

λβ1, (19)

wherein 0 < δ1 � 1, 0 < β1 � 1 and δ1/
√

2 < ϒ1 � 1
are sufficiently small numbers so that ϒ1

√
eEτ1 and β1eEτ 2

1
are finite. To study the mean numbers N cr

n , we conveniently
introduce two sets of variables

η1 = e−iπ z1

c1
, η2 = z2

c2
, Z j = (

η j − 1
)W j

√
c j , (20)

where W j = ∣∣η j − 1
∣∣−1

√
2
(
η j − 1 − ln η j

)
, and take into

account that π2 is large and negative π2 ≤ −eEτ2, which
means that a2 is fixed while c2 and z2 are large throughout
the ranges above.

The range (a) correspond to small values to |px | /
√
eE

and values for η1 and η2 close to the unity,

(a) 1 > η1 ≥ 1 − δ1√
2eEτ1

, 1 < η2 ≤ 1 + δ1√
2eEτ2

, (21)

so that Z1 and Z2 are small in this range,
∣∣Z j

∣∣ < δ1.
As a result, one can use Eq. (66) in Appendix A and the

approximations ν−
1 = λ/2

[
1 + O

((
eEτ 2

1

)−1/2
)]

, ν+
2 =

λ/2
[
1 + O

((
eEτ 2

2

)−1/2
)]

to show that the mean number
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of pairs created (16) reads

(a) N cr
n ≈ e−πλ, (22)

in leading-order approximation.5 This result coincides with
differential number of created particles in a constant electric
field [2,3].

In the range (c), |px | /
√
eE is finite min

(
px/

√
eE

)
=

−ϒ1
√
eEτ1, the variables η j are approximately given by

η1 ∼ 1−ϒ1, η2 ∼ 1+ϒ1τ1/τ2 and Z j are considered large.
Thus, one may use the asymptotic approximation given by
the second line of Eq. (68) for �

(
c1 − a1, c1; e−iπ z1

)
and

Eq. (67) for � (a2, c2; z2), both in Appendix A, to obtain

(c) N cr
n ≈ exp

(−2πν−
1

)
. (23)

Note that this distribution tends to the uniform distribution
(22) as π1 → eEτ1 (1 − ϒ1). Equations (22) and (23) are
valid both for Fermions as for Bosons.

In the range (d), |px | /
√
eE is large and η2 is approx-

imately given by η2 ∼ 1 + τ1/τ2, so that Z2 is large
in this interval. Therefore, one may use the same asymp-
totic approximation for � (a2, c2; z2) as in the range (c).
As for the Kummer function �

(
c1 − a1, c1; e−iπ z1

)
, it is

more convenient to rewrite it in terms of the Whittaker func-
tion W−κ1,μ1

(
e−iπ z1

)
through the relation (8) and use the

fact that z1 (0) and κ1 are fixed in this interval, namely
min z1 (0) = 2i

√
λ
√
eEτ1 and |κ1| ≤ β1eEτ 2

1 . As a result,
one may use Eq. (71) in A to show that the mean number of
pairs created acquires the form

(d) N cr
n ≈ exp

(−πν−
1

)
sinh

(
2πeEτ 2

1

) ×
{

sinh
(
πν+

1

)
, Fermi

cosh
(
πν+

1

)
, Bose.

(24)

Once the longitudinal kinetic momentum π1 is small in
this interval and the conditions (18) are satisfied, one may
simplify the hyperbolic functions above to obtain N cr

n ≈
exp

(−2πν−
1

)
in leading-order approximation. This result

agrees with the approximation obtained for the interval (c)
so that Eq. (23) is uniform over the intervals (c) and (d).
In the intermediate interval (b), the differential mean num-
bers N cr

n varies between the approximations (22) and (23).
At this interval, the Whittaker function W−κ1,μ1

(
e−iπ z1

)
(or

�
(
c1 − a1, c1; e−iπ z1

)
) has to be considered exactly while

� (a2, c2; z2) may be approximated by Eq. (63).
Repeating the same considerations above and using the

properties of the differential mean numbers N cr
n under the

exchanges px � −px and τ1 � τ2 discussed in the previous
section, one may easily generalize results for px positive,
0 ≤ px < +∞. As a result, the mean numbers N cr

n can be

5 Here and in what follows, we use the symbol “≈ ” to denote an
asymptotic relation truncated in leading-order approximation, under
the understanding that the condition (18) is satisfied.

approximated by the asymptotic forms

N cr
n ≈

{
exp

(−2πν−
1

)
if − ∞ < px ≤ 0,

exp
(−2πν+

2

)
if 0 < px < +∞.

(25)

According to the results above, dominant contributions (25)
are formed in ranges of large longitudinal kinetic momenta,
namely, π⊥ < π1 � eEτ1 for px < 0 and as −eEτ2 <

π2 < −π⊥ for px > 0.
To extend the analysis above to a wider range of val-

ues to the longitudinal momentum px and compare asymp-
totic approximations with exact results, it is useful to rep-
resent the mean numbers graphically. Thus, in Figs. 2 and
3, we present the differential mean numbers of pairs cre-
ated from the vacuum N cr

n given by Eq. (16) as a func-
tion of the longitudinal momentum px for some values of
the pulses duration τ j and amplitude E equal to the critical
Schwinger value E = Ec = m2/e. In addition, we include
the approximations given by Eq. (25) for the same values to
the pulses durations τ j and amplitude E . In these plots, we
set p⊥ = 0 and select for convenience a system of units, in
which � = c = m = 1. In this system, the reduced Comp-
ton wavelength λ̄c = �/mc = 1 is one unit of length, the
Compton timeλ̄c/c = �/mc2 = 1 one unit of time and elec-
tron’s rest energy mc2 = 1 one unit of energy. In the plots
below, the pulse durations τ j and the quantum numbers px
are dimensionless quantities, relative to electron’s rest mass
px/m and mτ j .

According to the above results, the mean number of pairs
created N cr

n tend to the uniform distribution e−πλ as the
pulses duration τ j increases. This is consistent with the fact
that the inverse square electric field (1) tends to a constant
electric field (or a T -constant field with T sufficiently large)
as the pulses duration τ j increases, whose mean numbers
are uniform over a sufficiently wide range of values to the
longitudinal momentum px . Therefore, the exact distribu-
tions (16) are expected approach to the uniform distribu-
tion for sufficiently large values of the pulses duration τ j .
Moreover, it is seen that the exact distributions tends to the
uniform distribution for sufficiently small values to the lon-
gitudinal momentum px . This is also in agreement with the
asymptotic estimate given by Eq. (22), obtained for px suffi-
ciently small. Finally, comparing asymptotic approximations
(dashed lines) with exact distributions (solid lines), we con-
clude that the accuracy of the approximations (25) increase as
mτ increases. This results from the fact that as mτ increases,
the parameter eEτ 2 increases as well. Thus, larger values
to mτ present a better accuracy. For the values considered
above, the lines (a), (b) and (c) correspond to eEτ 2 = 100,
2500 and 10,000, respectively.
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Fig. 2 Differential mean number N cr
n of Fermions created by the sym-

