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Abstract In the context of the minimal geometric defor-
mation method, in this paper we implement the inverse
problem in a black hole scenario. In order to deal with an
anisotropic polytropic black hole solution of the Einstein
field equations with cosmological constant, the deformation
method is slightly extended. After obtaining the isotropic
sector and the decoupler for an anisotropic (A-)dS poly-
tropic black hole solution, we emphasize a possible relation
between anisotropization/isotropization and the violation of
the energy conditions.

1 Introduction

In recent years, the use of the minimal geometric deformation
(MGD) [1–33] as a systematic and powerful method to obtain
new and relevant solutions of the Einstein field equations, has
considerable increased [18,22–27,30,32]. For example, the
method has allowed to induce local anisotropies in spheri-
cally symmetric systems leading to both more realistic inte-
rior solutions of compact objects [25,26] and hairy black
holes [24]. More recently, the method has been extended to
solve the inverse problem [32], namely, given any anisotropic
solution of the Einstein field equations it is possible to recover
the isotropic source and the decoupler matter content which,
after gravitational interaction, led to the anisotropic configu-
ration. In that work, it was found that, for a simple anisotropic
solution violating all the energy conditions, the free param-
eters involved in the MGD can be fitted in such a manner
that both the isotropic source and the matter decoupler con-
tent satisfy all the energy conditions. The importance of this
result lies in the fact that the inverse problem allowed to inter-
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pret the MGD as some kind of mechanism which leads to the
apparition of exotic matter after gravitational interaction of
well behaved matter content.

In the same spirit of Ref. [32], it could be interesting to
explore if the same duality exotic/non-exotic matter content
occurs in other scenarios after the application of the inverse
MGD problem. To be more precise, we could study if such
a duality persists in situations where the starting point is a
solution sourced by a matter content satisfying all the energy
conditions. In order to do so, in this work we implement
the inverse problem program in a polytropic black hole (BH)
originally studied in reference [34] and extended to the scale-
dependent scenario in Ref. [35]. As it will be shown in the
rest of the manuscript, the choice of such a system is twofold:
first, to extend the MGD in order to deal with Einstein field
equations with cosmological constant and, second, to imple-
ment the inverse problem in an anisotropic system which
satisfies all the energy conditions.

This work is organized as follows. In the next section we
briefly review the MGD-decoupling method. In Sect. 3 we
develop the method to obtain the generator of any anisotropic
solution of the Einstein Field Equations and then we imple-
ment the method for a polytropic BH solution in Sect. 4. The
last section is devoted to final comments and conclusion.

2 Einstein equations with cosmological constant and
extended MGD-decoupling

With the purpose to extend the MGD in order to consider
the Einstein field equations with cosmological constant, we
write

Rμν − 1

2
Rgμν + Λgμν = −κ2T tot

μν , (1)

and we assume that the total energy-momentum tensor is
given by

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-018-6472-y&domain=pdf
mailto:econtreras@yachaytech.edu.ec{;} ernesto.contreras@ciens.ucv.ve
mailto:p.bargueno@uniandes.edu.co


985 Page 2 of 5 Eur. Phys. J. C (2018) 78 :985

T (tot)
μν = T (m)

μν + αθμν, (2)

where α is a constant. As usual, the energy–momentum ten-
sor for a perfect fluid Tμ(m)

ν = diag(−ρ, p, p, p) and the
decoupler matter content θμν interact only gravitationally,

∇μT
μ(m)
ν = ∇μθμ

ν = 0. (3)

In what follows, we shall work with spherically symmetric
space-times with a line element parametrized as

ds2 = eνdt2 − eλdr2 − r2dΩ2, (4)

where ν and λ are functions of the radial coordinate r only.
Considering Eq. (4) as a solution of the Einstein field equa-
tions, we obtain

κ2ρ̃ = e−λ
(
rλ′ − 1

)

r2 + Λr2 + 1

r2 (5)

κ2 p̃r = e−λ
(
rν′ + 1

)

r2 − 1

r2 − Λ (6)

κ2 p̃⊥ = −Λ − e−λ
((
rν′ + 2

) (
λ′ − ν′) − 2rν′′)

4r
(7)

where the prime denotes derivation with respect to the radial
coordinate and we have defined

ρ̃ = ρ + αθ0
0 (8)

p̃r = p − αθ1
1 (9)

p̃⊥ = p − αθ2
2 . (10)

