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Abstract We discuss properties of fuzzy de Sitter space
defined by means of algebra of the de Sitter group SO(1, 4) in
unitary irreducible representations. It was shown before that
this fuzzy space has local frames with metrics that reduce, in
the commutative limit, to the de Sitter metric. Here we deter-
mine spectra of the embedding coordinates for (ρ, s = 1

2 )

unitary irreducible representations of the principal continu-
ous series of the SO(1, 4). The result is obtained in the Hilbert
space representation, but using representation theory it can be
generalized to all representations of the principal continuous
series.

1 Introduction

Understanding of the structure of spacetime at very small
scales is one of the most challenging problems in theoretical
physics: more so as it is, as we commonly believe, related
to the properties of gravity at small scales, that is to quan-
tization of gravity. In the absence of a sufficient amount of
experimental data, it is presently approached by mathemati-
cal methods: still there are basic tests which every model of
quantum spacetime has to satisfy, as the mathematical consis-
tency and the existence of a classical limit, usually to general
relativity.

A feature very often discussed in relation to quantization is
discreteness of spacetime. Discreteness can mathematically
be implemented in various ways, for example by endow-
ing spacetime with lattice or simplicial structure. When dis-
creteness is introduced by means of representation of the
position vector by noncommuting operators or matrices we
speak of fuzzy spaces. Assumption that coordinates are oper-
ators comes from quantum mechanics: in fact, it is quite nat-
ural (perhaps even too elementary) to presume that gener-
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alization of [xμ, xν] = 0 to [xμ, xν] �= 0 describes the
shift of physical description to lower length scales. Opera-
tor representation has a potential to solve various problems
of classical gravity and quantum field theory: it introduces
minimal length, which in the dual, momentum space, can in
principle resolve the problem of UV divergences; singular
configurations of gravitational field can potentially be dis-
missed as corresponding to non-normalizable states, and so
on. In addition, algebraic representation allows for a straight-
forward description of spacetime symmetries. Perhaps the
main drawback of the assumption of discreteness is a loss
of geometric intuition which is in many ways inbuilt in our
understanding of gravity.

There are various ways to generalize geometry: one of the
most important parts of any generalization is the definition
of smoothness. In noncommutative geometry, derivatives are
usually given by commutators; once they are defined, one can
proceed more or less straightforwardly to differential geom-
etry. We shall in the following use a variant of noncommuta-
tive differential geometry which was introduced by Madore,
known as the noncommutative frame formalism [1]. It is a
noncommutative generalization of the Cartan moving frame
formalism and gives a very natural way to describe gravity on
curved noncommutative spacetimes. In particular classical,
that is commutative, limit of such noncommutative geometry
is usually straightforward.

Let us introduce the notation. Noncommutative space is an
algebra A generated by coordinates xμ which are hermitian
operators; fields are functions φ(xμ) on A. Derivations or
vector fields are represented by commutators. A special set
of derivations eα can be chosen to define the moving frame,

eαφ = [pα, φ], φ ∈ A (1)

Derivations eα are generated by antihermitian operators,
momenta pα , which can but need not belong to algebra A.
1-forms θα dual to eα define the differential,

θα(eβ) = δα
β , dφ = (eαφ)θα. (2)
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Supplementary condition which allows to interpret θα as a
locally orthonormal basis is [φ, θα] = 0. In addition, one
imposes consistency constraints on both structures, algebraic
(associativity) and differential (d2 = 0), and compatibility
relations between them.

