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Abstract We analytically and numerically study the prop-
erties of one-dimensional holographic p-wave superconduc-
tors in the presence of backreaction. We employ the Sturm–
Liouville eigenvalue problem for the analytical calculation
and the shooting method for the numerical investigations.
We apply the AdS3/CFT2 correspondence and determine the
relation between the critical temperature Tc and the chemical
potential μ for different values of the mass m of a charged
spin-1 field ρμ and backreacting parameters. We observe that
the data of both analytical and numerical studies are in good
agreement. We find that increasing the backreaction and the
mass parameter causes the greater values for Tc/μ. Thus, it
makes the condensation harder to form. In addition, the ana-
lytical and numerical approaches show that the value of the
critical exponent β is 1/2, which is the same as in the mean
field theory. Moreover, both methods confirm the existence
of a second order phase transition.

1 Introduction

In 1911 Kamerlingh Onnes discovered that the electrical
resistance of mercury completely disappeared at temper-
atures a few degrees above absolute zero [1]. This phe-
nomenon became known as superconductivity. He was
awarded the Nobel Prize in physics in 1913 for his investiga-
tions of the properties of matter at low temperatures, which
led, inter alia, to the production of liquid helium. Since the
discovery of Kamerlingh Onnes, the studies on the supercon-
ductors have become an active field of research and a lot of
papers have appeared in the literature to explain the mecha-
nism of superconductivity. The aim was to explain the zero
resistance of the materials from a microscopic point of view.
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The great step in this direction was made in 1957 by Bardeen,
Cooper and Schrieffer who described superconductivity as a
microscopic effect caused by a condensation of Cooper pairs
into a boson-like state. They were also awarded the Nobel
Prize in physics 1972 for their jointly developed theory of
superconductivity, usually called the BCS theory. The BCS
theory, however, requires only that the potential be attractive,
regardless of its origin. In the BCS framework, superconduc-
tivity is a macroscopic effect which results from the conden-
sation of Cooper pairs. It was the first widely accepted theory
that explained superconductivity at low temperatures. Based
on this theory superconductivity occurs because of condensa-
tion of Cooper pairs (including electrons with different spins
and momenta) at low temperature. According to the angular
momentum of Cooper pairs, we can classify superconduc-
tors as s-wave (� = 0), p-wave (� = 1), d-wave (� = 2)

etc. [2]. Since the Cooper pairs are decoupled at higher tem-
peratures, the BCS theory has been argued to be inadequate
to fully explain the mechanism of high temperature super-
conductivity [3]. In order to shed some light on the prob-
lem of high temperature superconductivity the Anti de Sit-
ter/Conformal Field Theory (AdS/CFT) correspondence was
taken into account [4,5]. AdS/CFT duality relates the strong
coupling conformal field theory living on the boundary in d-
dimensions to a weak coupling gravity in (d+1)-dimensional
spacetime in the bulk. Through AdS/CFT, each quantity in
the bulk has a dual on the boundary [4–9]. In 2008, Hartnoll
et al. proposed a holographic s-wave superconductor model
based on the gauge/gravity duality [5]. In his holographic
model, Hartnoll assumed that there is a phase transition from
a black hole with no hair (normal phase) to a hairy one (super-
conducting phase) below the critical temperature. Through
this process, the system faces spontaneous U (1) symmetry
breaking. Many studies of holographic superconductors have
appeared in the past decade (see e.g. [10–37] and the refer-
ences therein).
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The holographic p-wave superconductors can be studied
by condensation of a charged vector field in the bulk which is
the dual of a vector order parameter in the boundary, which
can also be considered as the condensation of a 2-form field
in the boundary. For this type of holographic superconductor,
the formation of vector hair below the critical temperature is
observed. Various models of holographic p-wave supercon-
ductors have been proposed. In [38] a p-wave superconduc-
tors was proposed by using an SU(2) Yang–Mills field in the
bulk and one of the gauge degrees of freedom which is dual
to spin-1 order parameter in the field theory. Also, p-wave
type superconductivity may have arisen by the condensa-
tion of a 2-form field [39] and a massive spin-1 vector in
the bulk [40,41]. Holographic p-wave superconductors have
been widely investigated in the literature (see e.g. [42–48]).