metric inverse square electric field (1), in which τ1 = τ2. The exact
differential mean numbers (16) are represented by red, brown and yel-
low solid lines while the asymptotic approximations (23), (25) are rep-
resented by dashed color lines. The right panel shows the range of

larger discrepancy between exact and asymptotic expressions. All lines
labelled with (a), (b) and (c), refers to mτ = 10, 50 and 100, respec-
tively. In both plots, E = Ec and the horizontal dashed line denotes the
uniform distribution e−πλ
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Fig. 3 Differential mean number N cr
n of Bosons created by the sym-

metric inverse square electric field (1), in which τ1 = τ2. The exact
differential mean numbers (16) are represented by blue, purple and
pink solid lines while the asymptotic approximations (23), (25) are
represented by dashed color lines. The right panel shows the range of

larger discrepancy between exact and asymptotic expressions. All lines
labelled with (a), (b) and (c), refers to mτ = 10, 50 and 100, respec-
tively. In both plots, E = Ec and the horizontal dashed line denotes the
uniform distribution e−πλ

3.1.2 Total numbers

In this section we estimate the total number of pairs created
N cr and the vacuum–vacuum transition probability Pv (17) in
the slowly varying approximation (18). For t-electric poten-
tial steps, the total number of pairs created is proportional to
the space time volume 6

N cr = V(d−1)n
cr, ncr = J(d)

(2π)d−1

∫
dpN cr

n , (26)

6 In Eq. (26), the sum over the quantum numberspwas transformed into
an integral and the total number of spin polarizations J(d) = 2[d/2]−1

factorizes out from the density, since N cr
n does not depend on spin

variables.

so that it is reduced to the calculation of the total density of
pairs created ncr. Similarly to other exactly solvable cases
(see Refs. [15,30]), to evaluate the total density within the
slowly varying configuration (18), one may restrict to the
calculation of its dominant contribution ñcr, characterized by
an integration domain of the quantum numbers p in which
the density is linear in the total increment of the longitudi-
nal kinetic momentum �U = e |Ax (+∞) − Ax (−∞)|. We
conveniently denote this domain by � and express the domi-
nant contribution by ñcr, so that the density is approximately
given by

ncr ≈ ñcr = J(d)

(2π)d−1

∫
p∈�

dpN cr
n . (27)
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The above analysis shows that dominant contributions for
mean numbers of created particles by a slowly varying field
are formed in ranges of large longitudinal kinetic momenta,
restricted values to p⊥, and have the asymptotic forms (25).
In this case, � is realized as

� :
{
π⊥ − eEτ1 ≤ px ≤ −π⊥ + eEτ2,

√
λ < K⊥

}
,

so that the dominant density may be expressed as follows:

ñcr = J(d)

(2π)d−1

∫
√

λ<K⊥
dp⊥

[
I (1)
p⊥ + I (2)

p⊥

]
,

I (1)
p⊥ =

∫ eEτ1

π⊥
dπ1e

−2πν−
1 , I (2)

p⊥ =
∫ eEτ2

π⊥
d |π2| e−2πν+

2 .

(28)

Performing two additional change of variables λs1 = 2ν−
1

and λs2 = 2ν+
2 in I (1)

p⊥ and I (2)
p⊥ , respectively, and neglect-

ing exponentially small contributions, these integrals can be
rewritten as

I ( j)
p⊥ =

∫ ∞

1
ds j Fj

(
s j
)
e−πλs j , Fj

(
s j
) = d

∣∣π j
∣∣

ds j
, (29)

whose superior limits λsmax
j � 4eEτ 2

j were extended to
infinity for convenience. The leading contributions for inte-
grals (29) comes from values near s j → 1, in which

Fj
(
s j
) ≈ − (

eEτ j
)
/2s3/2

j . Consequently, the leading terms
are

I ( j)
p⊥ ≈ eEτ j

2
e−πλG

(
1

2
, πλ

)
, (30)

where G (α, x) = ezxα� (−α, x) and � (−α, x) is the
incomplete gamma function. Neglecting exponentially small
contributions, one can extend the integration limit over p⊥ in
Eq. (28) from

√
λ < K⊥ to

√
λ < ∞. As a result, the total

density of pairs created (28) reads

ñcr ≈ r cr �Uis

eE

1

2
G

(
d − 1

2
,
πm2

eE

)
,

r cr = J(d) (eE)
d
2

(2π)d−1 exp

(
−πm2

eE

)
. (31)

Here r cr is rate of pair creation and �Uis = e |A (+∞)

−A (−∞)| = eE (τ1 + τ2) denotes the total increment of
the longitudinal kinetic momentum for the inverse square
electric field. Under these approximations, the vacuum–
vacuum transition probability (17) has the form

Pv ≈ exp
(−μN cr) ,

μ =
∞∑
l=0

(−1)(1−κ)l/2 εl+1

(l + 1)d/2 exp

(
−lπ

m2

eE

)
,

εl = G

(
d − 1

2
, lπ

m2

eE

)
G

(
d − 1

2
,
πm2

eE

)−1

, (32)

in leading-order approximation. It should be noted that
Eqs. (31) and (32) can be equivalently obtained from univer-
sal forms for slowly varying t-electric potential steps given
by in Ref. [15]. Explicitly, one can use the universal form of
the dominant density given by Eq. (3.6) in Ref. [15],

ñcr ≈
∑
j

ñcr
j , ñcr

j = J(d)

(2π)d−1

∫
t∈Dj

dt
[
eE j (t)

]d/2

× exp

[
− πm2

eE j (t)

]
, (33)

to show that Eq. (33) coincides with Eq. (31) after a con-
venient change of variables. Here Dj = {D1 = I, D2 = II}
denotes the integration domain for each interval of definition
of the electric field (1). This is one more independent con-
firmation of the universal form for the total number of pairs
created from the vacuum by slowly varying backgrounds.

The representation given by Eq. (31) is particularly useful
to compare the present results with another exactly solvable
examples, for instance a T -constant electric field [10,24] and
a peak electric field [28], whose dominant densities are pro-
portional to the corresponding total increment of the lon-
gitudinal kinetic momentum in the slowly varying regime.
Recalling the definitions of the T -constant electric field and
the peak electric field [10,28,30]

(i) E (t) = E, t ∈ [−T/2, T/2] ,

(ii) E (t) = E

{
ek1t , t ∈ I
e−k2t , t ∈ II,

(34)

as well as their corresponding dominant densities of pair cre-
ation in the slowly varying approximation

(i) ñcr = r cr �UT

eE
, �UT = eET,

(ii) ñcr = r cr �Up

eE
G

(
d

2
,
πm2

eE

)
,

�Up = eE
(
k−1

1 + k−1
2

)
,

(35)

one can establish relations among these fields by which they
are equivalent in pair production. For example, equating
dominant densities for a given amplitude E and same longitu-
dinal kinetic momentum increments �Up = �UT, we have
shown in [15,24,30] that the peak electric field is equivalent
to a T -constant electric field in pair production, provided that
it acts on the vacuum over an effective time duration

Teff =
(
k−1

1 + k−1
2

)
G

(
d

2
,
πm2

eE

)
, (36)

(cf. Eq. (3.26) in [28]). By definition, Teff = T for a T -
constant field. In other words, a T -constant field acting over
the time interval T = Teff is equivalent to the peak electric
field in pair production. Extending these considerations to
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the case of the inverse square electric field (1), we obtain the
following effective time duration

Teff = τ1 + τ2

2
G

(
d − 1

2
,
πm2

eE

)
, (37)

i.e., a T -constant electric field acting on the vacuum over the
same effective time duration T = Teff is equivalent to the
inverse square electric field (1) in pair production.

