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Abstract In this work we consider a general function for
the c2 term that appears in the conventional expression for the
holographic dark energy in a FLRW curved spacetime. The
cut-off prospective is inspired in the apparent horizon length.
By exploring the slowly varying condition for the c2 term, we
obtain a range of validity for this holographic proposal. Under
these considerations can be found that this holographic cut-
off is adequate to describe the late cosmic evolution. Addi-
tionally, by considering some values constrained with the
use of observational data for some cosmological parameters
in the context of dark energy models, such as the decelera-
tion parameter or the parameter state, can be shown that this
holographic model remains close to the �CDM model.

1 Introduction

Generally the followed path to give a description for the late
cosmic evolution involves going beyond the theory of gen-
eral relativity, several of the proposed models can describe
an accelerated cosmic phase, however the results are not con-
clusive, a difficult test to pass for many of these cosmological
models is to keep a small growth of the matter-density per-
turbations during the expansion. For an interesting review on
the topic of modified theories of gravity, see for instance the
Ref. [1].

In the standard framework, the current cosmic accelera-
tion is due to an exotic component of the universe known as
dark energy, this idea is not ruled out by cosmic data since
a certain tendency can be observed in the value obtained
for the parameter state that describes the dark energy, this
value oscillates around -1 [2–6], it is even possible to see that
some results place this value below -1. The nature of the dark
energy has been discussed in the literature as quintessence
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matter or phantom one [7–9], but some of its fundamental
properties are still an open subject.

In this paper we will approach the problem of dark energy
from a holographic point of view. The concept of hologra-
phy at cosmological level began to acquire interest since it
could be determined that it alleviated the coincidence prob-
lem even for non-spatially flat cosmologies [10], under this
description the physical quantities inside the universe can be
described by quantities defined on the boundary of the uni-
verse, specifically, the density associated to the dark energy
must be proportional to an infrared cut-off with a particu-
lar interest in the cosmological context. See for instance the
Refs. [11,12], where was shown that under a specific elec-
tion for the horizon length of the holographic dark energy,
some important consequences can be obtained at cosmologi-
cal level, such as crossing of the phantom divide, unification
of early time inflationary epoch and late time accelerating
universe, among other. Within the holographic description
is common to find interacting schemes for the dark energy
with other components of the universe [13–19], providing
a natural framework for thermodynamics description, how-
ever, some issues at thermodynamics level for an expanding
universe deserve a deeper investigation [20].

In this work we will explore the effects of the curvature
parameter on the resulting cosmological quantities for a spe-
cific holographic proposal, which is inspired in the length of
the apparent horizon, as we will see later, the c2 term appear-
ing in the holographic dark energy is a general function of the
redshift and it is written in terms of the curvature parameter.
For a flat universe case the c2 term becomes a constant, this
resembles the Li holographic model [21].

Besides, by evaluating the c2 term at present time it is pos-
sible to establish a range of validity for an arbitrary constant
that appears in the holographic cut-off for the dark energy
density, as expected, the value of this constant depends on
the value of the curvature parameter and an important conse-
quence is that such range of values, is appropriate to describe
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the late time cosmic evolution in this model, i.e., an expand-
ing universe.

The curvature parameter seems to have a relevant role in
the holographic scheme, in Ref. [22] can be found that for a
closed universe the interacting term for the dark cosmologi-
cal sector depends on this value. On the other hand, in Ref.
[23] was found that only for a non-flat universe, the interact-
ing description for the dark energy - dark matter components
admits a future singularity. As far as we know, a non-flat
universe is not ruled out by the observational data [2,3] and
some recent results coming from the study of the Hubble
parameter for several dark energy models with spatial cur-
vature contribution showed that the �CDM model does not
discard this kind of models [24,25].

Finally, for this holographic model it can be established
that it is appropriate to describe a late cosmic evolution and
according to observations, the coincidence parameter is of
order 1 at present time, later, as the universe evolves to the
far future, the coincidence parameter decreases.

This work is organized as follows: In Sect. 2 we describe
the dynamics of the model in a FLRW curved spacetime and
we provide some generalities of the apparent horizon inspired
holographic cut-off used in this approach. In Sect. 3 we study
the slow varying condition for the c2 term in this holographic
proposal, we establish the stage of the cosmic evolution that
this holographic model can describe. In Sect. 4 we study
some consequences on the parameter state of the model, we
determine some values of the cosmological parameters of the
model at present time. In Sect. 5 we write the final remarks
of our work.

