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Abstract We construct modified cosmological scenarios
through the application of the first law of thermodynamics
on the universe horizon, but using the generalized, nonexten-
sive Tsallis entropy instead of the usual Bekenstein–Hawking
one. We result to modified cosmological equations that pos-
sess the usual ones as a particular limit, but which in the
general case contain extra terms that appear for the first time,
that constitute an effective dark energy sector quantified by
the nonextensive parameter δ. When the matter sector is dust,
we extract analytical expressions for the dark energy density
and equation-of-state parameters, and we extend these solu-
tions to the case where radiation is present too. We show
that the universe exhibits the usual thermal history, with the
sequence of matter and dark-energy eras, and according to the
value of δ the dark-energy equation-of-state parameter can be
quintessence-like, phantom-like, or experience the phantom-
divide crossing during the evolution. Even in the case where
the explicit cosmological constant is absent, the scenario at
hand can very efficiently mimic �CDM cosmology, and is in
excellent agreement with Supernovae type Ia observational
data.

1 Introduction

Recent cosmological observations from various and different
fields reveal that the universe has experienced two accelerated
expansion phases, one at early and one at late times. Since
the established knowledge of general relativity and Standard
Model of particles is not sufficient to explain this behavior,
there has been a lot of effort in constructing theories beyond
the above, in order to acquire the necessary extra degrees
of freedom. On one hand, one can introduce new forms of
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matter, such as the inflaton field [1,2] or the concept of dark
energy [3,4], which in the framework of general relativity
can lead to the aforementioned accelerated behaviors. On
the other hand, one can construct gravitational modifications,
which possess general relativity as a particular limit, but at
large scales can provide extra degrees of freedom capable of
driving the acceleration (for reviews see [5–8]). Note that this
last approach has the additional theoretical advantage that
may improve renormalizability, which seems to be necessary
towards quantization [9,10].

The usual approach of constructing modified gravitational
theories is to start from the Einstein–Hilbert action and add
correction terms. The simplest extension is to replace the
Ricci scalar R by a function f (R) [11–14]. Similarly, one
can proceed in constructing many other classes of modifica-
tion, such as f (G) gravity [15,16], Lovelock gravity [17,18],
Weyl gravity [19,20] and Galileon theory [21–23]. Alterna-
tively, one can start from the torsional formulation of gravity
and build various extensions, such as f (T ) gravity [24–26],
f (T, TG) gravity [27,28], etc.

On the other hand, there is a well-known conjecture that
one can express the Einstein equations as the first law of
thermodynamics [29–31]. In the particular case of cosmology
in a universe filled with the matter and dark-energy fluids,
one can express the Friedmann equations as the first law
of thermodynamics applied in the universe apparent horizon
considered as a thermodynamical system [32–35]. Reversely,
one can apply the first law of thermodynamics in the universe
horizon, and extract the Friedmann equations. Although this
procedure is a conjecture and not a proven theorem, it seems
to work perfectly in a variety of modified gravities, as long
as one uses the modified entropy relation that corresponds
to each specific theory [35–44]. Nevertheless, note that in
order to know the modified entropy relation of a modified
gravity, ones needs to know this modified gravity a priori and
investigate it in spherically symmetric backgrounds. In this
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sense the above procedure cannot provide new gravitational
modifications, offering only a way to study their features.

In the present work we are interested in following the
above procedure in a reverse way, in order to construct new
cosmological modifications. In particular, we will apply the
first law of thermodynamics, but instead of the usual entropy
relation we will use the nonextensive, Tsallis entropy [45–
47], which is the consistent generalization of the Boltzmann–
Gibbs additive entropy in non-additive systems, such as grav-
itational ones. In this way we will obtain new modified Fried-
mann equations that possess the usual ones as a particular
limit, namely when the Tsallis generalized entropy becomes
the usual one, but which in the general case contain extra
terms that appear for the first time. Hence, we will inves-
tigate in detail the cosmological implications of these new
extra terms.

The plan of the work in the following: In Sect. 2 we present
the construction of the scenario, applying the first law of
thermodynamics in the universe horizon, but using the gen-
eralized, nonextensive Tsallis entropy instead of the usual
Bekenstein–Hawking one. In Sect. 3 we investigate the cos-
mological evolution, focusing on the behavior of the dark
energy density and equation-of-state parameters, studying
separately the cases where an explicit cosmological constant
is present or absent. Finally, in Sect. 4 we summarize our
results.

2 The model

In this section we present the scenario at hand, namely we
extract modified Friedmann equations applying the first law
of thermodynamics to the whole universe, but using the gen-
eralized Tsallis entropy instead of the standard one. Through-
out the work we consider a homogeneous and isotropic
Friedmann–Robertson–Walker (FRW) geometry with met-
ric

ds2 = −dt2 + a2(t)

(
dr2

1 − kr2 + r2d�2
)

, (1)

where a(t) is the scale factor, and with k = 0,+ 1,− 1 cor-
responding to flat, close and open spatial geometry respec-
tively.