The next step consists in decoupling the Einstein field
equations (5), (6) and (7) by performing

e−λ = μ + α f, (11)

where f is the geometric deformation undergone by the
radial metric component μ, “controlled” by the free param-
eter α. By doing so, we obtain two sets of differential equa-
tions: one describing an isotropic system sourced by the con-
served energy–momentum tensor of a perfect fluid Tμ(m)

ν an
the other set corresponding to quasi-Einstein field equations
sourced by θμν . After taking into account that the cosmo-
logical constant can be interpreted as some kind of isotropic
fluid, we include the Λ-term in the isotropic sector and we
obtain

κ2ρ = Λr2 − rμ′ − μ + 1

r2 (12)

κ2 p = −Λr2 + rμ(r)ν′ + μ − 1

r2 (13)

κ2 p = 2μ′ + 2rμν′′ + rμν′2 + 2μν′

4r

+μ′ν′

4
+ Λ, (14)

for the perfect fluid and

κ2θ0
0 = −r f ′ + f

r2 (15)

κ2θ1
1 = −r f ν′ + f

r2 (16)

κ2θ2
2 = − f ′ (rν′ + 2

) + f
(
2rν′′ + rν′2 + 2ν′)

4r
, (17)

for the anisotropic system.1 We would like to emphasize that
that the addition of the cosmological constant only affects
the isotropic sector because Eqs. (15), (16) and (17) remain
unchanged. At this point, we are ready to implement the
inverse problem program.

3 MGD-decoupling: the inverse problem

In a previous work [32], the inverse MGD problem was
solved after realizing that, given any anisotropic solution
with metric functions {ν, λ}, matter content {ρ̃, p̃r , p̃⊥} and
definitions given by Eqs. (8), (9) and (10), the following con-
straint must be satisfied:

p̃⊥ − p̃r = −α(θ2
2 − θ1

1 ). (18)

It should be noted that the above constraint allows us to obtain
a differential equation for the decoupling function f in terms
of well known quantities of anisotropic solution. To be more
precise, with this constraint we do not need any artificial
equation of state for the θ ’s components. It is worth men-
tioning that, in the case of Einstein equations with cosmo-
logical constant, the previous constraint leads to the same
result obtained in Ref. [32] because there is no contribution
of Λ. More precisely, after subtracting Eqs. (9) and (10), the
cosmological constant disappears and the solution remains
the same. In this sense, the combination of Eqs. (16) and (17)
with the constraint (18) leads to a differential equation for the
decoupling function f given by

f ′ − F1 f = F2, (19)

where we have introduced the auxiliary functions F1 and F2

as

F1 = 4 − r
(
2rν′′ + ν′ (rν′ − 2

))

r (rν′ + 2)
(20)

F2 = e−λ
(
r
(−λ′ (rν′ + 2

) + 2rν′′ + ν′ (rν′ − 2
))

αr (rν′ + 2)

+ 4e−λ
(
eλ − 1

))

αr (rν′ + 2)
. (21)

From Eq. (19), it is straightforward to derive that the defor-
mation function, f , is given by

f (r) = e
∫ r F1 du

∫ r

F2e
− ∫ w F1 du dw. (22)

1 In what follows we shall assume κ2 = 8π .
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The next step consists in obtaining the metric function, μ,
by replacing Eq. (22) in the geometric deformation relation
(11). We obtain

μ = e−λ − αe
∫ r F1 du

∫ r

F2e
− ∫ w F2 du dw. (23)

Now, from Eqs. (12), (13) and (14), the matter content for
the isotropic system reads

ρ = Λ + G1 + αG2e
∫ r F1 du

∫ r

F2e
− ∫ w F1 du dw (24)

p = −Λ + G3 − αG4e
∫ r F1du

∫ r

F2e
− ∫ w F1dudw. (25)

where we have introduced four additional auxiliary functions
as

G1 = re−λ
((
eλ − 3

)
ν′ + 2rν′′ + rν′2)

8πr2 (rν′ + 2)

+ 6e−λ
(
eλ − 1

)

8πr2 (rν′ + 2)
(26)

G2 = 6 − r
(
2rν′′ + ν′ (rν′ − 3

))

8πr2 (rν′ + 2)
(27)

G3 = e−λ
(−eλ + rν′ + 1

)

8πr2 (28)