On the other side, holographic superconductors have
also been explored when the bulk spacetime is a three-
dimensional black hole. The Einstein field equations admit
a three-dimensional solution known as BTZ (Bandos–
Teitelboim–Zanelli) black holes. BTZ black holes have sev-
eral crucial effects on the improvement in string theory
[49–53]. The corresponding superconductor living on the
boundary of BTZ black hole is one dimensional. Using the
probe brane construction, holographic p-wave superconduc-
tors were investigated in [54]. One-dimensional holographic
p-wave superconductors coupled to a massive complex vec-
tor field and in the probe limit were explored in [2]. It was
argued that below a certain critical temperature, there is a for-
mation of a vector hair around the black hole [2]. It is worth
noting that in order to analyze one-dimensional holographic
superconductor on the boundary of the three-dimensional
spacetime, one needs to apply AdS3/CFT2 duality [55]. One-
dimensional holographic s-wave and p-wave superconduc-
tors were investigated analytically and numerically from dif-
ferent points of view (see e.g. [56–67]). All investigations
of the (1 + 1)-dimensional holographic p-wave supercon-
ductors are restricted to the case where the vector and gauge
fields do not backreact on the background geometry. In the
present work, we would like to extend the study of the holo-
graphic p-wave superconductors by considering the effects
of the vector and gauge fields on the background of spacetime
and disclose the effects of the backreaction on the properties
of the superconductor.

We shall employ the Sturm–Liouville eigenvalue prob-
lem for the analytical calculation and the shooting method
for the numerical investigations. For each method, the rela-
tion between critical temperature and chemical potential and
critical exponent are investigated. We shall also compare the
analytical results with the numerical data.

This paper is outlined now. In Sect. 2, we present the basic
field equations and the boundary conditions of the (1 + 1)-
dimensional backreacting holographic p-wave superconduc-
tors. In Sect. 3, by using the Sturm–Liouville variational

method, we obtain a relation between the critical temper-
ature and the chemical potential. We also apply the shooting
method and study the problem numerically and confirm that
the analytical results are compatible with the numerical data.
In Sect. 4, we calculate the critical exponent both analyti-
cally and numerically. The last section is devoted to closing
remarks.

2 Basic field equations and boundary conditions

As mentioned, our study is based on the AdS3/CFT2 dual-
ity. Due to this model, we have a spontaneous local/global
U (1) symmetry breaking in the bulk/at the boundary. The
action which can describe a charged massive spin-1 field ρμ

with charge q and mass m in (2 + 1)-dimensional Einstein–
Maxwell theory with a negative cosmological constant is
given by

S = 1

2κ2

∫
d3x

√−g

(
R + 2

l2

)
+

∫
d3x

√−gLm,

Lm = −1

4
FμνF

μν − 1

2
ρ†

μνρ
μν − m2ρ†

μρμ + iqγρμρ†
ν F

μν,

(1)

where g, R and l are the metric determinant, Ricci scalar and
AdS radius, respectively. κ2 = 8πG3, in which G3 charac-
terizes the three-dimensional Newton gravitation constant in
the bulk. Also, by considering Aμ as the vector potential, the
strength of the Maxwell field reads Fμν = ∇μAν − ∇ν Aμ.
In addition, ρμν = Dμρν − Dνρμ where Dμ = ∇μ − iq Aμ.
A nonlinear interaction between ρμ with γ (the magnetic
moment) and Aμ is described by the last term in the above
action. Since we consider the case without external magnetic
field, this term plays no role.