2.1 Friedmann equations as the first law of thermodynamics

Let us first briefly review the extraction of the Friedmann
equations in the case of general relativity, from the applica-
tion of the first law of thermodynamics. We start by consid-
ering the expanding universe filled with the matter perfect
fluid, with energy density ρm and pressure pm . Although it
is not trivial what it should be its “radius”, namely the length

that forms its boundary, there is a consensus that one should
use the apparent horizon [32,33,48]

r̃a = 1√
H2 + k

a2

, (2)

with H = ȧ
a the Hubble parameter and dots denoting deriva-

tives with respect to t . The apparent horizon is a marginally
trapped surface with vanishing expansion, defined in general
by the expression hi j∂i r̃∂ j r̃ = 0 (which implies that the vec-
tor ∇r̃ is null or degenerate on the apparent horizon surface)
[49]. For a dynamical spacetime, the apparent horizon is a
causal horizon associated with the gravitational entropy and
the surface gravity [49–51]. Finally, note that in flat spatial
geometry the apparent horizon becomes the Hubble one.

The crucial point in the application of thermodynamics
in cosmology is that the first law is interpreted in terms of
energy flux and area of local Rindler horizons, and that heat
is defined as energy that flows across a causal horizon, and
hence thermodynamics is applied on the horizon itself, con-
sidered as a system separated not by a diathermic wall but by
a causality barrier [29–31]. One can attribute to the universe
horizon a temperature and an entropy that arise from the cor-
responding relations of black hole temperature and entropy
respectively, but with the universe horizon, namely the appar-
ent horizon, in place of the black hole horizon. Concerning
the black hole temperature, it is well known that for spheri-
cally symmetric geometry its relation does not depend on the
underlying gravitational theory, and it is just inversely pro-
portional to the black hole horizon, namely T = 1/(2πrh)
[52]. Hence, one can attribute to the universe horizon the
temperature [31]

Th = 1

2π r̃a
, (3)

independently of the gravitational theory that governs the
universe. Concerning the back hole entropy, it is also known
that its relation does depend on the underlying gravitational
theory [31]. In the case of general relativity one obtains the
usual Bekenstein–Hawking relation S = A/(4G) (in units
where h̄ = kB = c = 1), where A = 4πr2

h is the area of
the black hole and G the gravitational constant. Thus, in the
case of a universe governed by general relativity, the horizon
entropy will be just

Sh = 1

4G
A. (4)

Finally, a last reasonable assumption is that after equilib-
rium establishes the universe fluid acquires the same temper-
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ature with the horizon one, otherwise the energy flow would
deform this geometry [53].1

As the universe evolves an amount of energy from the
universe fluid crosses the horizon. During an infinitesimal
time interval dt , the heat flow that crosses the horizon can be
straightforwardly found to be [33]

δQ = −dE = A(ρm + pm)Hr̃adt, (5)

with A = 4πr2
a the apparent horizon area. On the other hand,

the first law of thermodynamics states that −dE = TdS.
Since the temperature and entropy of the horizon are given
by (3) and (4) respectively, we find that dS = 2π ˙̃radt/G,
with ˙̃ra easily obtained from (2). Inserting the above into the
first law of thermodynamics we finally acquire

−4πG(ρm + pm) = Ḣ − k

a2 . (6)

Additionally, assuming that the matter fluid satisfies the con-
servation equation

ρ̇m + 3H(ρm + pm) = 0, (7)

inserting it into (6) and integrating we obtain

8πG

3
ρm = H2 + k

a2 − �

3
, (8)

with � the integration constant, that plays the role of a cos-
mological constant.

Interestingly enough, we saw that applying the first law of
thermodynamics to the whole universe resulted to the extrac-
tion of the two Friedmann equations, namely Eqs. (6) and
(8). The above procedure can be extended to modified grav-
ity theories too, where as we discussed the only change will
be that the entropy relation will not be the general relativity
one, namely (4), but the one corresponding to the specific
modified gravity at hand [35–44]. Nevertheless, we have to
mention here that although the above procedure offers a sig-
nificant tool to study the features and properties of various
modified gravities, it does not lead to new gravitational modi-
fications, since one needs to know the entropy relation, which
in turn can be known only if a specific modified gravity is
given a priori.

1 Note that although this will certainly be the situation at late times,
when the universe fluid and the horizon will have interacted for a long
time, it is not assured that it will be the case at early or intermediate times.
However, in order to avoid applying non-equilibrium thermodynamics,
which leads to mathematical complexity, the assumption of equilibrium
is widely used [31–34,42,53]. Thus, we will follow this assumption
and we will have in mind that our results hold only at late times of the
universe evolution.