G4 = rν′ + 1

8πr2 . (29)

To determine the decoupler matter content we simply
replace Eqs. (22) and (23) in (15), (16) and (17) to obtain

θ0
0 = − (rF1 + 1)e

∫ r F1 du
∫ r F2e− ∫ w F1 du dw

r2

+F2

r
(30)

θ1
1 = −

H1e
∫ r F1 du

(∫ r F2e− ∫ w F1 du dw
)

r2 (31)

θ2
2 = −

e
∫ r F1 du

(∫ r F2e− ∫ w F1 du dw
)

4r

+F2 (H1 + 1)

4r
, (32)

where

H1 = 1 + rν′ (33)

H2 = ((
rν′ + 2

) (F1 + ν′(r)
) + 2rν′′(r)

)
. (34)

At this point some comments are in order. First, note
that the cosmological constant affects only the isotropic sec-
tor, as previously said, whereas the anisotropic one remains
unchanged with respect to the reported in Ref. [32]. Second,
as reported in Ref. [32], Eqs. (23), (24) and (25) determine
the isotropic generator {μ, ρ, p} and Eqs. (30), (31) and (32)

determine the decoupler matter content {θ0
0 , θ1

1 , θ2
2 } once any

anisotropic solution {ν, λ, ρ̃, p̃r , p̃⊥} is provided.
In the next section, we shall briefly review the mains

aspects of the polytropic BH reported in Ref. [34] and then we
shall implement the method to obtain its isotropic generator
and decoupler matter content.

4 Isotropic sector of a polytropic BH solution

Let us start this section summarizing the main results
obtained in Ref. [34]. The line element is parametrized as

ds2 =
(
r2

L2 − 2M

r

)
dt2 −

(
r2

L2 − 2M

r

)−1

dr2 − r2dΩ2,

(35)

with L2 = −3/Λ. Imposing this metric as a solution of the
Einstein field equations with cosmological constant (see Eq.
(1)) with Tμν = diag(−ρ̃, p̃r , p̃⊥, p̃⊥) it is obtained that

ρ̃ = − p̃r = 1

8πr2 , (36)

p̃⊥ = p̃⊥ = 0. (37)

It is remarkable that Tμν fulfils all the energy condi-
tions

ρ̃ ≥ 0, ρ̃ + p̃i ≥ 0, (38)

ρ̃ +
∑

i

p̃i ≥ 0, ρ̃ + p̃i ≥ 0, (39)

ρ̃ ≥ | p̃i |, (40)

which are referred as the weak, strong and dominant energy
conditions, respectively. It is worth mentioning that the solu-
tion is singular at r = 0 and has both a Killing and a causal
horizon located at r = 21/3M1/3L2/3.

In what follows, we shall implement the inverse prob-
lem protocol to obtain the isotropic generator and the decou-
pler matter content associated to this polytropic BH solu-
tion. From Eq. (22), the decoupling function, f , reads

f (r) = eν

⎛

⎝

(
24/3L2/3

) (
2
√

3 tan−1 A + log B
)

3αM2/3 + 6c1

⎞

⎠

(41)

where

A := 2 3
√

2r√
3

3
√
L2M

+ 1√
3

(42)
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B :=
(

2Mr3

L2

)1/3 +
(

2r3

L2

)2/3 + M2/3

3

(
3
√
M − 3

√
2 3
√

r3

L2

)2 (43)

eν = 2M

r
− r2

L2 (44)

Replacing Eq. (41) in the decoupling equation, e−λ =
μ + α f , we obtain an expression for the metric function μ:

μ = −
(
2L2M − r3

) (
2 22/3

√
3 tan−1(A) + 22/3 log(B)

)

6r
(
L2M

)2/3

−3 (3αc1 − 2)
(
2L2M − r3

)

6L2r
. (45)

Using the above result in Eqs. (24) and (25), the isotropic
fluid reads

ρ =
12r3

L2 − 15M

8πr2
(

6r3

L2 − 3M
) + 9αc1C

(
M

L

)2/3

+ C
(

2 22/3
√

3 tan−1(A) + 22/3 log(B)
)

(46)

p = 2
√

3 tan−1(A) + log(B)

3
√

28π
(
L2M

)2/3 + 9αc1r2

16πL2r2 − 1

8πr2 (47)

where

C :=
9
(
M − 2r3

L2

)