General features of the noncommutative frame formalism
and many applications to gravity are known [2–5]; the aim
of our present investigation is to construct four-dimensional
noncommutative spacetimes which correspond to known
classical configurations of gravitational field. This means, to
find algebras and differential structures which are noncom-
mutative versions of, for example, black holes or cosmolo-
gies. One very important idea in this context is that space-
times of high symmetry can be naturally represented within
the algebras of the symmetry groups. The first model of such
noncommutative geometry was the fuzzy sphere [6,7]: it has
a number of remarkable properties which make it a role exam-
ple for understanding what fuzzy geometry should or could
mean. Different properties of the fuzzy sphere were used as
guidelines to define other fuzzy spaces [8–11], including for
us very important noncommutative de Sitter space in two
and four dimensions [12–14]. In our previous paper [15] we
analyzed differential-geometric properties of fuzzy de Sitter
space in four dimensions realized within the algebra of the
SO(1, 4) group. We found two different differential struc-
tures with the de Sitter metric as commutative limit. Here we
analyze geometry of fuzzy de Sitter space that is the spectra
of the embedding coordinates.

The plan of the paper is the following. In Sect. 2 we intro-
duce notation for the SO(1, 4), review some results of [15]
and discuss the flat limit of fuzzy de Sitter space revealing its
relation to the Snyder space. In Sect. 3 we solve the eigen-
value problem of coordinates in the unitary irreducible repre-
sentation (ρ, s = 1

2 ) of the principal continuous series. The
obtained spectrum we compare to the known group-theoretic
result in Sect. 4.

2 Metric and scaling limits

We start with the algebra of the de Sitter group SO(1, 4)

with generators Mαβ , (α, β = 0, 1, 2, 3, 4) and signature
ηαβ = diag(+ − − − −),1

[Mαβ, Mγ δ] = −i(ηαγ Mβδ − ηαδMβγ

−ηβγ Mαδ + ηβδMαγ ). (3)

1 Differently from [15] we here use the field-theoretic signature. Indices
α, β, … belong either to the set {0, 1, 2, 3, 4} or {0, 1, 2, 3}; in cases
when it is not completely obvious we specify explicitly one the two
sets. Indices i, j = 1, 2, 3 . . . are spatial.

The only W -symbol of the SO(1, 4) group, [16], is the vector
Wα which is quadratic in the generators

Wα = 1

8
εαβγ δηMβγ Mδη, (4)

[Mαβ,Wγ ] = −i(ηαγ Wβ − ηβγ Wα). (5)

The Casimir operators of the SO(1, 4) are

Q = −1

2
MαβM

αβ, W = −WαW
α. (6)

The de Sitter algebra can be contracted to the Poincaré alge-
bra by the Inönü–Wigner contraction

Mα4 → μMα4, Mαβ → Mαβ, for μ → ∞. (7)

In the contraction limit Mα4 become the generators of 4-
translations while Mi j and M0i generate 3-rotations and
boosts. Further, Wα → μWα , W4 → W4 become the com-
ponents of the Pauli–Lubanski vector of the Poincaré group
(one can assume that W4 → 0). In the contraction limit Q
and W become the Casimir operators of the Poincaré group,
Q → μ2m2, W → μ2W 2. Relations between the de Sitter
and the Poincaré algebras exist also at the level of represen-
tations but not in general, only in some particular cases.

It is obvious that there is a strong analogy between com-
mutative four-dimensional de Sitter space described as an
embedding in five flat dimensions,

ηαβx
αxβ = − 3

Λ
= const, (8)

and the Casimir relation

ηαβW
αWβ = −W = const. (9)

It is therefore natural identify Wα with the embedding coor-
dinates, as first proposed in [12],

xα = 
Wα (10)

and to define fuzzy de Sitter space as a unitary irreducible
representation (UIR) of the so(1, 4) algebra. This definition
makes sense2 in all cases except when W = 0, that is, for
Class-I irreducible representations.