2.2 Tsallis entropy

In this subsection we briefly review the concept of nonexten-
sive, or Tsallis entropy [45–47]. As Gibbs pointed out already
at 1902, in systems where the partition function diverges,
the standard Boltzmann–Gibbs theory is not applicable, and
large-scale gravitational systems are known to fall within this
class. Tsallis generalized standard thermodynamics (which
arises from the hypothesis of weak probabilistic correla-
tions and their connection to ergodicity) to nonextensive one,
which can be applied in all cases, and still possessing stan-
dard Boltzmann–Gibbs theory as a limit. Hence, the usual
Boltzmann–Gibbs additive entropy must be generalized to
the nonextensive, i.e non-additive entropy (the entropy of the
whole system is not necessarily the sum of the entropies of its
sub-systems), which is named Tsallis entropy [45–47,54,55].
In cases of spherically symmetric systems that we are inter-
ested in this work, it can be written in compact form as [56]:

ST = α̃

4G
Aδ, (9)

in units where h̄ = kB = c = 1, where A ∝ L2 is the area
of the system with characteristic length L , G is the grav-
itational constant, α̃ is a positive constant with dimensions
[L2(1−δ)] and δ denotes the non-additivity parameter.2 Under
the hypothesis of equal probabilities the parameters δ and α̃

are related to the dimensionality of the system [56] (in par-
ticular the important parameter δ = d/(d − 1) for d > 1),
however in the general case they remain independent and free
parameters. Obviously, in the case δ = 1 and α̃ = 1, Tsal-
lis entropy becomes the usual Bekenstein–Hawking additive
entropy.

2.3 Modified Friedmann equations through nonextensive
first law of thermodynamics

In Sect. 2.1 we presented the procedure to extract the Fried-
mann equations from the first law of thermodynamics. This
procedure can be applied in any modified gravity, as long as
one knows the black hole entropy relation for this specific
modified gravity. Hence, as we mentioned above, although
it can be enlightening for the properties of various modified
gravities, the thermodynamical approach does not lead to
new gravitational modifications since one needs to consider
a specific modified gravity a priori.

In the present subsection however, we desire to follow the
steps of Sect. 2.1, but instead of the standard additive entropy
relation to use the generalized, nonextensive, Tsallis entropy
presented in Sect. 2.2 above. Doing so we do obtain modified
Friedmann equations, with modification terms that appear

2 In Ref. [56] the nonextensive entropy relation is written as ST = γ Aδ ,
however we prefer to write is as in (9) for convenience.
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for the first time, and which provide the standard Friedmann
equations in the case where Tsallis entropy becomes the stan-
dard Bekenstein–Hawking one.

We start from the first law of thermodynamics −dE =
TdS, where −dE is given by (5), T by (3), but we will
consider that the entropy is given by Tsallis entropy (9). In
this case, and recalling that A = 4π r̃2

a we acquire

dS = (4π)δ
δα̃

2G
r̃a

2δ−1 ˙̃radt. (10)

Inserting everything in the first law, and calculating ˙̃ra from
(2), we obtain

− (4π)2−δG

α̃
(ρm + pm) = δ

Ḣ − k
a2(

H2 + k
a2

)δ−1 . (11)

Finally, inserting the conservation equation (7) and integrat-
ing, for δ �= 2 we obtain

2(4π)2−δG

3α̃
ρm = δ

2 − δ

(
H2 + k

a2

)2−δ

− �̃

3α̃
, (12)

where �̃ is an integration constant. Hence, the use of Tsal-
lis entropy in the first law of thermodynamics, led to two
modified Friedmann equations, namely (11) and (12), with
modification terms that appear for the first time depending
on three parameters out of which two are free.

Let us elaborate the obtained modified Friedmann equa-
tions. From now on we focus on the flat case, namely we con-
sider k = 0, which allows us to extract analytical expressions,
however the investigation of the non-flat case is straightfor-
ward. We can re-write (11), (12) as

H2 = 8πG

3
(ρm + ρDE ) (13)

Ḣ = −4πG (ρm + pm + ρDE + pDE ) , (14)

where we have defined the effective dark energy density and
pressure as

ρDE = 3

8πG

{
(4π)δ−1 �̃

3

+H2

[
1 − α̃(4π)δ−1 δ

2 − δ
H2(1−δ)

]}
, (15)

pDE = − 1

8πG

{
(4π)δ−1�̃+2Ḣ

[
1−α̃(4π)δ−1δH2(1−δ)

]

+3H2
[

1 − α̃(4π)δ−1 δ

2−δ
H2(1−δ)

]}
. (16)

We can further simplify the above expressions by redefining
� ≡ (4π)δ−1�̃ and α ≡ (4π)δ−1α̃, obtaining

ρDE = 3

8πG

{
�

3
+ H2

[
1 − α

δ

2 − δ
H2(1−δ)

]}
, (17)

pDE = − 1

8πG

{
� + 2Ḣ

[
1 − αδH2(1−δ)

]

+3H2
[

1 − α
δ

2 − δ
H2(1−δ)

]}
. (18)

Thus, we can define the equation-of-state parameter for the
effective dark energy sector as

wDE ≡ pDE

ρDE
= −1 − 2Ḣ

[
1 − αδH2(1−δ)

]
� + 3H2

[
1 − αδ

2−δ
H2(1−δ)

] . (19)

In summary, in the constructed modified cosmological
scenario, Eqs. (7), (13) and (14) can determine the universe
evolution, as long as the matter equation-of-state parame-
ter is known. In particular, inserting (17), (18) into (14), we
acquire a differential equation for H(t) that can be solved
similarly to all modified-gravity and dark-energy models.