48π(LM)2/3
(

6r3

L2 − 3M
) (48)

At this point some comments are in order. First, the hori-
zon of the solution is located at

rH = 3
√

2L2/3 3
√
M, (49)

which coincides with that of the anisotropic solution of Eq.
(35). We think this is remarkable: starting from an isotropic
solution with an event horizon, one can form, following the
MGD, the anisotropic extension of the BH but maintaining
the location of the horizon. In this sense, the entropy of both
anisotropic and isotropic BHs are indistinguishable . Second,
a critical radius appears at

rc = L2/3 3
√
M

3
√

2
, (50)

where the solution diverges. Even more, an analysis of the
curvature scalar, which is given by

R = −12αc1 − 6r

L2M − 2r3 + 12

L2 − 8

r2 (51)

+2
22/3

(
2
√

3 tan−1(A) + log(B)
)

L4/3M2/3 , (52)

reveals that this critical radius is a real singularity. It is
worth noticing that, the location of rc is independent of
the free parameters of the theory unlike the obtained in
Ref. [24] and, in this sense, we can not control its loca-
tion. However, the critical radius is less than the horizon
radius which implies that the singularity is hidden inside the
BH horizon. Third, the energy density reach a maximum at

rM = 3

√

3
√

5
2 L

2M + 5L2M and its asymptotic behaviour is

given by

lim
r→rc

ρ → −∞

lim
r→∞ ρ = 1

16

(
6c1α

π
− 22/3

√
3

L4/3M2/3 − 6

πL2

)

and at the horizon

ρ(rH ) = −9.49286L2/3 + 6c1αL2M2/3 − 6M2/3

16πL2M2/3 .

At this point a couple of comments are in order. First, note
that near the critical radius, the apparition of exotic matter
is unavoidable. Second, as far as r → ∞ the choice of the
free parameters leads to a negative, positive or even vanish-
ing energy density. Even more, given that ρ is a continuous
function that reaches a maximum at rM , the energy density
profile could be endowed with one, two or with no real roots
at all. It is worth noticing that when no real roots appear, the
exotic behaviour is present in all the space-time. When two
real roots are allowed, two exotic sectors appear, one near
the critical point and the other for some r > rc. Finally, for
only one real root, the apparition of the exotic matter can be
minimized. Specifically, one condition for the apparition of
only one real root leads to

c1α = 6M2/3 + 9.49286L2/3

6L2M2/3 , (53)

which implies that the root is located at the horizon, i.e.,

ρ(rH ) = 0 (54)

For this value of c1α, the energy density reach a positive
value at infinity given by

ρ ≈ 0.0170132

L4/3M2/3

In Fig. 1 we show the behaviour of the energy density
(blue line) and the pressure (orange line) for r > rH , c1α =
6M2/3+9.49286L2/3

6L2M2/3 and M = L = 1, revealing that, for r >

rH , all the energy conditions are satisfied.
The results obtained so far could be interpreted as fol-

lows. The isotropic sector of the polytropic BH reported in
Ref. [34] corresponds to a BH solution hiding exotic matter
in its interior. What is more, the new isotropic BH solution
obtained in this work could be thought as the remnant of a
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Fig. 1 Energy density (blue line) and pressure (orange line) profile for
L = 1

gravitational collapse involving exotic matter which is the
responsible of sustain traversable wormholes [36–39].

5 Conclusions

In this work we have extended the Minimal Geometric Defor-
mation approach when a cosmological constant is present
showing that, in this case, only the isotropic sector is modi-
fied. In particular, the inverse problem in the context of poly-
tropic black holes has been explored, obtaining the isotropic
sector from which an anisotropic (A-)dS polytropic black
hole is obtained. Moreover, the isotropic sector contains a
singularity which does not depends on any of the free param-
eters of the deformation approach. This singularity is hidden
inside an event horizon, which remarkably coincides with
that of the anisotropic black hole. Finally, we have noted that
the isotropic sector is deeply linked with the appearance of
exotic matter, although it can be located inside the horizon.
In this sense, this work shows a nice example of how one
could, in principle, control the energy conditions by tuning
the isotropy/anisotropy of a black hole solution.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

References

1. L. Randal, R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999)
2. L. Randal, R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999)
3. I. Antoniadis, Phys. Lett. B 246, 377 (1990)
4. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, G. Dvali, Phys.