Group generators are dimensionless so a constant 
 is
introduced in (10) to give xα a dimension of length.3 There
are two scales in our problem: the cosmological constant,
Λ ∼ (1026m)−2, and the Planck length, 
Pl ∼ 10−35m. In
preference to 
Pl we will use third constant, noncommuta-
tivity parameter k̄, and assume that


2
Pl < k̄ < (10−19 m)2. (11)

2 That is, it has a straightforward meaning; see a comment related to
double scaling limits given below.
3 As we use units in which h̄ = 1, momenta have dimension of the
inverse length.
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The upper bound in (11) is a rough experimental limit to k̄.
Assumption which is often taken, k̄ ≈ 
2

Pl , would indicate
that noncommutative geometry is directly related to quanti-
zation of gravity; a more moderate (11) means that noncom-
mutative geometry is or might be an effective description of
quantized gravity in the appropriate range of distances. We
thus scale coordinates as

xα = k̄

√
Λ

3
Wα. (12)

Then the relation between the quartic Casimir operator and
the cosmological constant reads

W = 9

k̄2Λ2
. (13)

Relations as (12) define the quantization condition.
Dimensionally, we could have assumed more general relation
of the form

xα = c(k̄Λ)−n k̄
√

ΛWα, (14)

but we chose the simplest, n = 0. For an interesting discus-
sion of the quantization condition defined with respect to the
Compton wavelength of the elementary system, see [13].

Limit k̄ → 0 is the commutative limit of fuzzy de Sitter
space. From

[Wα,Wβ ] = − i

2
εαβγ δη Wγ Mδη (15)

we see that position commutator is proportional to k̄,

[xα, xβ ] = − i

2

√
Λ

3
k̄εαβγ δηxγ Mδη, (16)

that is, for k̄ → 0 coordinates commute. The flat (noncom-
mutative) limit on the other hand can be obtained when we
consider de Sitter space in a ‘small neighbourhood’ of a spe-
cific point, for example at the north pole,

x4 ≈
√

3

Λ
, xα ≈ 0, α = 0, 1, 2, 3 (17)

for Λ → 0. At the level of the symmetry group this limit is
defined by the Inönü–Wigner contraction (7). Commutation
relations contract to

[x4, xα] = − i

2

√
Λ

3
ε4βγ δη xγ Mδη → 0, Λ → 0, (18)

and it is consistent to take x4 =
√

3
Λ

= const.
Furthermore,

[xα, xβ ] = − i

2
k̄εαβγ δ4

(
1

μ2 Mγ δ +
√

Λ

3
xγ M4δ

)
(19)

→ − i
2

k̄
μ2 εαβγ δ4Mγ δ. (20)

Denoting k̄/(2μ2) = a2, we see that we obtained the dual to
the Snyder algebra. Namely, we found

[xi , x j ] ∼ ia2εi jkM0k, [x0, xi ] ∼ ia2εi jkM jk, (21)

whereas the position algebra of [17] reads

[xi , x j ] ∼ ia2Mi j , [x0, xi ] ∼ ia2M0i . (22)

The limit μ → ∞ corresponds to a → 0.
In [15], two sets of momenta that define fuzzy geometries

with correct commutative limits to classical de Sitter space
were proposed. In the noncommutative frame formalism, ful-
fil stricter requirements than coordinates: first, they close into
an algebra which is at most quadratic. In addition, if we wish
to interpret tetrad eα

A and metric gαβ = ηABeα
A e

β
B as fields,

we have to require that the frame elements depend only on
coordinates,

[pA, xα] = eα
A(x), x ∈ A. (23)

It is simplest to choose pA among the group generators.4

When momenta close into a Lie algebra, [pA, pB] =
CD

AB pD , the curvature defined in the framework of the
noncommutative frame formalism is constant [1], and the
curvature scalar is given by

R = 1

4
CABDCDAB . (24)

This means in particular that, in our case, momenta scale as√
Λ .
If we wish to preserve the full de Sitter symmetry on fuzzy

de Sitter space, we choose as momenta all ten generators
Mαβ ,

i pA = √
ζΛ Mαβ, (25)

where index A = 1, . . . , 10, denotes antisymmetric pairs
[αβ]. Normalization of the scalar curvature to R = 4Λ

gives ζ = 1/3. There are ten frame 1-forms θ A. Assuming
the flat frame, gAB = ηAB , with signature (+ + + + + +
−−−−), for the spacetime components of the metric, gαβ =
eα
Ae

β
BηAB (α = 0, 1, 2, 3, 4), we obtain

gαβ = ηαβ − Λ

3
xβxα. (26)

In the commutative limit gαβ is singular and reduces to the
projector to the four-dimensional de Sitter space.