Finally, as one can see, in the case δ = 1 and α = 1 the
generalized Friedmann equations (13), (14) reduce to�CDM
cosmology, namely

H2 = 8πG

3
ρm + �

3
Ḣ = −4πG(ρm + pm). (20)

We close this subsection by providing for completeness
the equations for δ = 2. In this special case, integration of
(11), instead of (12) results to

G

3α̃
ρm = ln

[
H2 + k

a2

]
− �̃

6α̃
. (21)

Hence, in this case the two Friedmann equations (11) and
(21), for k = 0, lead to the definitions

ρDE = 3

8πG

[
�

3
+ H2 − 2α ln H2

]
(22)

pDE = − 1

8πG

[
�+3H2−6α ln H2+2Ḣ

(
1− 2α

H2

)]
,

(23)

and thus

wDE ≡ pDE

ρDE
= −1 −

2Ḣ
(

1 − 2α
H2

)
� + 3H2 − 6α ln H2 . (24)

3 Cosmological evolution

In this section we proceed to a detailed investigation of the
modified cosmological scenarios constructed above. The cos-
mological equations are the two modified Friedmann equa-
tions (13) and (14), along with the conservation equation
(7). In the general case of a general matter equation-of-state
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parameter, wm ≡ pm/ρm , analytical solutions cannot be
extracted, and thus one has to solve the above equations
numerically. However, we are interested in providing ana-
lytical expressions too, and thus in the following we focus to
the case of dust matter, namely wm = 0.

As usual for convenience we introduce the matter and dark
energy density parameters respectively as

�m = 8πG

3H2 ρm (25)

�DE = 8πG

3H2 ρDE . (26)

In the case of dust matter, Eq. (7) gives that ρm = ρm0
a3 , with

ρm0 the value of the matter energy density at present scale
factor a0 = 1 (in the following the subscript “0” marks the
present value of a quantity). Therefore, in this case Eq. (25)
gives immediately �m = �m0H2

0 /a3H2. Combining this
with the fact that �m + �DE = 1 we can easily extract that

H =
√

�m0H0√
a3(1 − �DE )

. (27)

In the following we will use the redshift z as the indepen-
dent variable, defined as 1 + z = 1/a for a0 = 1. Thus,
differentiating (27) we can obtain the useful expression

Ḣ = − H2

2(1 − �DE )
[3(1 − �DE ) + (1 + z)�′

DE ], (28)

where a prime denotes derivative with respect to z.
Inserting (17) into (26) and using (27) we obtain

�DE (z) = 1 − H2
0 �m0(1 + z)3

·
{

(2−δ)

αδ

[
H2

0 �m0(1+z)3 + �

3

]} 1
δ−2

. (29)

This expression is the analytical solution for the dark energy
density parameter �DE (z), in a flat universe and for dust
matter. Applying it at present time, i.e at z = 0, we acquire

� = 3αδ

2 − δ
H2(2−δ)

0 − 3H2
0 �m0, (30)

which provides the relation that relates �, δ and α with the
observationally determined quantities �m0 and H0, leaving
the scenario with two free parameters. As expected, for δ =
1 and α = 1 all the above relations give those of �CDM
cosmology.

Differentiating (29) we find

�′
DE (z) =

{
(2 − δ)

αδ

[
1 + �

3

1

�m0H2
0 (1 + z)3

]} 3−δ
δ−2

· 1

αδ

[
�m0H

2
0 (1 + z)3

] 1
δ−2

·
[

3(δ − 1)�m0H
2
0 (1 + z)2 + (δ − 2)

�

1 + z

]
.

(31)

Hence, we can now calculate the other important observable,
namely the dark-energy equation-of-state parameter wDE

from (19), eliminating Ḣ through (28), obtaining

wDE (z)

= −1+

{
3[1−�DE (z)]+(1+z)�′

DE (z)
} {

1−αδ

[
H2

0 �m0(1+z)3

1−�DE (z)

]1−δ
}

[1−�DE (z)]
{

�[1−�DE (z)]
H2

0 �m0(1+z)3 +3

{
1 − αδ

2−δ

[
H2

0 �m0(1+z)3

1−�DE (z)

]1−δ
}} ,

(32)

where �DE and �′
DE are given by (29) and (31) respec-

tively. Lastly, it proves convenient to introduce the decelera-
tion parameter q ≡ −1 − Ḣ

H2 , where using (28) is found to
be

q(z)=−1+ 1

2[1−�DE (z)] {3[1−�DE (z)]+(1+z)�′
DE (z)}.

(33)

In summary, considering dust matter and flat geometry
we were able to extract analytical solutions for �DE (z) and
wDE (z), for the modified, nonextensive cosmological sce-
narios of the present work. In the following two subsections
we will investigate them in two distinct cases, namely when
the explicit cosmological constant � is present and when it
is absent.

3.1 Cosmological evolution with � �= 0

We first examine the case where the explicit cosmological
constant � is present. In this case when δ = 1 and α = 1
we obtain �CDM cosmology, and thus we are interested
in studying the role of the nonextensive parameter δ on the
cosmological evolution.