2 Dynamics of the model

For two non-interacting fluids characterized by densities ρ1

and ρ2, the Friedmann constraint in a curved FLRW space-
time can be written as follows

3H2 (1 − �k) = ρ1 (1 + r) , (1)

where r is the coincidence parameter defined as r := ρ2/ρ1

and �k is the curvature parameter given by �k(z) =
−k(1/a2

0 H
2
0 )(1+ z)2 = �k(0)(1+ z)2, being a0 the value of

the scale factor at present time (z = 0), H0 the Hubble con-
stant (value of the Hubble parameter for z = 0), k = ±1, 0,
represents a closed, open and flat universe, respectively and
z is the redshift. In this case ρ1 is the density for the dark
energy component and as we will see in the next section we
will consider a holographic cut-off inspired in the apparent
horizon length to describe it and ρ2 the corresponding one
for the dark matter component.

The continuity equations for the energy densities have the
following expressions

ρ′
1 − 3

(1 + ω1)

(1 + z)
ρ1 = 0, (2)

(rρ1)
′ − 3

(1 + ω2)

(1 + z)
rρ1 = 0, (3)

where the prime stands for redshift derivative and ω1,2 are
the parameters state which relate the energy density of the
fluid with its pressure.

2.1 Inspired apparent horizon cut-off

Based on the holographic principle we deal with ρ ∼ L−2,
where L is the size of the current universe. From now on,
we will consider the energy density for the dark energy as
follows

ρ1 = 3 (β1 − β2�k) H
2, (4)

where β1 and β2 are constant parameters and the factor 3
is introduced for convenience. The above expression has a
similitude with apparent horizon radius defined as rah =[
(1 − �k)H2

]−1/2
. It is important to point out that the holog-

raphy based on the use of the apparent horizon obeys the first
law of thermodynamics and naturally a gravitational entropy
can be associated with the apparent horizon [26]. In terms of
the redshift the energy density (4) is simply

ρ1(z) = 3
[
β1 − β2�k(0)(1 + z)2

]
H2(z), (5)

note that ρ1(z → −1) → 3β1H2. As can be seen from the
expression (5), the factor of H2 is a function of the redshift,
this differs from the proposal made by Li in Ref. [21], where
this factor is only a constant given by 3c2. However, in Ref.
[27] can be found that generally the c2 term is considered as
a constant in the interval 0 < c2 < 1. According to its value,
this constant has an important role since can provide a cos-
mological constant cosmic expansion or the corresponding
one to an eternal expansion. For a more general description
the c2 term must be assumed as a slowly varying function of
time, in this sense from our previous equations we get

ρ1(z) = 3c2(z)H2(z), (6)

where the following equivalence can be established

c2(z) := β1 − β2�k(0)(1 + z)2. (7)

From above expression we can see that at present time (z = 0)
the function c2(0) = β1 only for a flat universe (�k(0) = 0).
If we replace the redefinition of ρ1(z) expressed in (6) into
the Eq. (1) we have

c2(z) = 1 − �k(z)

1 + r(z)
. (8)
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Note that the value of c2(z) at present time can be determined
by two parameters known from observational data, which are
the curvature and coincidence parameters [2,3], we obtain
c2(0) in the interval (0.72, 0.76).

Additionally, notice that Eq. (8) is in agreement with the
interval 0 < c2 < 1. It is worthy to mention that the Eq. (7)
can be written in terms of its value at present time as follows

c2(z) = β1 +
[
c2(0) − β1

]
(1 + z)2, (9)

from last expression we can see that the function c2(z) has
only one free parameter, i.e., β1, therefore

ρ1(z) = 3
{
β1 +

[
c2(0) − β1

]
(1 + z)2

}
H2(z). (10)

3 The c2(z) function

In this section we will establish a relation between the con-
stant β1 coming from the holographic cut-off and the present
time value of the c2 term by means of the slow variation con-
dition. As commented previously, the function c2 must be a
slowly varying function, this means that is bounded by the
Hubble expansion rate, H , i.e., [27]
[
c2(t)