The second choice of momenta is

i p̃0 =
√

ζ̃Λ M04,

i p̃i =
√

ζ̃Λ (Mi4 + M0i ), i = 1, 2, 3. (27)

4 See, however, comments given in the Appendix.
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There are now four frame 1-forms θ̃ α , α = 0, 1, 2, 3. Calcu-
lating the spacetime components of the metric, for the non-
commutative equivalent of the line element we find

d̃s2 = (θ̃0)2 − (θ̃ i )2 = d̃τ 2 − e
2τ
l (dx̃i )2 (28)

with natural identification of the cosmological time τ ,

τ



= − log

(
x0 + x4




)
. (29)

This noncommutative metric and the corresponding moving
frame do not possess the complete de Sitter symmetry. Nor-
malization of the scalar curvature to the usual value gives
ζ̃ = 16/3.

3 Coordinates

Let us consider the spectra of the embedding coordinates
xα . Classification of the unitary irreducible representations
of the de Sitter group was done in [18–20]; the UIR’s of the
SO(1, 4) are induced from representations of its maximal
compact subgroup SO(4). The representation basis { f k,k′

m,m′ } is
discrete (k and k′ label the UIR’s of the two SO(3) subgroups
of SO(4)). The unitary irreducible of the SO(1, 4) are infinite-
dimensional, labelled by two quantum numbers,ρ (orν = iρ,
q = 1/2 + iρ) and s.5 They are grouped in three series,

– principal continuous series, ρ ∈ R, ρ ≥ 0, s =
0, 1

2 , 1, 3
2 , . . .

Q = −s(s + 1) + 9
4 + ρ2, W = s(s + 1)( 1

4 + ρ2),
– complementary continuous series, ν ∈ R, |ν| < 3

2 , s =
0, 1, 2 . . .

Q = −s(s + 1) + 9
4 − ν2, W = s(s + 1)( 1

4 − ν2), and
– discrete series, s = 1

2 , 1, 3
2 , 2 . . . , q = s, s−1, . . . 0 or 1

2
Q = −s(s+1)−(q+1)(q−2), W = −s(s+1)q(q−1).

In the discrete case there are two inequivalent representations
π±
s,q for each value of q and s; values of the Casimir operators

are discrete.
Using known matrix elements of Mαβ from [20], one can

calculate matrix elements of Wα in basis { f k,k′
m,m′ }. We find

W0 f
k,k′
m,m′ = (

k′(k′ + 1) − k(k + 1)
)
f k,k

′
m,m′ , (30)

W4 f
k,k′
m,m′ = − i

2
Ak,k′(k − k′)(√

(k − m + 1)(k′ + m′ + 1) f
k+ 1

2 ,k′+ 1
2

m− 1
2 ,m′+ 1

2

−√
(k + m + 1)(k′ − m′ + 1) f

k+ 1
2 ,k′+ 1

2

m+ 1
2 ,m′− 1

2

)

5 In comparison with [20], p = s, σ = 1
4 + ρ2.

− i

2
Bk,k′(k + k′ + 1)(√

(k + m)(k′ + m′ + 1) f
k− 1

2 ,k′+ 1
2

m− 1
2 ,m′+ 1

2

+√
(k − m)(k′ − m′ + 1) f

k− 1
2 ,k′+ 1

2

m+ 1
2 ,m′− 1

2

)

− i

2
Ck,k′(k + k′ + 1)(√
(k − m + 1)(k′ − m′) f

k+ 1
2 ,k′− 1

2

m− 1
2 ,m′+ 1

2

+√
(k + m + 1)(k′ + m′) f

k+ 1
2 ,k′− 1

2

m+ 1
2 ,m′− 1

2

)

