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Abstract We generalize the Padmanabhan
(arXiv:1206.4916 [hep-th]) mechanism to an accelerating
BIon and show that the difference between the number of
degrees of freedom on the boundary surface and the number
of degrees of freedom in a bulk region causes the acceler-
ated expansion of a BIon. We also consider the evolution of
a universe which emerges on this BIon, and obtain its Hubble
parameter and energy density.

1 Introduction

Several years ago, Padmanabhan suggested that the accel-
erated expansion of the universe is due to the difference
between the surface degrees of freedom on the holographic
horizon and the bulk degrees of freedom through the simple
equation �V = �t (Nsur − Nbulk), where V is the Hubble
volume, and t is the cosmic time, both expressed in Planck
units [1]. Since then, many discussions have taken place on
the Padmanabhan proposal [2–8]. For example, in one paper,
with the help of this idea, the Friedmann equations of an
(n + 1)-dimensional Friedmann–Robertson–Walker universe
corresponding to general relativity, Gauss–Bonnet gravity,
and Lovelock gravity have been obtained [2]. In another, the
idea of treating the cosmic space as an emergent process
has been applied to brane cosmology, scalar–tensor cosmol-
ogy, and f(R) gravity, and the corresponding cosmological
equations in these theories have been derived [3]. In another
investigation, using the Padmanabhan suggestion, the author
obtained the Friedmann equations of the universe not only
in four dimensional space-time and Einstein gravity, but also
in higher dimensional space-time and other gravity theories
like Gauss–Bonnet and Lovelock gravity with any spacial
curvature [4].

Some other authors, have extended the evolution equation
in the Padmanabhan idea to give the Friedmann equation
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in the nonflat universe corresponding to k = ±1 by taking
into account the invariant volume surrounded by the appar-
ent horizon [5]. In another scenario, the authors showed that
applying Padmanabhan’s conjecture to non-Einstein grav-
ity cases encounters serious difficulties and has to be heavily
modified to get the Friedmann equation [6]. In another paper,
Ali applied the equations of the universe derived in the Pad-
manabhan model with the corrected entropy-area law that
follows from the Generalized Uncertainty Principle (GUP)
and obtained a modified Friedmann equation due to the GUP
[7]. In more recent research, the Padmanabhan idea has been
constructed in a BIonic system and it was shown that all
degrees of freedom inside and outside the universe are con-
trolled by the evolution of the BIon in the extra dimensions
and tend to degrees of freedom of the black F-string in string
theory [8].

The main question that arises is what is the origin of this
inequality between the surface degrees of freedom and the
bulk degrees of freedom? We answer this question in an accel-
erating BIon. A BIon is a configuration which has been con-
structed from a brane, an anti-brane and a wormhole which
connects them. In our investigation, branes are expanding
with acceleration. We show that the acceleration of the branes
in this BIon leads to the difference between the number of
the degrees of freedom on the surface of BIon and that in a
bulk.

The outline of the paper is as follows. In Sect. 2, we will
obtain numbers of degrees of freedom on the surface and
bulk. In Sect. 3, we will consider the evolution of a universe
which emerges on the branes of this accelerating BIon.

2 Padmanabhan mechanism in an accelerating BIon

In this section, we will consider the Padmanabhan mecha-
nism in an accelerating BIon. We will show that the acceler-
ation of the BIon leads to the difference between the number
of degrees of freedom on the surface and the number in a
bulk.
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Fig. 1 Two parts of BIons in two regions of the Rindle space-time.
Parts with green color are expanding and parts with blue color are con-
tracting

Previously, it has been shown that the metric of a thermal
BIon in 10-dimensional space-time is given by [9,10]

ds2 = D− 1
2 H− 1

2

(
dx2

2 + dx2
3

)

+D
1
2 H− 1

2

(
− f dt2 + dx2

1

)

+D− 1
2 H

1
2

(
f −1dr2 + r2d�2

5

)
(1)

where

f = 1 − r4
0

r4 H = 1 + r4
0 sinh2 α

r4

D = cos2 ε + sin2 εH−1 (2)

and

cosh2 α = 3

2

cos δ
3 + √

3 cos δ
3

cos δ
cos ε = 1√

1 + K 2

r4

(3)

The angle δ is defined as:

cos δ = T̄ 4

√
1 + K 2

r4 T̄ =
(

9π2N

4
√

3TD3

) 1
2

T (4)

In an accelerating BIon, the relation between the world
volume of the coordinates of the accelerating D3-branes
(τ, σ ) and the coordinates of 10D Minkowski space-time
(t, r ) are [11];

at = eaσ sinh(aτ) ar = eaσ cosh(aτ) In Region I

at = −e−aσ sinh(aτ) ar = e−aσ cosh(aτ) In Region II (5)

where a is the acceleration of the branes. The above equa-
tion shows that the acceleration leads to the emergence of a
Rindler space-time. This space-time has two regions and the
BIons in each region act in reverse to the BIons in the other
region. Also, each BIon has two parts (A and B). When the
branes in part A expand, the branes in part B contract, and
vice versa (see Fig. 1).