Comparing the effective time duration for the peak electric
field (34) and the inverse square electric field (1), we see that
besides similarities among their exact solutions (in both cases
the solutions of the Dirac equation are proportional to Kum-
mer functions), they also share common features regarding
particle production. These peculiarities suggest a direct com-
parison between the peak and inverse square electric fields,
assuming that both acts over the same time duration Teff and
have the same amplitude E , namely

τ1 + τ2

2
=

(
k−1

1 + k−1
2

)
G

(
d

2
,
πm2

eE

)

×G

(
d − 1

2
,
πm2

eE

)−1

, (38)

so that we obtain a relation between parameters. Let us con-
sider symmetric fields τ1 = τ2 = τ , k1 = k2 = k. For
weak amplitudes, E � m2/e, one can use the asymptotic
approximation of the functions above with large argument
G (α, z) ≈ z−1e−2z , z → ∞, to obtain τ/2 = k−1. Thus,
one may conclude that a symmetric peak field (cf. Eq. (2.4)
in [28]) requires only half of the pulse duration of a symmet-
ric inverse square field (1) to be equivalent in pair produc-
tion. Such a relation does not depend on electron mass, field
strength neither space-time dimensions d. For strong ampli-
tudes E � m2/e though, one can restrict to the leading-order
approximation of G (α, z) with small argument, G (α, z) ≈
α−1, z → 0, to show that the latter relation does depend
on the space-time dimensions τ/2 ≈ (

1 − d−1
)
k−1. As a

result, we see that τ ≈ k−1 for the lowest space-time dimen-
sion d = 2 and conclude that the relation between τ and k
varies within the interval k−1 ≤ τ ≤ 2k−1, for any ampli-
tude E or space-time dimensions d, provided that both fields
acts over the same effective time duration Teff .

For completeness, it is worth extending the comparison
to the level of the vacuum–vacuum transition probability Pv .
For the peak electric field, this probability is given by

Pv ≈ exp
(−μN cr) , μ =

∞∑
l=0

(−1)(1−κ)l/2

(l + 1)d/2 ε
p
l+1e

− πm2
eE l ,

ε
p
l = G

(
d

2
,
πm2

eE
l

)
G

(
d

2
,
πm2

eE

)−1

, (39)

(cf. Eq. (3.23) in [28]) while for the inverse square electric
field it is given by Eq. (32). Thus we see that ε

p
l ≈ εis

l ≈ 1

for strong amplitudes E � m2/e and ε
p
l ≈ εis

l ≈ l−1 for
weak ones E � m2/e. Accordingly, one may say that the
discrepancy between the time-dependence of both fields are
not essential for the vacuum–vacuum transition probability,
provided that both electric fields have the same amplitude and
are equivalent in production. We stress that this fact is not true
for all types of time-dependent electric fields. For example,
the probability Pv corresponding to a Sauter-type electric
field E (t) = E cosh−2 (t/TS) [10,30,50] differs substan-
tially in comparison to the cases under consideration, even
though all of them are equivalent in pair production in what
concerns total numbers of pairs created from the vacuum.

4 Asymmetric configuration

In the previous section, the inverse square electric field (1)
was treated in a somewhat symmetrical manner, once the
pulses duration τ1 and τ2 were considered large, approxi-
mately equal and with a fixed ratio τ1/τ2. Here we supple-
ment the above study with an essentially asymmetrical con-
figuration for the electric field, characterized by a very sharp
pulse duration in the first interval I while remaining arbi-
trary in the second interval II. In this way, the electric field
is mainly defined on the positive half-interval. The present
consideration provides insights on switching on or off effects
by inverse square electric fields, as shall be discussed below.

The present configuration is specified by small values to
τ1

0 ≤ eEτ 2
1 � min

(
1,

m2

eE

)
, (40)

which includes, as a particular case, the inverse square
decreasing electric field

E (t) = E (1 + t/τ2)
−2 ,

Ax (t) = Eτ2

[
(1 + t/τ2)

−1 − 1
]
, (41)

when eEτ 2
1 = 0. Besides the condition (40), we are inter-

ested in a slowly varying configuration for t ∈ II, which
means that the pulse duration scales τ1, τ2 obeys additional
conditions

eEτ 2
2 � K 2⊥ � max

(
1,

m2

eE

)
,

√
eEτ1

√
eEτ2 � 1. (42)

The rightmost inequality implies that the parameter
√
eEτ1 is

very small, so that the contribution from the first interval t ∈ I
is negligible for particle creation. To see that, it is sufficient
to compare the g-coefficient g

(
−|+) given by Eq. (12) in the

limit
√
eEτ1 → 0 with the one computed directly for the

inverse square decreasing electric field (41). To this end, one
may repeat the same considerations as in Sect. 2 and take into
account that the only essential difference between the fields
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(1) and (41) lies on the interval I, whose exact solutions of
Eq. (4) are now plane waves,

±ϕn (t) = ±N e∓iω0t , ω0 =
√
p2 + m2, t ∈ I. (43)

Calculating the corresponding normalization constants ±N
for this case one obtains, after some elementary manipula-
tions, the following form for the g-coefficient g

(
−|+)

g
(
−|+) = κeiπ(1+χ)/4eiθ2

√√√√ q+χ
0

ω2q
−χ
2 ω0

× (2ω2τ2)
(1+χ)/2 e− πν

+
2

2 �0 (0) ,

�0 (t) = 1

2
ω0� (a2, c2; z2) + f −

2 (t) ,

q+χ
0 = q+χ

1

∣∣∣
τ1=0

, θ2 = θ+|τ1=0 . (44)

It can be readily seen that Eq. (44) is a particular case of
Eq. (12) when τ1 = 0. To demonstrate that, one has to select a
particular value to χ since the Whittaker functions has differ-
ent limiting forms as z1 → 0 for each chosen μ1. For exam-
ple, let us consider the Fermi case with the choice χ = −1.
Thus, using the approximations μ1 ≈ 1/2, κ1 ≈ 0 and the
limiting form given by Eq. (73) in Appendix A, we obtain

W0, 1
2

(
e−iπ z1

)
≈ 1,

d

dz1
W0, 1

2

(
e−iπ z1

)

≈ 1

2
, z1 → 0, (45)

and conclude that Eq. (12) coincides with the coefficient (44)
under the choices κ = +1 and χ = −1 in leading-order
approximation.7 As a result, the influence from the first inter-
val I appears only as next-to-leading order corrections, which
means that we can study pair creation by the inverse square
decreasing electric field (41) rather than by the inverse square
field (1) with eEτ 2

1 obeying the conditions (40), in leading-
order approximation. Therefore, without loss of generality,
we shall study particle creation by the field (41). Note that
from the property of the differential mean numbers N cr

n under
the exchanges px � −px and τ1 � τ2, the present discus-
sion can be easily generalized to a configuration in which the
field is arbitrary during the first interval I but sharp during
the second interval II.