We obtain the equations of motion for matter and gravi-
tational fields by varying the action (1) with respect to the
metric gμν , the gauge field Aμ and the vector field ρμ. We
find

1

2κ2

[
Rμν − gμν

(
R

2
+ 1

l2

)]
= 1

2
FμλFν

λ

+1

2
Lmgμν + 1

2

[
ρ†

μλρ
λ
ν + m2ρ†

μρν

−iγ qFλ
ν

(
ρμρ†

λ − ρ†
μρλ

)
+ μ ↔ ν

]
, (2)

∇νFνμ = iq
(
ρνρ†

νμ − ρν†ρνμ

)

+iqγ∇ν
(
ρνρ

†
μ − ρ†

νρμ

)
, (3)

Dνρνμ − m2ρμ + iqγρνFνμ = 0. (4)

The boundary value of ρμ is the origin of a charged vec-
tor operator, its expectation value playing the role of order
parameter in the boundary theory. When the temperature
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decreases below the critical value, the normal phase becomes
unstable and the vector hair which corresponds to supercon-
ducting phase appears.

In order to study the one-dimensional holographic p-wave
superconductor in the presence of backreaction, we take the
following metric for the background geometry:

ds2 = − f (r)e−χ(r)dt2 + dr2

f (r)
+ r2dx2, (5)

with the following choices for the vector and gauge fields:

ρνdxν = ρx (r)dx, Aνdxν = φ(r)dt. (6)

The Hawking temperature of this black hole is given by [67]

T = e−χ(r+)/2 f
′
(r+)

4π
. (7)

Substituting the metric (5) and Eq. (6) in the field equations
(2) and (3), we arrive at

φ′′(r) +
[

1

2
χ ′(r) + 1

r

]
φ′(r) − 2q2ρx (r)2φ(r)

r2 f (r)
= 0, (8)

ρ′′
x (r) +

[
f ′(r)
f (r)

− 1

2
χ ′(r) − 1

r

]
ρ′
x (r)

+
[
q2eχ(r)φ(r)2

f (r)2 − m2

f (r)

]
ρx (r) = 0, (9)

f ′(r) − 2r

l2
+ 2κ2

r

[
q2ρx (r)2eχ(r)φ(r)2

f (r)

+ f (r)ρ′2
x + m2ρx (r)

2 + r2

2
eχ(r)φ′2

]
= 0, (10)

χ ′(r) + 4κ2

r

[
q2ρx (r)2eχ(r)φ(r)2

f (r)2 + ρ′
x

2

]
= 0. (11)

Here, the prime denotes a derivative with respect to r . If we
consider the probe limit (κ → 0), the equations of motion
(8) and (9) reduce to the corresponding equations in [2]. In
the following, we set q and l equal to unity by using the
symmetries

q → q/a, φ → aφ, ρx → aρx , κ → κ/a, (12)

l → al, r → ar, q → q/a, m → m/a. (13)

The asymptotic behavior (r → ∞) of the solutions is given
by

φ(r) ∼ ρ + μ ln(r), f (r) ∼ r2, χ(r) → 0,

ρx (r) ∼ ρx−
r−m

+ ρx+
rm

, (14)

in which μ and ρ are chemical potential and charge density,
respectively. Note that in (14), the value of χ has been set to
zero by virtue of the symmetry,

eχ → a2eχ , t → at, φ → φ/a. (15)

The asymptotic behavior of the vector field ρx (r) is in
agreement with the result of [68]. Here, the Breitenlohner–
Freedman (BF) bound is m2 ≥ 0. In this limit, ρx− plays
the role of the source and ρx+ known as x-component of the
expectation value of the order parameter 〈Jx 〉. In the next sec-
tions, we will analyze the properties of the one-dimensional
backreacting holographic p-wave superconductor analyti-
cally and numerically.

3 Superconductivity phase transition

In this section, we are going to investigate the phase transition
and critical temperature of (1+1)-dimensional backreacting
holographic p-wave superconductors. We address the rela-
tion between critical temperature Tc and chemical potential
μ as well as the effect of backreaction parameter on Tc in the
vicinity of transition point.