We use relation (30) in order to set the value of � that
corresponds to �m0 ≈ 0.3 in agreement with observations
[57]. Moreover, in order to investigate the pure effect of δ, we
set α to its standard value, namely α = 1 (although for δ = 1
the parameter α is dimensionless, as we mentioned for δ �= 1
it acquires dimensions [L2(1−δ)] and for convenience we use
units where H0 = 1). In the upper graph of Fig. 1 we depict
�DE (z) and �m(z) = 1 − �DE (z), as given by equation
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Fig. 1 Upper graph: The evolution of the nonextensive dark energy
density parameter �DE (black-solid) and of the matter density param-
eter �m (red-dashed), as a function of the redshift z, for δ = 1.1 and
α = 1 in units where H0 = 1. Middle graph: The evolution of the
corresponding dark-energy equation-of-state parameter wDE . Lower
graph: The evolution of the corresponding deceleration parameter q. In
all graphs we have set the cosmological constant � from (30) in order
to obtain �m(z = 0) = �m0 ≈ 0.3 at present, and we have added a
vertical dotted line denoting the present time z = 0

(29), in the case where δ = 1.1. In the middle graph we
present the corresponding evolution of wDE (z) according to
(32). Finally, in the lower graph we present the deceleration
parameter q(z) from (33). We mention that for transparency
we have extended the evolution up to the far future, namely
up to z → −1, which corresponds to t → ∞.

As we observe, we acquire the usual thermal history of the
universe, with the sequence of matter and dark energy epochs,
with the transition from deceleration to acceleration taking
place at z ≈ 0.45 in agreement with observations. Addition-
ally, in the future the universe tends asymptotically to a com-
plete dark-energy dominated, de-Sitter state. We mention the
interesting bahavior that although at intermediate times the
dark-energy equation-of-state parameter may experience the
phantom-divide crossing and lie in the phantom regime, at
asymptotically large times it will always stabilize at the cos-
mological constant value − 1. Namely, the de-Sitter solution

Fig. 2 The evolution of the dark-energy equation-of-state parameter
wDE as a function of the redshift z, for α = 1 in units where H0 = 1, and
various values of the nonextensive parameter δ. For each value of δ we
choose � according to (30) in order to obtain �m(z = 0) = �m0 ≈ 0.3
at present, and acquire an evolution of �DE and �m similar to the upper
graph of Fig. 1

is a stable late-time attractor, which is a significant advan-
tage (this can be easily showed taking the limit z → −1 in
(29),(31) and (32), which gives �DE → 1, �′

DE → 0, and
wDE → −1, respectively).

Let us now examine in detail the role of δ in the evolution,
and in particular on wDE . In Fig. 2 we depict wDE (z) for
α = 1 and for various values of δ, including the value δ = 1
that reproduces �CDM cosmology. For each value of δ we
choose � according to (30) in order to obtain �m(z = 0) =
�m0 ≈ 0.3 at present, and obtain an evolution of �DE (z)
and �m(z) similar to the upper graph of Fig. 1. In this way
we can examine the pure effect of δ. Firstly, as we mentioned,
for δ = 1 we obtain wDE = −1 = const., namely �CDM
cosmology. For increasing δ > 1, at earlier redshifts wDE

acquires larger values, while on the contrary in the recent
past, i.e at 0 ≤ z � 0.8, wDE acquires algebraically smaller
values, which is also true for its present value wDE0. In all
cases the universe experiences the phantom-divide crossing,
and in the far future it results from below in a de-Sitter phase
with wDE being − 1. On the other hand, for decreasing δ < 1
the behavior of wDE (z) is the opposite, namely it initially lies
in the phantom regime, it then crosses the − 1-divide from
below to above being quintessence-like at present, and finally
it asymptotically tends to − 1 from above.

In summary, we can see that the nonextensive parameter
δ, that lies in the core of the modified cosmology obtained in
this work, plays an important role in giving to dark energy a
dynamical nature and bringing about a correction to �CDM
cosmology. We mention that in all the above examples we
kept the parameter α fixed, in order to maintain the one-
parameter character of the scenario. Clearly, letting α vary
too, increases the capabilities of the model and the obtained
cosmological behaviors.
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3.2 Cosmological evolution with � = 0

In the previous subsection we investigated the scenario of
modified Friedmann equations through nonextensive ther-
modynamics, in the case where the cosmological constant
is explicitly present. Thus, we studied models that possess
�CDM cosmology as a subcase, and in which the nonexten-
sive parameter δ and its induced novel terms lead to correc-
tions to �CDM paradigm.

In the present subsection we are interested in studying a
more radical application of the scenario at hand, namely to
consider that an explicit cosmological constant is not present
and let the model parameters δ and α to mimic its behavior
and produce a cosmology in agreement with observations.