As discussed previously, only a limited interval of val-
ues of the quantum numbers p contributes significantly to
the differential mean numbers N cr

n . Accordingly, the most
significant contribution comes from finite values to the per-
pendicular momenta p⊥, satisfying

√
λ < K⊥ in which

K⊥ is any number within the interval eEτ 2
2 � K 2⊥ �

max
(
1,m2/eE

)
. As for the longitudinal momentum px , the

7 A similar demonstration can be carried out for the Klein–Gordon case.

most important contribution comes from the range

(c̃) − √
eEτ2

(
1 − ϒ̃2

)
≤ π2√

eE
< −√

λ, (46)

where 0 < ϒ̃2 � 1 is a number such that px/
√
eE is finite,

min
(
px/

√
eE

)
= ϒ̃2

√
eEτ2. In this range, the auxiliary

variable Z2 defined in Eq. (20) is considered large, since
η2 ≈ 1 − ϒ̃2. Using the asymptotic approximation of the
CHF given by the first line of Eq. (68) in Appendix A, we
find that the differential mean number of particles created
takes the form

N cr
n ≈ exp

(−2πν+
2

)
. (47)

This result is valid for Fermions and Bosons.
Besides the range above, there are two additional ones

(ã) − δ̃2√
2

− √
eEτ2 ≤ π2√

eE
≤ δ̃2√

2
− √

eEτ2,

(b̃) − √
eEτ2 + δ̃2√

2
<

π2√
eE

< −√
eEτ2

(
1 − ϒ̃2

)
, (48)

in which 0 < δ̃2 � 1 is a small number. In the first interval
(ã), η2 ≈ 1− δ̃2/

√
2eEτ2 and |Z2| � δ̃2 is considered small

so that one can use the asymptotic approximation given by
Eq. (66) in Appendix A to show that the mean number of
electron/positron pairs are given by

N cr
n ≈ 1

2

[
1 −

√
1 − exp

(−2πν+
2

)
cos θ

]
,

θ = π

4
+ arg �

(
iν+

2

2

)
− arg �

(
1

2
+ iν+

2

2

)
. (49)

A similar expression can be obtained for Klein–Gordon par-
ticles. In the interval (b̃), the auxiliary variable Z2 is finite.
Thus, the uniform asymptotic approximation (63) can be used
to simplify the CHF � (a2, c2; z2).

The approximation (47) tends to the uniform distribution
e−πλ in leading-order approximation for sufficiently large
and negative longitudinal kinetic momentum π2, satisfying
π2/

√
eE � −√

eEτ2. This result clearly differs from the
approximation (49), obtained from the exact mean number
(absolute squared value of Eq. (44)) for the same interval of
the longitudinal kinetic momentum π2. Such a discrepancy
is due to the asymmetrical time-dependence of the electric
field, once the asymptotic forms agree mutually as px vary
over intervals discussed in Sect. 3.1.1 for the inverse square
electric field (1), whose temporal dependence is almost sym-
metric. This indicates a clear difference in how the differen-
tial mean numbers N cr

n of pairs created by an inverse square
decreasing electric field (41) are distributed over the quan-
tum numbers when compared to inverse square electric field
(1) in the range of large π2, although both mean numbers
agrees for finite or sufficiently large π2, as it follows from

123



1021 Page 10 of 17 Eur. Phys. J. C (2018) 78 :1021

the asymptotic forms (25) and (47). To explore these pecu-
liarities, we present in Figs. 4 and 5 the exact mean number
of pairs created from the vacuum N cr

n given by the absolute
squared value of Eq. (44) and the asymptotic approxima-
tion (47), as a function of the longitudinal momentum px for
the same values of the of τ2 and E considered in Sect. 3.1.
As before, we set p⊥ = 0 and select the system in which
� = c = m = 1.

According to the graphs above, the mean number of pairs
created N cr

n tends to the uniform distribution e−πλ as τ2

increases. This is not unexpected since the inverse square
decreasing electric field (41) tends to a constant field in
the limit τ2 → ∞; hence the exact mean numbers should
approach to the uniform distribution as τ2 increases. More-
over, for τ2 fixed, the mean numbers approach to the uni-
form distribution as the amplitude E increases, as it can
be seen comparing the results from Fig. 4 with those of
Fig. 5. This is related with the extend of the dimensionless
parameter eEτ 2

2 and its comparison to the threshold value
max

(
1,m2/eE

)
: the greater the parameter eEτ 2

2 is in com-
parison to max

(
1,m2/eE

)
, the closer the mean numbers N cr

n
approach to the uniform distribution e−πλ, which is charac-
teristic to constant electric fields (or a T -constant electric
field varying slowly in time).

For px sufficiently large, the exact results agree with the
asymptotic approximation given by Eq. (47), as it can be
observed comparing solid and dashed lines. This is a conse-
quence of the fact that there are values of finite longitudinal
kinetic momentum π2 (px finite, range (c̃)) in which the mean
numbers tend to the asymptotic forms (47) in slowly varying
regime. On the other hand, in the range of sufficiently small
px (or sufficiently large π2), there are deviations between
the exact mean numbers and the asymptotic approximations.
Such deviations are expected and usually occurs in the range
of small px , as in the case inverse square electric field (1), dis-
played in Figs. 2 and 3, or peak electric field [29], displayed
in Fig. 4 of this reference. We conclude that the approxi-
mation of slowly varying regime does not apply uniformly
throughout all values of px for values of eEτ 2

2 considered in
the plots above. To be applicable uniformly, larger values of
parameters are needed.

The most striking feature of the results displayed above is
the presence of oscillations, an absent feature in the case of
the inverse square electric field (1); compare Figs. 2, 3 with 4.
These oscillations are consequences of an “abrupt” switching
on process near t = 0 and frequently occurs in these cases,
as reported recently by us in [31]. In this work, oscillations
around the uniform distribution were found and discussed
for the case of a T -constant electric field (that switches-on
and off “abruptly” at definite time instants) and an electric
field composed by independent intervals, one exponentially
increasing, another constant over the duration T and a third
one exponentially decreasing. This is an universal feature of

“abrupt” switching on or off processes. Moreover, comparing
the results displayed in Figs. 4 and 5 we conclude that the
oscillations decrease in magnitude as the parameter eEτ 2

2
increases. As a result, the mean numbers are expected to
become “rectangular” in the limit eEτ 2

2 → ∞.
From the above considerations and the approximations

given by Eq. (47), we conclude that the dominant density of
pairs created ñcr (27) can be expressed as

ñcr ≈ r cr τ2

2
G

(
d − 1

2
,
πm2

eE

)
. (50)

We see that ñcr given by Eq. (50) can be obtained from
Eq. (31) setting τ1 → 0. The vacuum–vacuum transition
probability has the form Pv = exp (−μN cr), with μ given
by Eq. (32).