3.1 Analytical approach

For the analytical approach, we employ the Sturm–Liouville
eigenvalue problem. To do this we use the coordinate trans-
formation z = r+/r where 0 � z � 1. In the new coordi-
nates, the field equations (8)–(11) turn into

φ′′(z) +
(

χ ′(z)
2

+ 1

z

)
φ′(z) − 2ρx (z)2φ(z)

z2 f (z)
= 0, (16)

ρ′′
x (z) +

(
−1

2
χ ′(z) + f ′(z)

f (z)
+ 3

z

)
ρ′
x (z)

+ρx (z)

(
r2+eχ(z)φ(z)2

z4 f (z)2 − m2r2+
z4 f (z)

)
= 0, (17)

f ′(z) + 2r2+
l2z3 − 2κ2

(
eχ(z)φ(z)2ρx (z)2

z f (z)
+ z3 f (z)ρ′2

x

r2+

+m2ρx (z)2

z
+ z

2
eχ(z)φ′2

)
= 0, (18)

χ ′(z) − 4κ2

(
eχ(z)φ(z)2ρx (z)2

z f 2(z)
+ z3ρ′

x (z)
2

r2+

)
= 0. (19)

Here, the prime indicates the derivative with respect to z.
Near the critical temperature, the expectation value of 〈Jx 〉
is small, so we can take it as an expansion parameter

ε ≡ 〈Jx 〉 .

Since in the vicinity of critical temperature ε  1, we focus
on solutions for small values of the condensation parameter
ε. Therefore, we can expand the model functions as

ρx ≈ ερx1 + ε3ρx3 + ε5ρx5 + · · · , (20)

φ ≈ φ0 + ε2φ2 + ε4φ4 + · · · , (21)

f ≈ f0 + ε2 f2 + ε4 f4 + · · · , (22)
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χ ≈ ε2χ2 + ε4χ4 + · · · . (23)

Furthermore, we have a similar expression for the chemical
potential which can be expressed as

μ = μ0 + ε2δμ2 + · · · → ε ≈

(
μ − μ0

δμ2

)1/2

, (24)

where δμ2 > 0. Thus, near the phase transition point (μc =
μ0) the order parameter ε vanishes. In addition, we obtain
the mean field value of the critical exponent: β = 1/2.

The equation of motion for the gauge field (16) at zeroth
order of ε is given by

φ′′(z) + φ′(z)
z

= 0. (25)

The solution of this equation reads

φ(z) = λr+ log(z), λ = μ

r+
. (26)

Combining the solutions (26) with Eq. (18), the equation for
f (z), at zeroth order of ε, can be obtained:

f ′(z) + 2r2+
z3 − κ2λ2r2+

z
= 0, (27)

which has the solutions

f (z) = r2+g(z)
z2 , g(z) = 1 − z2 + κ2λ2z2 log(z). (28)

Near the boundary, the vector field can be defined by

ρx (z) = 〈Jx 〉√
2r�+

z�F(z). (29)

Inserting Eqs. (28) and (29) in Eq. (17) yields

F ′′(z) + F ′(z)
(
g′(z)
g(z)

+ 2�

z
+ 1

z

)

+F(z)

(
�g′(z)
zg(z)

− m2

z2g(z)
+ �2

z2

)

+ F(z)
(
λ2κ2 log2(z)

)
g(z)2 = 0. (30)

If we define some new functions, see below, we can rewrite
Eq. (30) in the Sturm–Liouville form:
[
T (z)F ′(z)

]′ + P(z)T (z)F(z) + λ2Q(z)T (z)F(z) = 0,

(31)

where

T (z) = z2�+1g(z), P(z) =
[
�g′(z)
zg(z)

− m2

z2g(z)
+ �2

z2

]
,

Q(z) = log2(z)

g(z)2 . (32)

Next, we define the trial function F(z) = 1 − αz2, which is
satisfied in the boundary conditions F(0) = 1 and F

′
(0) = 0.