]̇

c2(t)
� H, (11)

where the dot represents a cosmic time derivative, note that
this condition must be guaranteed at all times. In our case the
previous equation is simply

(1 + z)
1

c2(z)

dc2(z)

dz
� −1, (12)

where the redshift and scale factor are related through the
expression 1 + z = a0/a. By considering the expression for
c2(z) given in Eq. (9) in the above equation, we obtain the
following condition

− 3
[
c2(0) − β1

]
(1 + z)2 � β1, (13)

which at present time results

β1 � 3

2
c2(0). (14)

Note that for all z we have the condition c2(z) � (2β1)/3,
therefore (2β1)/3 � c2(z) < 1. However, since the condi-
tion (12) must be preserved along the cosmic evolution, we
can write

1 + z �
√

β1

3
[
β1 − c2(0)

] . (15)

From the previous Eq. we can infer that β1 > c2(0) in order
to have a real valued expression. Therefore, from this last
condition and the Eq. (14) we obtain

Fig. 1 Normalized Hubble parameter as a function of the redshift. The
solid line is for �k(0) = 0.005(k = −1) and the dashed line represents
the case �k(0) = − 0.005(k = 1)

c2 < β1 � 3

2
c2(0). (16)

As can be seen from the Eq. (15), as we approach the far
future (z = −1), the condition of slow variation imposes the
following result, β1 � 0, therefore 0 � β1 � (3c2(0))/2.

On the other hand, by considering the Eq. (14) in the Eq.
(15), one gets that z � 0, this is a clear indication that the
suggested holographic cut-off for the dark energy density is
appropriate to describe the late cosmic evolution.

From the Friedmann constraint given in Eq. (1), we can
compute the normalized Hubble parameter, yielding

E2(z) = �2(0)(1 + z)3 + �k(0)(1 + z)2

1 − c2(z)
,

= �2(0)(1 + z)3 + �k(0)(1 + z)2

1 − [
β1 − (

β1 − c2(0)
)
(1 + z)2

] , (17)

where E(z) := H(z)/H(0), note the dependence on the cur-
vature parameter of the previous equation, also through the
value of c2(0). In Fig. 1 we can observe the behavior of Eq.
(17) for a late time evolution. For this plot we have considered
the interval (0.72, 0.76) for c2(0) and the condition given
in (14) for β1 and the values �2(0) = 0.3089 ± 0.0062,
�k(0) = 0.000 ± 0.005 [2,3]. As observed, as the model
approaches the far future, the normalized Hubble param-
eter increases, this differs from the behavior observed in
the �CDM model, where the Hubble parameter tends to a
bounded value.

On the other hand, by considering the ratio between the
densities ρ2 and ρ1 we can obtain an specific expression for
the coincidence parameter

r(z) = ρ2(z)

ρ1(z)
= �2(0)

(1 + z)3

c2(z)E2(z)
, (18)
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Fig. 2 Behavior of the coincidence parameter. The solid line is for
�k(0) = 0.005(k = − 1) and the dashed line represents the case
�k(0) = − 0.005(k = 1)

where the functions c2(z) and E2(z) are known. By substi-
tuting E2(z) in the previous expression one gets

r(z) =
(

1 − c2(z)

c2(z)

) [
1 + �k(0)

�2(0)(1 + z)

]−1

, (19)

from the previous equation we can see that r(z) < 1 and
r(z → −1) → 0. At present time we can obtain the follow-
ing constraint from the condition r(0) < 1

1

2
< c2(0) < 1, (20)

given that 1 +�k(0)/�2(0) > 0. Note that this is consistent
with the interval (0.72, 0.76) given before for c2(0).

In Fig. 2 we show the behavior of the coincidence param-
eter given in Eq. (18) as a function of the redshift, for this
plot we used the values given previously for c2(0), �2(0)

and �k(0).
As can be observed in Fig. 2, the density ratio is of order

one at present time, which means that both densities are of
the same order of magnitude, this is known as the cosmolog-
ical coincidence problem and it is an indication that we are in
a special period of cosmic evolution, this fact is corroborated
by observational data. However, as the universe evolves the
coincidence parameter decreases, as can be seen from Eq.
(19), this behavior is independent of the value of the curva-
ture and �2(0) parameters, this is a clear indication that the
dark energy dominance starts now and will keep that way,
this is also a known feature of the cosmological coincidence
problem [28].