5 Switching on and off by inverse square electric fields

As an application of the above results, we consider in this
section an electric field of special configuration in which
inverse square increasing and decreasing electric fields simu-
late switching on and off processes. This consideration allow
us to compare effects with recent results [31], in which a com-
posite electric field of similar form was regarded to study the
influence of switching on and off processes in the vacuum.

The field under consideration is composed by three inde-
pendent intervals, switching on over the first interval t ∈
I = (−∞, t1), remains constant over the intermediate inter-
val t ∈ Int = [t1, t2] and switching off over the last interval
t ∈ II = (t2,+∞). The field has the form

E (t) = E

⎧⎨
⎩

[1 − (t − t1) /τ1]−2 , t ∈ I,
1, t ∈ Int,
[1 + (t − t2) /τ2]−2 , t ∈ II,

(51)

and, correspondingly, its potential is

Ax (t) = E

⎧⎨
⎩

τ1 − t1 − τ1 [1 − (t − t1) /τ1]−1 , t ∈ I,
−t, t ∈ Int,
−τ2 − t2 + τ2 [1 + (t − t2) /τ2]−1 , t ∈ II,

(52)

where t1 < 0 and t2 > 0 are fixed time instants.
The existence of an intermediate interval in which the

field is constant, t ∈ Int, does not change the classification
of particle and antiparticle states at asymptotic times given by
Eq. (10). However, it introduces certain modifications on the
variables and parameters of the Whittaker functions, namely8

z1 (t) = 2iω1τ1 [1 − (t − t1) /τ1] , t ∈ I, (53)

z2 (t) = 2iω2τ2 [1 + (t − t2) /τ2] , t ∈ II,

8 Exclusively in this section, the variables z j (t) and parameters κ j are
defined according to Eqs. (53), (54) and should not be confused with
the previous definitions, given by Eqs. (5) and (7).
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Fig. 4 Differential mean number N cr
n of Fermions (left panel) and

Bosons (right panel) created from the vacuum by an inverse square
decreasing electric field (41). The exact differential mean N cr

n given by
the absolute squared value of Eq. (44) are represented by solid lines

while the asymptotic approximation (47) are represented by dashed
lines. The lines labelled with (a), (b) and (c), refers to mτ2 = 100, 50
and 10, respectively. In both plots, E = Ec and the horizontal dashed
line denotes the uniform distribution e−πλ which, in this case, is e−π

Fig. 5 Differential mean number N cr
n of Fermions (left panel) and

Bosons (right panel) created from the vacuum by an inverse square
decreasing electric field (41). The exact differential mean N cr

n given by
the absolute squared value of Eq. (44) are represented by solid lines

while the asymptotic approximation (47) are represented by dashed
lines. The lines labelled with (a), (b) and (c), refers to mτ2 = 100, 50
and 10, respectively. In both plots, E = 3Ec and the horizontal dashed
line denotes the uniform distribution e−πλ which, in this case, is e−π/3

and

κ j = − (−1) j eEτ 2
j
� j

ω j
, � j = px − eE

[
t j + (−1) j τ j

]
,

ω2
j = �2

j + π2⊥, (54)

while the parameters μ j remains the same as in Eq. (7).
Hence, exact solutions of Eq. (4) for the intervals I and II are
Whittaker functions, classified according to Eq. (10) with
z j (t) and κ j defined by Eqs. (53) and (54). As for the inter-
mediate interval t ∈ Int, Dirac spinors are proportional to
Weber Parabolic Cylinder functions (WPCFs) [47] once the
exact solutions of Eq. (4) are combinations of these functions

ϕn (t) = b+u+ (Z) + b−u− (Z) , t ∈ Int,

u+ (Z) = Dν+(χ−1)/2 (Z) ,

u− (Z) = D−ν−(χ+1)/2 (iZ) , (55)

where b± are constants and

Z (t) = (1 − i) ξ (t) , ξ (t) = √
eEt − px√

eE
,

ν = iλ

2
. (56)

As a result, one may repeat the same steps as described in
Sect. 2 to find the following form to the g-coefficients:

g
(
−|+) = κ

√
q+

1

8eEω1q
−
2 ω2
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exp

[
− iπ

2

(
κ1 + κ2 − ν − χ

2

)]

× [F−
2 (t2)G+

1 (t1) − F+
2 (t2)G−

1 (t1)
]
,

g
(+|−

) =
√

q−
2

8eEω1q
+
1 ω2

exp

[
− iπ

2

(
κ1 + κ2 − ν − χ

2

)]

× [F+
1 (t1)G−

2 (t2) − F−
1 (t1)G+

2 (t2)
]
. (57)

Here, q±
j = ω j ±χ� j and F±

j (t), G±
j (t) are combinations

between WPCFs and Whittaker functions

F±
j (t) = u± (Z)

d

dt
Wκ j ,μ j

(
z j
) − Wκ j ,μ j

(
z j
) d

dt
u± (Z) ,

G±
j (t) = u± (Z)

d

dt
W−κ j ,μ j

(
e−iπ z j

)

−W−κ j ,μ j

(
e−iπ z j

) d

dt
u± (Z) . (58)

On the basis of the results discussed in Sect. 3.1.1 and
previous studies on the T -constant field in the slowly varying
regime [10,30], we see if the parameters satisfy

min
(√

eET, eEτ 2
1 , eEτ 2

2

)
� max

(
1,

m2

eE

)
, (59)

the differential mean number of pairs created acquires the
asymptotic form

N cr
n ≈

⎧⎨
⎩

exp
(−2πν−

1

)
, for px/

√
eE ≤ −√

eET/2,

exp (−πλ) , for |px | /
√
eE <

√
eET/2,

exp
(−2πν+

2

)
, for px/

√
eE ≥ √

eET/2.