Lett. B 436, 257 (1998)
5. J. Ovalle, Mod. Phys. Lett. A 23, 3247 (2008)
6. J. Ovalle, Int. J. Mod. Phys. D 18, 837 (2009)
7. J. Ovalle, Mod. Phys. Lett. A 25, 3323 (2010)
8. R. Casadio, J. Ovalle, Phys. Lett. B 715, 251 (2012)
9. J. Ovalle, F. Linares, Phys. Rev. D 88, 104026 (2013)

10. J. Ovalle, F. Linares, A. Pasqua, A. Sotomayor, Class. Quantum
Gravity 30, 175019 (2013)

11. R. Casadio, J. Ovalle, R. da Rocha, Class. Quantum Gravity 31,
045015 (2014)

12. R. Casadio, J. Ovalle, Class. Quantum Gravity 32, 215020 (2015)
13. J. Ovalle, L.A. Gergely, R. Casadio, Class. Quantum Gravity 32,

045015 (2015)
14. R. Casadio, J. Ovalle, R. da Rocha, EPL 110, 40003 (2015)
15. J. Ovalle, Int. J. Mod. Phys. Conf. Ser. 41, 1660132 (2016)
16. R.T. Cavalcanti, A. Goncalves da Silva, R. da Rocha, Class. Quan-

tum Gravity 33, 215007 (2016)
17. R. Casadio, R. da Rocha, Phys. Lett. B 763, 434 (2016)
18. J. Ovalle, Phys. Rev. D 95, 104019 (2017)
19. R. da Rocha, Phys. Rev. D 95, 124017 (2017)
20. R. da Rocha, Eur. Phys. J. C 77, 355 (2017)
21. R. Casadio, P. Nicolini, R. da Rocha, Class. Quantum Gravity 35,

185001 (2018)
22. J. Ovalle, R. Casadio, R. da Rocha, A. Sotomayor, Eur. Phys. J. C

78, 122 (2018)
23. M. Estrada, F. Tello-Ortiz, arXiv:1803.02344v3 [gr-qc]
24. J. Ovalle, R. Casadio, R. da Rocha, A. Sotomayor, Z. Stuchlik,

arXiv:1804.03468 [gr-qc]
25. C. Las Heras, P. Leon, Fortschr. Phys. 66, 1800036 (2018)
26. L. Gabbanelli, A. Rincón, C. Rubio, Eur. Phys. J. C 78, 370 (2018)
27. M. Sharif, S. Sadiq, arXiv:1804.09616v1 [gr-qc]
28. A. Fernandes-Silva, A.J. Ferreira-Martins, R. da Rocha, Eur. Phys.

J. C 78, 631 (2018)
29. A. Fernandes-Silva, R. da Rocha, Eur. Phys. J. C 78, 271 (2018)
30. E. Contreras, P. Bargueño, Eur. Phys. J. C 78, 558 (2018)
31. E. Morales, F. Tello-Ortiz, arXiv:1808.01699
32. E. Contreras, Eur. Phys. J. C 78, 678 (2018)
33. M. Estrada, R. Prado, arXiv:1809.03591
34. M. Setare, H. Adami, Phys. Rev. D 91, 084014 (2015)
35. E. Contreras, Á. Rincón, B. Koch, P. Bargueño, Eur. Phys. J. C 78,

246 (2018)
36. M.S. Morris, K.S. Thorne, Am. J. Phys. 56, 395 (1988)
37. M.S. Morris, K.S. Thorne, U. Yurtsever, Phys. Rev. Lett. 61, 1446

(1988)
38. M. Visser, Lorentzian wormholes: from Einstein to Hawking (AIP

Press, New York, 1996)
39. F.S.N. Lobo, Wormholes, warp drives and energy conditions

(Springer, Berlin, 2017)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1803.02344v3
http://arxiv.org/abs/1804.03468
http://arxiv.org/abs/1804.09616v1
http://arxiv.org/abs/1808.01699
http://arxiv.org/abs/1809.03591

	Minimal geometric deformation in asymptotically (A-)dS space-times and the isotropic sector for a polytropic black hole
	Abstract 
	1 Introduction
	2 Einstein equations with cosmological constant and extended MGD-decoupling
	3 MGD-decoupling: the inverse problem
	4 Isotropic sector of a polytropic BH solution
	5 Conclusions
	References