− i

2
Dk,k′(k − k′)(√

(k + m)(k′ − m′) f
k− 1

2 ,k′− 1
2

m− 1
2 ,m′+ 1

2

−√
(k − m)(k′ + m′) f

k− 1
2 ,k′− 1

2

m+ 1
2 ,m′− 1

2

)
, (31)

Constants Ak,k′ , Bk,k′ ,Ck,k′ , Dk,k′ are given for each concrete
representation in [20]. From (30) we see that W0 has discrete
spectrum as noted in [12]. On the other hand, the eigenvalue
equation for W4 (and likewise for Wi ) is quite difficult, if at
all possible, to solve in this basis.

We therefore restrict to simpler problem: to find the eigen-
values of Wα for a specific class of representations. The sim-
plest possibility would be to consider Class I UIR’s (they
are in the principal and complementary series): their Hilbert
space representations are known, they have a lowest weight
state so the coherent states can be constructed, etc. How-
ever, Class I is characterized by condition W = 0: thus in
our framework these UIR’s cannot be simply interpreted as
de Sitter spaces: a fixed k̄ implies Λ → ∞.6 Another sub-
set which is singled out mathematically and physically is the
principal continuous series. As shown in [21], in the Wigner-
Inönü contraction limit these UIR’s contract to a sum of two
representations of the Poincaré group with positive value of
the mass-squared. The Hilbert space representations of the
principal continuous series were found in [22–24]: we shall
perform the construction explicitly in the simplest nontrivial
case, s = 1/2.

We start from the s = 0 representation of the principal
continuous series. The representation space is a direct sum of
the two s = 0 representation spaces of the Poincaré algebra,
[22,23]. The states in each summand are wave functions in
momentum space ψ(p), with the scalar product given by

6 It is on the other hand certainly possible to define specific double
scaling limits, in order to interpret Class I representations as fuzzy
de Sitter spaces; this point remains to be explored.

123



Eur. Phys. J. C (2018) 78 :953 Page 5 of 10 953

(ψ,ψ ′) =
∫

d3 p

2p0
ψ∗ψ ′, (32)

and p0 = √−pi pi + m2. Generators of the SO(1, 4) group,
Mαβ |s=0 ≡ Lαβ , are

Li j = i

(
pi

∂

∂p j
− p j

∂

∂pi

)
(33)

L0i = i p0
∂

∂pi
(34)

L40 = − ρ

m
p0 + 1

2m
{pi , L0i } (35)

L4k = − ρ

m
pk − 1

2m
{p0, L0k} − 1

2m
{pi , Lik}. (36)

They are hermitian with respect to the given scalar product,
and one can easily check that Wα|s=0 = 0 , therefore W =
0 for (ρ, s = 0).

Higher spin representations (ρ, s) can be obtained from
(ρ, s = 0) by adding spin generators Sαβ to orbital gener-
ators Lαβ . Representation space will be again a direct sum
of two spaces, each equivalent to the Hilbert space of the
Bargmann–Wigner representation of the Poincaré group of a
fixed spin s [25]. We shall here discuss the eigenvalue prob-
lem for s = 1

2 ; the case of higher spins is more involved
because of an additional projection to the highest spin states
[27]. In addition, we will consider just a ‘half’ of the repre-
sentation space, the other half being equivalent [24].

States for s = 1
2 are Dirac bispinors in momentum

space ψ(p) which are solutions to the Dirac equation. The
Bargmann–Wigner scalar product is given by

(ψ,ψ ′) =
∫

d3 p

|p0| ψ†γ 0ψ ′ =
∫

d3 p

p2
0

ψ†ψ ′. (37)

In the Dirac representation of γ -matrices, γ 0 =
(
I 0
0 −I

)
,

γ i =
(

0 σi
−σi 0

)
, the states are bispinors

ψ(p) =
(

ϕ(p)

− p · σ

p0 + m
ϕ(p)

)
(38)

and the scalar product reduces to

(ψ,ψ ′) =
∫

d3 p

p0

2m

p0 + m
ϕ†ϕ′. (39)