(60)

Thus, the total dominant density of pairs created in the slowly
varying regime is a sum of densities

ñcr ≈ ñcr
I + ñcr

Int + ñcr
II

=
[
T + τ1 + τ2

2
G

(
d − 1

2
,
πm2

eE

)]
r cr, (61)

in agreement to the universal form given by Eq. (33)
[15]. In cases beyond slowly varying configurations, i.e.
when the conditions (59) are not satisfied for all parame-
ters, the mean numbers N cr

n must be studied through the
exact expressions for the g-coefficients (57) according to
the definition (16). Hence, in what follows we present
mean numbers N cr

n of pairs created from the vacuum by
the composite field (51) as a function of the longitudinal
momentum px for some values of the parameters

√
eEτ j

and
√
eET . Moreover, in order to compare switching on

and off effects with an another composite electric field
[31]

E (t) = E

⎧⎨
⎩
ek1(t−t1), t ∈ I,
1, t ∈ Int,
e−k2(t−t2), t ∈ II,

(62)

wherein exponentially increasing and decreasing intervals
simulate switching on and off processes and a T -constant
field [10,30] (in which switching on and off processes are
absent) we include, in each graph below, mean numbers of
pairs created by the field (62) and the T -constant field for
some values of the parameters

√
eEk−1

j and
√
eET . As in

the previous sections, we set p⊥ = 0 and select the system
in which � = c = m = 1.

According to the graphs above, the differential mean num-
bers oscillate around the uniform distribution e−πλ, irre-
spective the electric field in consideration. This is consis-
tent to asymptotic predictions for the T -constant field, in
the sense that the differential mean numbers N cr

n stabilizes
to the uniform distribution e−πλ as soon as

√
eET is suffi-

ciently larger than the characteristic values max
(
1,m2/eE

)
.

Thus, the larger the value of
√
eET , the smaller the magni-

tude of the oscillations. This explains why oscillations are
larger in Fig. 6 in which

√
eET = 5 in comparison to

the ones in Fig. 9, in which
√
eET = 10

√
3. Moreover,

one can see that the magnitude of oscillations decrease if
a constant field is accompanied by switching on and off
processes; compare solid and dashed lines. This decrease
in the amplitude of the oscillations is a consequence of
smoother switching on and off processes. In the case of the
composite field (51), the mean numbers are approximated
given by the first and third lines of Eq. (60) while the com-
posite field (62), N cr

n ≈ exp
(−2π�−

1

)
for px/

√
eE ≤

−√
eET/2 and N cr

n ≈ exp
(−2π�+

2

)
for px/

√
eE ≥√

eET/2, in which �±
j = k−1

j

(√
�̃2

j + π2⊥ ± �̃ j

)
, �̃ j =

px − (−1) j eEk−1
j

(
1 + k j T/2

)
. Accordingly, the exact

mean numbers oscillate around these approximations, whose
amplitudes decrease as eEτ 2

j , eEk−2
j increases. At last,

but not least, we see that the mean numbers of pairs cre-
ated by the composite field (62) oscillate around the uni-
form distribution less than by the composite field (51),
given the same longitudinal kinetic momentum increment
of both switching on and off processes, for all values of the
parameters under consideration. Based on the values cho-
sen for the parameters, we conclude that the slowly vary-
ing regime provides a better approximation to the com-
posite field (62) than for the field (51). However, assum-
ing the same value for E for both composite fields, it is
clear that for τ sufficiently larger than k−1 (that is, longi-
tudinal kinetic momentum increment of the inverse square
fields is larger than one of exponential fields), the oppo-
site situation occurs. The composite electric field (51) and
its peculiarities supply our previous studies [31] on the role
of switching on and off processes in the vacuum instabil-
ity.
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Fig. 6 Differential mean number of Fermions (a) and Bosons (b)
created from the vacuum by electric fields. The solid red and blue
lines refers to the composite fields (51) and (62), respectively, with
τ1 = τ2 = τ and k1 = k2 = k. The dashed green lines refers to the

T -constant field while the horizontal ones denotes the uniform distri-
bution e−πλ. In both graphs, mτ = 1, mk−1 = 1, mT = 5 and E = Ec
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Fig. 7 Differential mean number of Fermions (a) and Bosons (b)
created from the vacuum by electric fields. The solid red and blue
lines refers to the composite fields (51) and (62), respectively, with
τ1 = τ2 = τ and k1 = k2 = k. The dashed green lines refers to the

T -constant field while the horizontal ones denotes the uniform distribu-
tion e−πλ. In both graphs, mτ = 1, mk−1 = 1, mT = 10 and E = Ec

6 Some concluding remarks

In addition to few known exactly solvable cases in QED with
external backgrounds, an inverse square electric field repre-
sents one more example where nonperturbative calculations
of particle creation effect can be performed exactly. We have
presented in detail consistent calculations of zero order quan-
tum effects in the inverse square electric field as well as in a
composite electric field of a special configuration, in which
the inverse square electric field simulates switching on and
off processes. In all these cases we find corresponding in and

out exact solutions of the Dirac and Klein–Gordon equa-
tions. Using these solutions, we calculate differential mean
numbers N cr

n of Fermions and Bosons created from the vac-
uum. Differential quantities are considered both exactly and
approximately (within the slowly varying regime). In the sec-
ond case, we studied these distributions as functions on the
particle momenta, establishing ranges of dominant contribu-
tions and finding corresponding asymptotic representations.
In order to be able to compare visually approximate results
with exact ones, we compute and analyze plots of differen-
tial mean numbers N cr

n as functions of px for some values
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Fig. 8 Differential mean number of Fermions (a) and Bosons (b)
created from the vacuum by electric fields. The solid red and blue
lines refers to the composite fields (51) and (62), respectively, with
τ1 = τ2 = τ and k1 = k2 = k. The dashed green lines refers to

the T -constant field while the horizontal ones denotes the uniform dis-
tribution e−πλ. In both graphs, mτ = 1, mk−1 = 1, mT = 5 and
E = 3Ec
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Fig. 9 Differential mean number of Fermions (a) and Bosons (b)
created from the vacuum by electric fields. The solid red and blue
lines refers to the composite fields (51) and (62), respectively, with
τ1 = τ2 = τ and k1 = k2 = k. The dashed green lines refers to the

T -constant field while the horizontal ones denotes the uniform distri-
bution e−πλ. In both graphs, mτ = 1, mk−1 = 1, mT = 10 and
E = 3Ec

to the pulse durations τ j and for electric field magnitude E
equal to the Schwinger’s critical value. The asymptotic repre-
sentations agree substantially with exact results as the pulse
durations increase. Using the asymptotic representations for
differential quantities, we compute the total number N cr of
created pairs the probability Pv for the vacuum remain the
vacuum. The results are consistent with universal estimates
in the locally constant field approximation. Moreover, com-
paring the results with dominant densities of pairs created by
the T -constant and peak electric fields, we derive an effective
time duration of the inverse square electric field and estab-

lish relations by which they are equivalent in pair production
effect. Assuming that the peak and the inverse square elec-
tric fields act on the vacuum over the same effective time,
we relate both fields and conclude that the relation between
their pulses varies as k−1 ≤ τ ≤ 2k−1, for any amplitude E
or space-time dimensions d.