In the case � = 0, relations (17), (18) become

ρDE = 3

8πG
H2

[
1 − α

δ

2 − δ
H2(1−δ)

]
(34)

pDE = − 1

8πG

{
3H2

[
1 − α

δ

2 − δ
H2(1−δ)

]

+2Ḣ
[
1 − αδH2(1−δ)

] }
, (35)

while (29) reads

�DE (z) = 1 −
{

(2 − δ)

αδ

[
�m0H

2
0 (1 + z)3

]δ−1
} 1

δ−2

. (36)

However, the important simplification comes from expres-
sion (30), that relates � and α with the observationally deter-
mined quantities �m0 and H0. In particular, setting � = 0
leads to the determination of parameter α in terms of �m0

and H0, namely

α = (2 − δ)

δ
�m0H

2(δ−1)
0 , (37)

leaving δ as the only free model parameter. Note that since
α̃ > 0 in (9), i.e α > 0, from (37) we deduce that the present
scenario is realized for δ < 2. Thus, inserting (37) into (36)
leads to the simplified expression

�DE (z) = 1 − �m0(1 + z)
3(δ−1)
δ−2 . (38)

Finally, inserting (37) and (38) into (32) and (33) gives
respectively

wDE (z) = (δ − 1)

(2 − δ)

[
1 − �m0(1 + z)

3(δ−1)
(δ−2)

]−1

, (39)

and

q(z) = 2δ − 1

2(2 − δ)
. (40)

We stress here that in this case exact �CDM cosmology
cannot be obtained for any parameter values, and thus one
should suitably choose δ in order to acquire agreement with
observations. Note that in the standard extensive choice δ = 1
we obtain a trivial universe with �DE (z) = 1 − �m0 =
const. and wDE (z) = 0.

From the analytical expression (38) we can see that we
acquire the thermal history of the universe, with the sequence
of matter and dark energy epochs and the onset of late-time
acceleration. Furthermore, in the future (z → −1) the uni-
verse tends asymptotically to the complete dark-energy dom-
ination. Additionally, as can be seen from expression (39),
the asymptotic value of wDE in the far future is not neces-
sarily the cosmological constant value −1. In particular, we
deduce that for 1 ≤ δ < 2 wDE → 0 as z → −1, while
for δ < 1 wDE → (δ − 1)/(2 − δ) as z → −1. Hence, the
case δ < 1 is the one that exhibits more interesting behav-
ior in agreement with observations, and we observe that for
decreasing δ the wDE (z) tends to lower values.

We close this subsection mentioning that according to the
above analysis the cosmological behavior is very efficient
for low redshifts and up to the far future, despite the fact
that an explicit cosmological constant is absent. However,
as can be seen from (36), for high redshifts the behavior of
�DE (z) is not satisfactory, since as it is this expression leads
to either early-time dark energy or to the unphysical result
that �DE (z) becomes negative. In order to eliminate this
behavior and obtain a universe evolution in agreement with
observations at all redshifts one needs to include the radiation
sector too, which indeed can regulate the early-time behavior.
This is performed in the next subsection.

3.3 Cosmological evolution including radiation

In this subsection for completeness we extend the scenario of
modified cosmology through nonextensive horizon thermo-
dynamics, in the case where the radiation fluid is also present.
First of all, in the case where extra fluids are considered in the
universe content, the thermodynamical procedure of Sect. 2 is
applicable in exactly the same way, with the only straightfor-
ward addition being that in Eq. (5) one should add the energy
densities and pressures of all universe fluids [31–34,42,53].
Hence, if we allow for a radiation fluid, with energy density
ρr and pressure pr , and repeat the analysis of Sect. 2.3, the
Friedmann equations (13), (14) become

H2 = 8πG

3
(ρm + ρr + ρDE ) (41)

Ḣ = −4πG (ρm + pm + ρr + pr + ρDE + pDE ) , (42)

with ρDE , pDE still given by (17), (18), and wDE by (19).
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We proceed by introducing the radiation density parameter
as

�r ≡ 8πG

3H2 ρr , (43)

and thus the first Friedmann equation becomes �r + �m +
�DE = 1. Similarly to the analysis of Sect. 3, in order
to extract analytical expressions we consider that the matter
fluid is dust, namely wm = 0. In the case where radiation
is present we still have that �m = �m0H2

0 /a3H2, however
(27) now extends to

H =
√

�m0H0√
a3(1 − �DE − �r )

, (44)

while (28) reads

Ḣ = −H2

2

[
3�m0 + 4�r0(1 + z)

�m0 + �r0(1 + z)
+ (1 + z)�′

DE

(1 − �DE )

]
, (45)

since for dust matter we have

�r (z) = �r0(1 + z)4[1 − �DE (z)]
�m0(1 + z)3 + �r0(1 + z)4 . (46)

3.3.1 Cosmological evolution with � �= 0

Let us first investigate the case where � �= 0. Inserting (17)
into (26) and using (44) we find that (29) extends to

�DE (z) = 1 − H2
0

[
�m0(1 + z)3 + �r0(1 + z)4

]

·
{

(2−δ)

αδ

[
H2

0

[
�m0(1+z)3+�r0(1+z)4

]
+ �

3

]} 1
δ−2

.

(47)

This expression is the analytical solution for the dark energy
density parameter �DE (z), in a flat universe and for dust
matter, in the case where radiation is present. Applying it at
present time, i.e at z = 0, we acquire

� = 3αδ

2 − δ
H2(2−δ)

0 − 3H2
0 (�m0 + �r0) , (48)

which provides the relation that relates �, δ and α with the
observationally determined quantities �m0, �r0 and H0,

leaving the scenario with two free parameters. As expected,
for δ = 1 and α = 1 all the above relations give those of
�CDM cosmology with radiation sector present.