Substituting the results of Eq. (5) into Eq. (1), we obtain
[12]:
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where
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cos εI I−A = 1√
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(11)

The angles δI−A and δI I−A are defined by:
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where T0 is the temperature of the BIon in non-Rindler space-
time. For the above metric, the energy densities and entropies
in the two regions are:
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Previously, it has been shown that the relation between
the entropies, energy densities and numbers of degrees of
freedom are:
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Consequently, for L2
P = 4π , the numbers of degrees of

freedom on the surface and in the bulk are:
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The above equations show that the number of degrees of
freedom depends on the acceleration of the branes and the
parameters of the BIon in the extra dimensions. By increasing
the acceleration, the number of degrees of freedom on the
surface of one of parts increases, and number of degrees of
freedom in the bulk for it correspondingly decreases, while,
the number of degrees of freedom on the surface of another
part decreases and number of degrees of freedom on its bulk
correspondingly increases.

3 Evolution of the universe in an accelerating BIon

In this section, we will consider the evolution of a universe
which emerges in an accelerating BIon. To this aim, we will
obtain the number of degrees of freedom in terms of temper-
ature.

Until now, various relations for temperature of a moving
system have been proposed. For example:

v = aτ

→ T = T0√
1 − v2

c2

= T0√
1 − [aτ ]2

c2

v = aτ = c

√
1 − T 2

0

T 2 (22)

where T is temperature of the BIon and T0 is the critical
temperature relating to the colliding point of the branes.

However this relation is questionable. Based on this rela-
tion, the superconductivity phenomena depends on the sys-
tem velocity!! You can move a system with special veloc-
ities to reduce its temperature to less than that of its crit-
ical temperature, and then the system shows superconduc-
tivity by itself!! In fact, it means that a physical phenom-
ena (superconductivity) depends on the system velocity,
a result in direct conflict with the relativity law claiming
that physical laws are independent of the observer veloc-
ity. This relativistic relation for temperature is not a true
relation, and in fact, the temperature’s relation depends
on the thermocouple apparatus used. A true thermocouple
rejects this definition of temperature (For example, see [13–
15]). Thus, to obtain the true relation between tempera-
ture and acceleration, we make use of the concepts of the
BIon:

dMI−A/B = TI−A/BdSI−A/B → TI−A/B = dMI−A/B

dSI−A/B

(23)

Previously, thermodynamical parameters have been
obtained in [12]:
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Using relation (24 and 25) in relation (23), we can obtain
the explicit form of the temperature in an accelerating BIon
as:
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On the other hand, previously, it has been shown that the
Hubble parameter of the universe has the following relation
with the number of degrees of freedom on the surface of the
BIon [8]:
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where H = ā
˙̄a is the Hubble parameter, ā is the scale factor

and rA is the apparent horizon radius for the FRW universe.
Using Eqs. (20, 21, 22, 23, 24, 25, 26, 27 and 28), we can
obtain the Hubble parameter and scale factor of the flat uni-
verse (k = 0) on each part of the BIon:
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The above equations show that by increasing the tempera-
ture of the BIon and the acceleration of system, the Hubble
parameter and scale factor of the universe which lives on
part A of the BIon in region I decrease, while the Hubble
parameter and scale factor of the universe on part B of the
BIon in region I increase. This means that by expanding one
universe, another universe contracts.

On the other hand, using the Friedmann equation of the
flat FRW universe, we can calculate the energy density of the
universe:

ρI−A = 3

8πL2
P

H2
I−A

= 3

8πL2
P

[
313π14k14c14L2

P

T 8
D3σ

73
0

×e

[
1−
[

1− τ2

τ2
0

]1/2
T 2

0
T 2

]8[
1−
[

1− σ2

σ2
0

]1/2
T 2

0
T 2

]5

×
⎡
⎣1 −

[
1 − τ 2

τ 2
0

]1/2
T 2

0

T 2

⎤
⎦

73

×
⎡
⎢⎣1 + 8π5k5c5L2

P

T 313
D3 σ 313

0

⎡
⎣1 −

[
1 − σ 2

σ 2
0

]1/2
T 2

0

T 2

⎤
⎦

313
⎤
⎥⎦

⎤
⎥⎦

2

(31)
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ρI−B = 3

8πL2
P

H2
I−B = 3

8πL2
P

×
[

313π14k14c14L2
P

T 8
D3σ

73
0

×e
−
[

1−
[

1− τ2

τ2
0

]1/2
T 2

0
T 2

]8[
1−
[

1− σ2

σ2
0

]1/2
T 2

0
T 2

]5

× 1[
1 −

[
1 − τ 2

τ 2
0

]1/2
T 2

0
T 2

]73

× 1⎡
⎣1 + 8π5k5c5L2

P
T 313
D3 σ 313

0

[
1 −

[
1 − σ 2

σ 2
0

]1/2
T 2

0
T 2

]313
⎤
⎦

]2

(32)

The above results show that by increasing the temperature
of the BIon and the acceleration of the system, the energy
density of the universe which lives in part A of the BIon in
region I decreases, while the energy density of the universe
in part B of the BIon in region I increases. This means that
by increasing the temperature of the system, the energy of
one part of an accelerating BIon is going out and entering
into another part.

4 Summary and discussion

We constructed the Padmanabhan idea in an accelerating
BIon, and argued that the birth and expansion of the universe
are controlled by the evolution of the BIon in extra dimen-
sions. We have shown that the acceleration of the BIon leads
to the difference between the number of degrees of freedom
on the boundary surface of the universe and the number of
degrees of freedom in a bulk region. Also, we have shown that
by increasing the acceleration of the BIon, the scale factor
and energy density of the universe grow.
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