To complete the pictures, we consider in Sect. 4 the case of
an asymmetrical configuration, in which the field presents a
sharp pulse for t < 0. In the limit τ1 → 0 the corresponding
g -coefficients are consistent with g-coefficients calculated
in the symmetric case. Analyzing plots of exact calculations,
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we see that the mean numbers oscillate around their asymp-
totic approximate values in contrast to the symmetric case
were such oscillations are absent; compare Figs. 2, 3 with
Fig. 4. These oscillations are attributed to the asymmetri-
cal time dependence of the electric field or, in other words,
to the existence of an “abrupt” switching on process near
t = 0. Moreover, this feature does not depend on the form
of external electric field, they can be observed in other cases,
for instance in T -constant electric field (see Figs. 6, 7, 8,
9). Thus, we may conclude that the oscillations are universal
features of “abrupt” switching on or off processes.

Considering an electric field composed by three parts, two
of which are represented by inverse square fields, we calcu-
late relevant g-coefficients for particle creation and discuss
approximate expressions for differential quantities. To under-
stand better switching on and off effects, we compare the
above case with the case where switching on and off config-
urations have exponential behavior. Doing this we consider
a configuration in which the duration T of the intermediate
T -constant electric fields is greater than the duration of the
characteristic pulses τ j and k−1

j . This configuration allows
us to analyze how the differential distributions differ from
their asymptotic form e−πλ. According to Figs. 6, 7, 8 and
9, we conclude that the way of switching on and off is essen-
tial for application of slowly varying regime approximation.
For example, comparing results in the T -constant electric
field (dashed lines) for Fermions with ones for composite
fields (solid lines) in Fig. 8, we see they are close to results
obtained in the slow variation approximation if parameters
of composite fields satisfy the condition

√
eET ≥ 5

√
3,√

eEτ = √
eEk−1 = 1. At the same time, in the case of a

T -constant field with
√
eET = 5

√
3 it is not true and the cor-

responding mean numbers N cr
n deviate substantially from the

uniform distribution e−πλ. For Bosons, one can see that com-
posite fields with

√
eET = 5

√
3,

√
eEτ = √

eEk−1 = 1
does not allow application of the slow variation approxima-
tion, whereas the condition

√
eET ≥ 5

√
3 is close to the

threshold condition for composite fields for Fermions. One
can also see that differential quantities are quite sensitive to
the form of switching on and off. For all configurations dis-
played in Figs. 6, 7, 8 and 9, we see that exponential switch-
ing on and off causes smaller oscillations around the uniform
distribution in comparison to the inverse square switching on
and off.
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A Asymptotic representations of special functions

For a fixed and both c and z large, the CHF � (a, c; z) admits
the following asymptotic approximation [49],

� (a, c; z) ≈ c− a
2 e

Z2
4 F (a, c; η) , Z = (η − 1)W√

c,

F (a, c; η) = ηW1−aD−a (Z) − RD1−a (Z) , (63)

uniformly valid with respect to the ratio η = z/c ∈ (0,+∞).
Here W , R are given by

W =
√

2 (η − 1 − ln η)

(η − 1)2 , R = ηW1−a − Wa

Z , (64)

and D−a (Z), D1−a (Z) are Weber’s Parabolic Cylinder
functions (WPCF) [47]. The uniform asymptotic represen-
tation for the derivative has the form

d� (a, c; z)
dz

≈ c− a
2 e

Z2
4

(
η − 1

2η
+ 1

c

d

dη

)
F(a, c; η). (65)

When |η − 1| → 0, Z is small so that one can expand the
WPCF around Z = 0 and subsequently Z , W and R around
η = 1, to show that � (a, c; z) acquires the asymptotic form

� (a, c; z) ≈ c− a
2 D−a (0) , |η − 1| → 0. (66)

For |η − 1| → 1, Z is large and its argument depend on the
sign of η − 1. Using appropriate asymptotic approximations
of WPCF with large argument, it can be shown that

� (a, c; z) ≈ (η − 1)−a c−a, |η − 1| → 1, (67)

if η − 1 > 0 and

� (a, c; z) ≈ (1 − η)−a c−a
{
eiπa, 0 ≤ arg c < π,

e−iπa, −π ≤ arg c < 0,
(68)

as |η − 1| → 1 if η−1 < 0, both in leading-order approx-
imation. In Eq. (68) note that argZ = −π +(arg c) /2 if 0 ≤
arg c < π and argZ = π + (arg c) /2, if −π ≤ arg c < 0.

For large μ → ∞ and bounded |z|, |κ|, the asymptotic
approximation [48]

Mκ,μ (z) ≈ zμ+ 1
2 , |arg (μ)| ≤ π/2, (69)

and the connection formulae

Wκ,μ (z) = π

sin 2πμ
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⎧⎨
⎩− Mκ,μ (z)

�
(

1
2 − μ − κ

)
� (1 + 2μ)

+ Mκ2,−μ2 (z2)

�
(

1
2 + μ2 − κ2

)
� (1 − 2μ2)

⎫⎬
⎭ ,

W−κ,μ

(
e±iπ z

)
= π

sin 2πμ⎧⎨
⎩

exp [±iπ (−μ + 1/2)]

�
(

1
2 + μ + κ

) Mκ,−μ (z)

� (1 − 2μ)

− exp [±iπ (μ + 1/2)]

�
(

1
2 − μ + κ

) Mκ,μ (z)

� (1 + 2μ)

⎫⎬
⎭ , (70)

can be used to derive a asymptotic approximations for
W−κ1,μ1

(
e−iπ z1

)
and Wκ2,μ2 (z2). Setting μ = μ1 and

κ = κ1, both defined in Eqs. (7), we select χ = −1, to
find

W−κ1,μ1

(
e−iπ z1

)∣∣∣
t=0

≈ e− iπ
4√

sinh
(
2πeEτ 2

1

)

×
⎡
⎣ei�

−
1 e− iπμ1

2

iτ1

√
λ sinh

(
πν+

1

)
eE

+ ei�
+
1 e

iπμ1
2

√
sinh

(
πν−

1

)⎤⎦ , (71)

as |μ1| → ∞ for Fermions in next-to-leading order approxi-
mation. As for the Whittaker function Wκ2,μ2 (z2), one finds

Wκ2,μ2 (z2) ≈ ei�
+
2 exp

(
−πeEτ 2

2

2

)√
2

√
sinh πν−

2

sinh
(
2πeEτ 2

2

)

+ ei�
−
2 exp

(
πeEτ 2

2

2

) √
λ√

2eEτ2

√
sinh πν+

2

sinh
(
2πeEτ 2

2

) , (72)

as |μ2| → ∞ for Fermions in next-to-leading order
approximation. Similar expansions can be obtained for the
Klein–Gordon case. The complex phases in both equa-

tions are �±
j = − arg �

(
∓iν∓

j

)
− arg �

(
±2ieEτ 2

j

)
±

eEτ 2
j ln

(
2ω jτ j

)
.

For small z, bounded κ and μ = 1/2, the Whittaker func-
tion acquires the series expansion [49]

Wκ, 1
2

(z) = 1

� (1 − κ)
+ 1

2� (−κ)

{
1

κ
+ 2

[−1 + 2γ

+ log (z) + ψ (1 − κ)
]
z + O

(
z2
)}

, z → 0, (73)

where γ ≈ 0.577 is Euler’s constant ψ (z)
= �′ (z) /� (z) is the Psi (or DiGamma) function.