By minimizing the following expression with respect to α,
Eq. (31) will be solved:

λ2 =
∫ 1

0 T
(
F ′2 − PF2

)
dz∫ 1

0 T QF2dz
. (33)

With the help of the iteration method, the definition of the
backreacting parameter is [69]

κn = n�κ, n = 0, 1, 2, . . . , �κ = κn+1 − κn . (34)

Here, �κ = 0.05. In addition, we have

κ2λ2 = κn
2λ2 = κn

2(λ2|κn−1) + O[(�κ)4], (35)

where κ−1 = 0 and λ2|κ−1 = 0. At the critical point, at zeroth
order with respect to ε, the critical temperature is defined as1

Tc = f ′ (r+c)

4π
= r+c

(
2 − κ2λ2

4π

)
= μ

λ

(
2 − κ2

nλ2|κn−1

4π

)
. (36)

The analytical results of Tc/μ for different values of mass
and backreaction parameters are shown in Table 1. According
to these results, enlarging the values of mass have the same
effect as increasing the backreaction parameter on Tc/μ and
makes it smaller. Thus, it makes condensation harder to form.

3.2 Numerical method

We employ the shooting method [10] to numerically inves-
tigate the properties of the (1 + 1)-dimensional holographic
p-wave superconductor developed in a BTZ black hole back-
ground, when the gauge and vector fields backreact on the
background geometry. For this purpose, we must know the
behavior of the model functions both at horizon and bound-
ary. By using a Taylor expansion around the horizon we arrive
at

f (z) = f1 (1 − z) + f2 (1 − z) 2 + · · · , (37)

φ(z) = φ1 (1 − z) + φ2 (1 − z) 2 + · · · , (38)

ρx (z) = ρx0 + ρx1 (1 − z) + ρx2 (1 − z) 2 + · · · , (39)

χ(z) = χ0 + χ1 (1 − z) + χ2 (1 − z) 2 + · · · . (40)

We impose the boundary condition φ(z = 1), which is
motivated by the fact that the gauge field Aν has a finite
norm at the horizon. In this method, all coefficients will be
defined in terms of φ1, ρx0 and χ0. The desirable state is
ρx−(∞) = χ(∞) = 0. This will be obtained by varying φ1,
ρx0 and χ0 at the horizon. Furthermore, we can set r+ = 1
by virtue of the equations of motion’s symmetry

r → ar, f → a2 f, φ → aφ. (41)

This method leads one to find the values of Tc/μ for differ-
ent masses and backreaction parameters. In order to compare

1 Note that χ tends to zero near the critical point according to (23).
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Table 1 Analytical and
numerical results of Tc/μ for
different values of backreaction
and mass parameters

m2 = 1

16
m2 = 1

4
m2 = 1

Analytical Numerical Analytical Numerical Analytical Numerical

κ2 = 0 0.1424 0.1433 0.0860 0.0880 0.0478 0.0503

κ2 = 0.05 0.1363 0.1397 0.0814 0.0823 0.0443 0.0410

κ2 = 0.1 0.1356 0.1361 0.0803 0.0768 0.0424 0.0330

κ2 = 0.15 0.1346 0.1326 0.0786 0.0716 0.0394 0.0260

κ2 = 0.2 0.1332 0.1292 0.0763 0.0666 0.0353 0.0201

κ2 = 0.25 0.1313 0.1258 0.0733 0.0619 0.0302 0.0152

(a) (b) (c)

Fig. 1 The behavior of the condensation parameter as a function of the temperature for different values of backreaction

the numerical and analytical results, data are given in Table 1.
The results of the Sturm–Liouville method are confirmed by
numerical data. The effects of mass and backreaction param-
eters on the behavior of condensation are shown in Fig. 1.
We see that all curves follow the same behavior. As is clear
from Fig. 1, enhancing the values of mass and backreaction
parameter causes the gap in the curves to be larger and thus
it makes the formation of condensation harder. As a result,
the critical temperature decreases with increasing the back-
reaction and mass parameters.