Differentiating (47) we find

�′
DE (z) = A(z)B 1

δ−2 (z)

[
1

αδ
B−1(z)C(z) − 1

]
, (49)

whereA(z) = H2
0

[
3�m0(1 + z)2 + 4�r0(1 + z)3

]
,B(z) =

2−δ
αδ

[
H2

0

[
�m0(1 + z)3 + �r0(1 + z)4

] + �
3

]
and C(z) =

H2
0

[
�m0(1 + z)3 + �r0(1 + z)4

]
. Hence, wDE (z) is calcu-

lated from (19), but now eliminating Ḣ through (45), obtain-
ing

wDE (z)

= −1 +

[
3�m0+4�r0(1+z)
�m0+�r0(1+z) (1 − �DE ) + (1 + z)�′

DE

] {
1 − αδ

[
H2

0

[
�m0(1+z)3+�r0(1+z)4

]
(1−�DE )

]1−δ
}

(1 − �DE )

{
�(1−�DE )

H2
0 [�m0(1+z)3+�r0(1+z)4]

+ 3

{
1 − αδ

2−δ

{
H2

0 [�m0(1+z)3+�r0(1+z)4]
(1−�DE )

}1−δ
}} , (50)

where �DE and �′
DE are given by (47) and (49) respectively.

Lastly, the deceleration parameter q ≡ −1 − Ḣ
H2 , using (45)

is found to be

q(z) = −1 + 1

2

[
3�m0 + 4�r0(1 + z)

�m0 + �r0(1 + z)
+ (1 + z)�′

DE

(1 − �DE )

]
.

(51)

In summary, in the case where radiation is present, we
were able to extract analytical solutions for �DE (z) and
wDE (z), for the modified, nonextensive cosmological sce-
narios of the present work.

3.3.2 Cosmological evolution with � = 0

Let us now focus on the interesting case where the explicit
cosmological constant is absent, namely when � = 0. This
scenario was analyzed in Sect. 3.2 above in the absence of
radiation, however we now study it in the full case where
radiation is included. For � = 0, relation (47) becomes

�DE (z) = 1 −
{[

�m0(1 + z)3 + �r0(1 + z)4
]δ−1

�m0 + �r0

} 1
δ−2

,

(52)

relation (48) becomes

α = 2 − δ

δ
H2(δ−1)

0 [�m0 + �r0] , (53)
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and thus positivity of α implies that δ < 2, relation (49)
becomes

�′
DE (z) = −δ − 1

δ − 2

{[
�m0(1 + z)3 + �r0(1 + z)4

]
[�m0 + �r0]

} 1
δ−2

·
[
3�m0(1 + z)2 + 4�r0(1 + z)3

]
, (54)

relation (50) becomes

wDE (z) = 3(1 − δ)�m0 + (2 − 3δ)(1 + z)�r0

3(δ − 2)[�m0 + (1 + z)�r0]
+ (δ − 1)[3�m0 + 4(1 + z)�r0]

3(δ − 2)[�m0 + (1 + z)�r0] − 3(δ − 2)(1 + z)
3(1−δ)
δ−2 (�m0 + �r0)

1
δ−2 [�m0 + (1 + z)�r0] 1

2−δ

, (55)

while relation (51) becomes

q = [�m0 + 2�r0(1 + z)]

2 [�m0 + �r0(1 + z)]

− δ − 1

2(δ − 2)

{[
3�m0(1 + z)3 + 4�r0(1 + z)4

]
[
�m0(1 + z)3 + �r0(1 + z)4

]
}

. (56)

We mention that relations (52)–(56) are the extensions of
(36)–(40) in the presence of radiation.

Let us examine this scenario in more detail, and in particu-
lar study the effect of δ on the cosmological evolution. In Fig.
3 we present wDE (z) for various choices of δ, extending the
evolution up to the far future. In all cases the parameter α is set
according to (53) in order to obtain �m(z = 0) = �m0 = 0.3
and �r (z = 0) = �r0 = 0.000092 [57], and the expected
thermal history of the universe. As we observe, for decreas-
ing δ the wDE (z) tends to lower values. Moreover, although
the asymptotic value of �DE (z) as z → −1 is 1, as can be
seen immediately from (52), namely the universe tends to

Fig. 3 The evolution of the equation-of-state parameter wDE as a
function of the redshift z, for � = 0 and for various values of the
nonextensive parameter δ, in the case where radiation is present. For
each value of δ we choose α according to (53) in order to obtain
�m(z = 0) = �m0 = 0.3 and �r (z = 0) = �r0 = 0.000092 at
present [57], and acquire the expected thermal history of the universe

the complete dark-energy domination, the asymptotic value
of wDE is not the cosmological constant value −1, i.e the uni-
verse does not result in a de Sitter space. In particular, from
(55) we can see that for 1 ≤ δ < 2, wDE → 0 as z → −1,
while for δ < 1, wDE → (δ − 1)/(2 − δ) as z → −1. These
asymptotic values are the same with the ones in the absent of
radiation mentioned in Sect. 3.2, which was expected since
at late times the effect of radiation is negligible.