4 The parameter state ω1(z)

In this section we will explore some consequences on the
parameter state for the dark energy component, ω1. From the
continuity equation given in the expression (2), we can write

1 + ω1(z) = 1

3
(1 + z)

ρ′
1

ρ1
, (21)

taking into account the Eqs. (6) and (9) in the previous expres-
sion, one gets

ω1(z) − 1

3
= 2

3

{

q(z) − β1

β1 + [
c2(0) − β1

]
(1 + z)2

}

,

(22)

being q(z) the deceleration parameter. If we evaluate at
present time the constant β1 takes the form

β1 = c2(0)

2
{1 − 3ω1(0) + 2q(0)} , (23)

by considering q(0) ∼ −0.5 and β1 ≈ 3c2(0)/2, which
is in agreement with the condition given in the Eq. (14),
we obtain ω1(0) ∼ −1, which resembles a cosmological
constant evolution.

From the expression (23) and the slow-variation result
for β1 given in (14), we can provide for the deceleration
parameter

q(0) � 1 + 3

2
ω1(0). (24)

Additionally, we can write for the energy density of the dark
energy the following expression

ρ1(z) = 3c2(0)

2

[
3 − (1 + z)2

]
H2(z), (25)

where the slow variation condition (14) is considered. It
is worthy to mention that energy density expressed before
depends on the value of the curvature parameter at present
time since the constant c2(0) comes from Eq. (8).

In Ref. [4] a dark energy equation of state was found in

the interval ω (0) = − 0.95+0.33
−0.39, from the dark energy sur-

vey. If we take into account the Eq. (24) and the aforemen-
tioned values for the parameter state, we can find that the
deceleration parameter must obey the following condition
−1.01 � q(0) � 0.07. It is important to point out that the
interval obtained for the deceleration parameter includes the
�CDM model.

In Ref. [29] can be found the interval − 0.8 � q(0) �
− 0.2 for the deceleration parameter when a generalized
parametrization of this cosmological quantity is considered
together with an updated compilation of the Hubble measure-
ments obtained from the cosmic chronometer, with this inter-
val for q(0) and the Eq. (24) one gets −1.2 � ω1(0) � − 0.8,
then this holographic proposal for the dark energy can behave
as phantom or quintessence.
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5 Final remarks

By considering the apparent horizon length for the holo-
graphic dark energy, we explore the c2 term given by a gen-
eral function of the redshift. Since we are taking into account
the spatial curvature of the spacetime the resulting c2 term
depends on the present time values of the curvature and coin-
cidence parameters. For a flat spacetime at present time the
c2 function becomes a constant.

The form obtained for the function c2(z) in this holo-
graphic cut-off seems to be reasonable, by considering a slow
time variation for it, or in other words, that its variation is
not much faster than the scale factor, we can obtain a range
of validity for this holographic proposal. At first glance the
slow variation can be guaranteed in the far future and is also
fulfilled in the past, therefore this holographic proposal for
dark energy could be adequate to describe the cosmic evo-
lution. The behavior of the normalized Hubble parameter in
this model differs from the one obtained in the �CDM as
the universe approaches the far future, in this model its value
increases. Additionally, when the coincidence parameter is
computed, at present time we can observe that is around one,
which is in agreement with observational data.

Once that the slowly variation is considered, the parameter
state for the dark energy can be obtained from the dynamics of
the model. This parameter state results to be a varying func-
tion of the redshift and depends explicitly on the deceleration
parameter, which is also a function of the redshift. Given that
the parameter state can vary, this holographic model could
mimic the �CDM model.

As a simple verification we can observe that by consider-
ing the constrained value of ω for some dark energy models
at present time, we obtain that the deceleration parameter can
take values below −1, i.e., beyond the cosmological constant
cosmic evolution. As the value of the parameter state reaches
the phantom zone, the deceleration parameter becomes more
negative. This appears to be consistent. A cosmological con-
stant evolution can be emulated in this model. Finally, if we
consider the value constrained for the deceleration parameter
with the use of recent data, we obtain that the parameter state
of this holographic proposal can take values in the phantom
or quintessence zone. In this work we are not considering
gravitational interaction in the dark sector, we will discuss
this elsewhere.
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