4 Critical exponents

In this section we calculate the expectation value of 〈Jx 〉 in
the boundary theory near the critical temperature for the one-
dimensional holographic p-wave superconductor in the pres-
ence of backreaction. Furthermore, we compute the values
of the critical exponents both analytically and numerically.

4.1 Analytical approach

We focus on the behavior of the gauge field in the vicinity of
the critical temperature. In this limit, the field equation (16)
turns into

φ′′(z) + φ′(z)
z

− 2ρx (z)2φ(z)

z2 f (z)
= 0. (42)

Because of nonzero value of the condensation in the vicinity
of the critical temperature, we have an extra term in the above
equation in comparison with the field equation in the previous
section. Inserting Eqs. (28) and (29) in Eq. (42) we have

φ′′(z) + φ′(z)
z

= 〈Jx 〉2z2�

r2�+2+ g(z)
F(z)2φ(z). (43)

Using the fact that the value of 〈Jx 〉2

r2�+2+
is small in the T ∼ Tc

limit, we assume that Eq. (43) has the following answer:

φ(z)

r+
= λ log(z) + 〈Jx 〉2

r2�+2+
η(z), λ = μ

r+
. (44)

Since at the horizon φ(z = 1) = 0, we have η(1) = 0.

Substituting the above equation in Eq. (43) up to 〈Jx 〉2

r2�+2+
order,

we arrive at

η′′(z) + η′(z)
z

= λz2� log(z)

g(z)
F(z)2. (45)

Multiplying both sides of Eq. (45) by z and integrating from
z = 0 to z = 1, we get
∫ 1

0
d

(
zη′(z)

) = η′(1) = λ

∫ 1

0

z2�+1 log(z)

1 − z2 + κ2λ2z2 log(z)

×F(z)2 dz = λA, (46)

where

A ≡
∫ 1

0

z2�+1 log(z)

1 − z2 + κ2λ2z2 log(z)
F(z)2 dz. (47)
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Table 2 Analytical and
numerical results of γ for
different values of the
backreaction and mass
parameters

m2 = 1

16
m2 = 1

4
m2 = 1

Analytical Numerical Analytical Numerical Analytical Numerical

κ2 = 0 23.5779 20.0224 48.1780 70.3273 188.5 1042.6100

κ2 = 0.05 23.7791 20.5590 49.1955 76.0058 199.517 1390.0400

κ2 = 0.1 23.9228 21.1162 50.2391 82.3205 220.382 1901.3500

κ2 = 0.15 24.1599 21.6954 51.9956 89.3687 260.302 2682.0100

κ2 = 0.2 24.4981 22.2974 54.6113 97.2622 333.956 3928.0200

κ2 = 0.25 24.9451 22.9237 58.2727 106.138 475.166 6028.6000

5 4 3 2 1

0.5

1.0

1.5

2.0

2.5

Log 1 T Tc

Lo
g

J x
T c

5
4

(a)m2 = 1
16

5 4 3 21.5

2.0

2.5

3.0

3.5

4.0

Log 1 T Tc

Lo
g

J x
T c

3
2

(b)m2 = 1
4

4.5 4.0 3.5 3.0 2.5 2.0
4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

Log 1 T Tc

Lo
g

J x
T c

2

(c)m2 = 1

Fig. 2 The behavior of log〈Jx 〉/T�+1
c as a function of log (1 − T/Tc) with slope of 1/2 for different values of mass and backreaction parameters

Combining Eqs. (14) and (44) and taking into account the
fact that the first term on the rhs of Eq. (44) is the solution of
φ(z) at the critical point, and the second term is a correction
term, we can write near the critical point