In summary, the scenario of modified cosmology through
nonextensive thermodynamics, even in the case where an
explicit cosmological constant is absent, is efficient in
describing the cosmological behavior of the universe. In
order to present this behavior more transparently we confront
the scenario with Supernovae type Ia (SN Ia) data. In these
observational sets the apparent luminosity l(z), or equiva-
lently the apparent magnitude m(z), are measured as func-
tions of the redshift, and are related to the luminosity distance
as

2.5 log

[
L

l(z)

]
= μ ≡ m(z) − M = 5 log

[
dL(z)obs

Mpc

]
+ 25,

(57)

where M and L are the absolute magnitude and luminos-
ity respectively. Additionally, for any theoretical model one
can calculate the predicted dimensionless luminosity dis-
tance dL(z)th using the predicted evolution of the Hubble
function as

dL (z)th ≡ (1 + z)
∫ z

0

dz′

H (z′)
. (58)

In the scenario at hand, H(z) can be immediately calculated
analytically from (44), knowing (46) and (47). In Fig. 4 we
depict the theoretically predicted apparent minus absolute
magnitude as a function of z, for two δ choices, as well as
the prediction of �CDM cosmology, on top of the 580 SN Ia
observational data points from [58]. As we can see the agree-
ment with the SN Ia data is excellent. The detailed compar-
ison with observations, namely the joint analysis using data
from SN Ia, Baryon Acoustic Oscillation (BAO), Cosmic
Microwave Background (CMB), and direct Hubble parame-
ter observations, lies beyond the scope of the present work
and it is left for a future project.
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Fig. 4 The theoretically predicted apparent minus absolute magnitude
as a function of the redshift, for the scenario of modified cosmology
through nonextensive thermodynamics, for � = 0, in the case where
radiation is present, for δ = 0.5 (red-dashed) and δ = 0.6 (green-
dotted). The observational points correspond to the 580 SN Ia data
points from [58], and for completeness and comparison we depict the
prediction of �CDM cosmology with the black-solid curve

We close this subsection mentioning that the present sce-
nario is very efficient in mimicking the cosmological con-
stant, despite the fact that in this case the exact �CDM
cosmology cannot be obtained for any parameter values. In
particular, choosing the nonextensive parameter δ suitably
(namely δ ∼ 0.5 − 0.6) we acquire agreement with observa-
tions. This is a significant result that shows the capabilities
of the modified cosmology through nonextensive thermody-
namics.

4 Conclusions

In this work we constructed a modified cosmological sce-
nario through the application of the first law of thermodynam-
ics, but using the generalized, nonextensive Tsallis entropy
instead of the usual Bekenstein–Hawking one. In particu-
lar, there is a well-studied procedure in the literature, which
works for a variety of modified gravities, where one can apply
the first law of thermodynamics in the universe horizon and
extract the Friedmann equations. The crucial part in this pro-
cedure is the use of the modified entropy relation of the spe-
cific modified gravity, which is known only after this modi-
fied gravity is given, and thus in this sense it cannot provide
new gravitational modifications. However, if we apply this
approach using the nonextensive, Tsallis entropy, which is
the consistent concept that should be used in non-additive
gravitational systems such us the whole universe, then we
result to modified cosmological equations that possess the
usual ones as a particular limit, but which in the general case
contain extra terms that appear for the first time.

The new terms that appear in the modified Friedmann
equations are quantified by the nonextensive parameter δ and

constitute an effective dark energy sector. In the case where
Tsallis entropy becomes the usual Bekenstein–Hawking
entropy, namely when δ = 1, the effective dark energy coin-
cides with the cosmological constant and �CDM cosmol-
ogy is restored. However, in the general case the scenario of
modified cosmology at hand presents very interesting cos-
mological behavior.

When the matter sector is dust, we were able to extract ana-
lytical expressions for the dark energy density and equation-
of-state parameters, and we extended these solutions in the
case where radiation is present too. These solutions show
that the universe exhibits the usual thermal history, with the
sequence of matter and dark-energy eras and the onset of
acceleration at around z ≈ 0.5 in agreement with obser-
vations. In the case where an explicit cosmological con-
stant is present, according to the value of δ the dark-energy
equation-of-state parameter exhibits a very interesting behav-
ior and it can be quintessence-like, phantom-like, or expe-
rience the phantom-divide crossing during the evolution,
before it asymptotically stabilizes in the cosmological con-
stant value − 1 in the far future.

An interesting sub-case of the scenario of modified cos-
mology through nonextensive thermodynamics is when we
set the explicit cosmological constant to zero, since in this
case the universe evolution is driven solely by the news terms.
Extracting analytical solutions for the dark energy density
and equation-of-state parameters we showed that indeed the
new terms can very efficiently mimic �CDM cosmology,
although � is absent, with the successive sequence of mat-
ter and dark energy epochs, before the universe results in
complete dark-energy domination in the far future. More-
over, confronting the model with SN Ia data we saw that the
agreement is excellent.

In summary, modified cosmology through nonextensive
thermodynamics is very efficient in describing the universe
evolution, and thus it can be a candidate for the description
of nature. In the present work we derived the cosmologi-
cal equations by applying the well-known thermodynamics
procedure to the universe horizon. It would be interesting to
investigate whether these equations can arise from a nonex-
tensive action too. Such a study is left for a future project.
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