References

1. J. Schwinger, Phys. Rev. 82, 664 (1951)
2. A.I. Nikishov, Zh. Eksp. Teor. Fiz. 57, 1210 (1969) [Transl. Sov.

Phys. JETP 30, 660 (1970)]
3. A.I. Nikishov, Quantum electrodynamics of phenomena in intense

fields, in Proceedings of P.N. Lebedev Physical Institute, vol. 111
(Nauka, Moscow, 1979), p. 153

4. D.M. Gitman, J. Phys. A 10, 2007 (1977)
5. E.S. Fradkin, D.M. Gitman, Fortschr. Phys. 29, 381 (1981)
6. E.S. Fradkin, D.M. Gitman, S.M. Shvartsman, Quantum Electro-

dynamics with Unstable Vacuum (Springer, Berlin, 1991)
7. W. Greiner, B. Müller, J. Rafelsky, Quantum Electrodynamics of

Strong Fields (Springer, Berlin, 1985)
8. N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space

(Cambridge University Press, Cambridge, 1982)
9. A.A. Grib, S.G. Mamaev, V.M. Mostepanenko, Vacuum Quan-

tum Effects in Strong Fields (Friedmann Laboratory Publishing,
St. Petersburg, 1994)

10. S.P. Gavrilov, D.M. Gitman, Phys. Rev. D 53, 7162 (1996)
11. S.P. Gavrilov, D.M. Gitman, J.L. Tomazelli, Nucl. Phys. B 795,

645 (2008)
12. R. Ruffini, G. Vereshchagin, S. Xue, Phys. Rep. 487, 1 (2010)
13. F. Gelis, N. Tanji, Prog. Part. Nucl. Phys. 87, 1 (2016)
14. S.P. Gavrilov, D.M. Gitman, Phys. Rev. D 93, 045002 (2016)
15. S.P. Gavrilov, D.M. Gitman, Phys. Rev. D 95, 076013 (2017)
16. G.V. Dunne, Eur. Phys. J. D 55, 327 (2009)
17. A. Di Piazza, C. Müller, K.Z. Hatsagortsyan, C.H. Keitel, Rev.

Mod. Phys. 84, 1177 (2012)
18. G. Mourou, T. Tajima, Eur. Phys. J. Spec. Top. 223, 979 (2014)
19. G.V. Dunne, Eur. Phys. J. Spec. Top. 223, 1055 (2014)
20. B.M. Hegelich, G. Mourou, J. Rafelski, Eur. Phys. J. Spec. Top.

223, 1093 (2014)
21. D. Das Sarma, S. Adam, E.H. Hwang, E. Rossi, Rev. Mod. Phys.

83, 407 (2011)
22. O. Vafek, A. Vishwanath, Annu. Rev. Condens. Matter Phys. 5, 83

(2014)
23. N.B. Narozhny, A.I. Nikishov, Yad. Fiz. 11, 1072 (1970) [Transl.

Sov. J. Nucl. Phys. (USA) 11, 596 (1970)]
24. V.G. Bagrov, D.M. Gitman, S.M. Shvartsman, Zh. Eksp. Teor. Fiz.

68, 392 (1975) [Transl. Sov. Phys. JETP 41, 191 (1975)]
25. N.B. Narozhny, A.I. Nikishov, Sov. Phys. JETP 38, 427 (1974)
26. V.M. Mostepanenko, V.M. Frolov, Sov. J. Nucl. Phys. (USA) 19,

451 (1974)
27. T.C. Adorno, S.P. Gavrilov, D.M. Gitman, Phys. Scr. 90, 074005

(2015)
28. T.C. Adorno, S.P. Gavrilov, D.M. Gitman, Eur. Phys. J. C 76, 447

(2016)
29. T.C. Adorno, R. Ferreira, S.P. Gavrilov, D.M. Gitman, Russ. Phys.

J. 60, 417 (2017)
30. T.C. Adorno, S.P. Gavrilov, D.M. Gitman, Int. J. Mod. Phys. A 32,

1750105 (2017)
31. T.C. Adorno, R. Ferreira, S.P. Gavrilov, D.M. Gitman, Int. J. Mod.

Phys. 33, 1850060 (2018)
32. S.P. Gavrilov, D.M. Gitman, N. Yokomizo, Phys. Rev. D86, 125022

(2012)
33. N.D. Birrell, J. Phys. A Math. Gen. 12, 337 (1979)
34. J. Garriga, Phys. Rev. D 49, 6327 (1994)
35. S. Haouat, R. Chekireb, Phys. Rev. D 87, 088501 (2013)
36. R.-G. Cai, S.P. Kim, JHEP 9, 072 (2014)
37. M.B. Fröb et al., JCAP 04, 009 (2014)
38. T. Kobayashi, N. Ashfordi, JHEP 10, 166 (2014)
39. C. Stahl, E. Strobel, S.-S. Xue, Phys. Rev. D 93, 025004 (2016)
40. E. Bavarsad, C. Stahl, S.-S. Xue, Phys. Rev. D 94, 104011 (2016)

123



Eur. Phys. J. C (2018) 78 :1021 Page 17 of 17 1021

41. E. Bavarsad, S.P. Kim, C. Stahl, S.-S. Xue, Phys. Rev. D 97, 025017
(2018)

42. T. Hayashinaka, T. Fujita, J. Yokoyama, JCAP 07, 010 (2016)
43. R. Sharma, S. Singh, Phys. Rev. D 96, 025012 (2017)
44. F. Karbstein, Phys. Rev. D 95, 076015 (2017)
45. E.T. Whittaker, Bull. Am. Math. Soc. 10, 125 (1903)
46. E.T. Whittaker, G.N. Watson, A Course of Modern Analysis, 4th

edn. (Cambridge University Press, Cambridge, 1950)
47. A. Erdelyi et al. (ed.), Higher Transcendental Functions (Bateman

Manuscript Project), vols. 1 and 2 (McGraw-Hill, New York, 1953)

48. H. Buchholz,TheConfluentHypergeometric Functionwith Special
Emphasis on Its Applications (Springer, New York, 1969)

49. NIST Digital Library of Mathematical Functions. Version 1.0.16.
http://dlmf.nist.gov/,2015-08-07

50. G. Dunne, T. Hall, Phys. Rev. D 58, 105022 (1998)

123

http://dlmf.nist.gov/,2015-08-07

	Violation of vacuum stability by inverse square electric fields
	Abstract 
	1 Introduction
	2 Solutions of wave equations with the background under consideration
	3 Quantities characterizing the vacuum instability
	3.1 Slowly varying field regime
	3.1.1 Differential mean numbers
	3.1.2 Total numbers


	4 Asymmetric configuration
	5 Switching on and off by inverse square electric fields
	6 Some concluding remarks
	Acknowledgements

	A Asymptotic representations of special functions
	References