In the chiral representation which we will use later, γ̃ 0 =(
0 I
I 0

)
, γ̃ i =

(
0 −σi
σi 0

)
and the states can be parametrized

as

ψ̃(p) =
(

χ̃ (p)
p0 + p · σ

m
χ̃(p)

)
, (40)

while the scalar product becomes

(ψ,ψ ′) = (ψ̃, ψ̃ ′) =
∫

d3 p

p0

2

m
χ̃† (p0 + p · σ ) χ̃ ′. (41)

The de Sitter group generators are given by

Mi j = Li j + Si j , Si j = i

4
[γi , γ j ], (42)

M0i = L0i + S0i , S0i = i

4
[γ0, γi ], (43)

M40 = − ρ

m
p0 + 1

2m
{pi , M0i }, (44)

M4k = − ρ

m
pk − 1

2m
{p0, M0k} − 1

2m
{pi , Mik}. (45)

One can easily check that with respect to (37) all generators
are hermitian: for an operator-valued M of the 2 × 2 block-
form

M =
(
A B
B A

)
(46)

hermiticity condition reads, in the Dirac representation of
γ -matrices,

p−1
0 A = A† p−1

0 , p−1
0 B = −B† p−1

0 . (47)

From (33–36) we find the components Wα:

W 0 =
(
U 0 V 0

V 0 U 0

)
, (48)

Wi =
(
Ui V i

V i Ui

)
, (49)

W 4 = −1

2

⎛
⎝ i p0

∂
∂pi

σ i εi jk pi
∂

∂p j σk + 3i
2

εi jk pi
∂

∂p j σk + 3i
2 i p0

∂
∂pi

σ i

⎞
⎠

(50)

with

U 0 = − 1

2m

((
ρ − i

2

)
piσ

i + i p2
0

∂

∂pi
σ i

)

V 0 = − 1

2m

(
εi jk p0 pi

∂

∂p j
σk + 3i

2
p0

)

Ui = p0

2m

(
−i pi

∂

∂pk
σk +

(
ρ − i

2

)
σ i

)
,

V i = 1

2m

(
−2i pi + iεi jk pl M jkσ

l

+ εi jk
(
iρp j − pl p

l ∂

∂p j
− p j pl

∂

∂pl

)
σk

)
.

We have seen already in (30) that the spectrum of W 0

is discrete in every UIR of the SO(1, 4) group, and that the
eigenvalues are k′(k′+1)−k(k+1) . On the other hand, due to
de Sitter symmetry, spatial directions i and 4 are equivalent:
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therefore W 4 and Wi have the same spectra. We can thus
confine to the eigenvalue problem of W 4.

We proceed as follows. First, we observe that in the Dirac
representation W 4 has the form (46) with

A = − i

2
p0

∂

∂pi
σ i , B = −1

2

(
εi jk pi

∂

∂p j
σk + 3i

2

)
.

(51)

Unitary transformation to the chiral representation trans-
forms W 4 to

W̃ 4 = UW 4U † =
(
A + B 0

0 A − B

)
, (52)

where U = 1√
2

(
I I
I − I

)
. This means that we can solve

the eigenvalue problems for A + B and A − B separately.
But in fact, one can easily check that if χ̃ satisfies

(A + B) χ̃ = λ χ̃, (53)

the other spinor component of the eigenvalue equation,

(A − B) χ̃ = λ
p0 + p · σ

m
χ̃ , (54)

is automatically satisfied for A, B given by (51).
Since W 4 commutes with the generators of 3-rotations,

we can diagonalize A + B simultaneously with Mi j , that is
we can write the eigenfunctions in the form

χ̃ (p, θ, ϕ) = f (p)

p
φ jm(θ, ϕ) + h(p)

p
χ jm(θ, ϕ), (55)

where p is the radial momentum, p2 = (pi )2 = p2
0 − m2

and

φ jm(θ, ϕ) =
⎛
⎜⎝

√
j+m
2 j Ym−1/2

j−1/2 (θ, ϕ)

√
j−m
2 j Ym+1/2

j−1/2 (θ, ϕ)

⎞
⎟⎠ ,

χ jm(θ, ϕ) =
⎛
⎜⎝

√
j+1−m
2( j+1)

Ym−1/2
j+1/2 (θ, ϕ)

−
√

j+1+m
2( j+1)

Ym+1/2
j+1/2 (θ, ϕ)

⎞
⎟⎠ .