ρ

r+
+ μ

r+
log(z) = + μ

r+c
log(z) + 〈Jx 〉2

r2�+2+c

η(z). (48)

Now, we use the coordinate transformation z → Z + 1; then
by expanding the resulting equation around Z = 0 we get

ρ

r+
+ μ

r+

(
Z − Z2

2
+ · · ·

)
= + μ

r+c

(
Z − Z2

2
+ · · ·

)

+ 〈Jx 〉2

r2�+2+c

(
η(1) + Zη′(1) + · · · ) . (49)

Comparing the coefficients Z on the two sides of Eq. (49)
and using Eq. (46) we find

μ

r+
= μ

r+c

(
1 + 〈Jx 〉2

r2�+2+c

A
)

. (50)

Near the critical point we have T ∼ Tc, and thus using Eq.
(36), we can find the equation of r+:

r+ = 4πT(
2 − κ2λ2

) , (51)

Inserting Eqs. (36) and (51) in Eq. (50) and taking the abso-
lute values of the resulting equation, we arrive at

〈Jx 〉 = γ T�+1
c

√
1 − T

Tc
, (52)

where

γ = 1√|A|
(

4π

2 − κ2λ2

)�+1

. (53)

Based on the above equation, it is obvious that the critical
exponent β = 1/2 is in a perfect agreement with the mean
field theory. Since the value of β is independent of the effect
of backreaction, we have the second order phase transition
for all values of the backreaction parameter. The analytical
results are shown in Table 2. Increasing the values of the
mass and backreaction parameters causes larger values of
the condensation parameter. Therefore, the larger values of
the mass and the backreacting of the gauge and vector fields
on the background geometry make the condensation harder
to form.

4.2 Numerical method

Based on the behavior of condensation near the critical tem-
perature, which is obtained by using analytical approach (i.e.
Eq. (52)), we have
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log

( 〈Jx 〉
T�+1
c

)
= log(γ ) + 1

2
log

(
1 − T

Tc

)
. (54)

In Fig. 2, the behavior of log〈Jx 〉/T�+1
c as a function of

log (1 − T/Tc) for different values of the backreaction and
mass parameters was shown. The slope of the curves is 1/2,
which is in agreement with mean field theory and shows
that we face a second order phase transition—the same as in
the analytical approach. In addition, this value of the criti-
cal exponent is independent of the backreaction parameter.
Using Eq. (54), it is obvious that the intercept of the curves
represents the values of log γ numerically. In order to com-
pare the analytical and numerical values of γ , the results are
listed in Table 2. The best agreement between the values of
γ from these two approaches appears in m2 = 1/16 and for
larger values of mass we observe a poorer match. In addition,
the values of γ increase for larger values of the backreac-
tion parameter. The same results are obtained in analytical
method.

5 Closing remarks

In this paper, we analyzed a holographic p-wave supercon-
ductor model in a three-dimensional Einstein–Maxwell the-
ory in the presence of a negative cosmological constant and
a vector field when the gauge and vector fields backreact on
the background geometry. In order to study the problem ana-
lytically, we employ the Sturm–Liouville eigenvalue prob-
lem, while the numerical data were obtained with the help of
the shooting method. We analytically calculated the relation
between the critical temperature and the chemical potential
for different values of the mass and backreaction parame-
ters. These data were confirmed by numerical results. We
found that increasing the values of the mass and backre-
action parameters makes the condensation harder to form
and thus the critical temperature decreases. In addition, the
critical exponent of this system has also been obtained both
analytically and numerically. Based on these investigations,
we face a second order phase transition. Furthermore, the
obtained critical exponent value β = 1/2 follows the mean
field theory value. Since the nonlinear electrodynamics gives
much information in comparison with the Maxwell case, it
is worthwhile to consider the effect of nonlinearity on the
physical properties of holographic p-wave superconductors.
We leave this issue for future investigations.
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