The Ym
l are the spherical harmonics. The φ jm and χ jm are

orthonormal and, [26]

φ jm = p · σ

p
χ jm, (L · σ ) φ jm = (

j − 1
2

)
φ jm,

χ jm = p · σ

p
φ jm, (L · σ ) χ jm = − (

j + 3
2

)
χ jm .

(56)

Identity (r ·σ )(p ·σ ) = 3i+ i p ∂
∂p + iL ·σ is also frequently

used in the calculation.
Introducing Ansatz (55), we obtain the system

p0 p
d f

dp
−

(
j + 1

2

)
p0 f = (2iλ + j) ph (57)

p0 p
dh

dp
+

(
j + 1

2

)
p0h = (2iλ − j − 1) p f. (58)

Making the change of functions

f = p j+ 1
2 F, h = p− j− 1

2 H, (59)

we get the first order system of equations

m
dF

dp0
= (2iλ + j)

( p

m

)−2 j−2
H, (60)

m
dH

dp0
= (2iλ − j − 1)

( p

m

)2 j
F. (61)

The corresponding second-order equations for F and H are

p2 d
2F

dp2
0

+2( j + 1)p0
dF

dp0
−(2iλ + j)(2iλ − j − 1)F=0,

(62)

p2 d2H

dp2
0

− 2 j p0
dH

dp0
− (2iλ + j)(2iλ − j − 1)H = 0.

(63)

These equations can be transformed to the Legendre equation
by an additional change of functions. Introducing x = p0/m
and

F = (x2 − 1)−
j
2 F̃, H = (x2 − 1)

j+1
2 H̃ , (64)

we obtain

(x2 − 1)
d2 F̃

dx2 + 2x
d F̃

dx
− j2

x2 − 1
F̃ = 2iλ(2iλ − 1)F̃,

(65)

(x2 − 1)
d2 H̃

dx2 + 2x
d H̃

dx
− ( j + 1)2

x2 − 1
H̃ = 2iλ(2iλ − 1)H̃ .

(66)

Two linearly independent solutions of Legendre equa-
tion (B.3) are the associated Legendre functions Pμ

ν (x) and
Qμ

ν (x), or Pμ
ν (x) and P−μ

ν (x). In our case (65–66) these
solutions are

F̃(x) = Ã P j
−2iλ(x) = (2iλ + j)B̃ P j

−2iλ(x),

H̃(x) = B̃ P j+1
−2iλ(x), (67)

and

F̃(x) = A P− j
−2iλ(x),

H̃(x) = B P− j−1
−2iλ (x) = A (2iλ − j − 1) P− j−1

−2iλ (x). (68)

Relations between coefficients Ã, A and B̃, B follow from
(61) and the recurrence relations for the associated Legendre
functions. But as shown in the Appendix, functions of the
first pair (67) diverge at the point x = 1 . Therefore there is
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only one normalizable solution, (68), for every real λ. The
corresponding radial functions f and h are equal to

fλ j = A
( p

m

) 1
2
P− j

−2iλ

( p0

m

)
, (69)

hλ j = A (2iλ − j − 1)
( p

m

) 1
2
P− j−1

−2iλ

( p0

m

)
, (70)

and they give eigenfunctions ψ̃λ jm of W 4 via (55) an (40).
We show in the Appendix that this set of eigenfunctions is
complete: ψ̃λ jm are orthogonal and normalized to δ-function,

(
ψ̃λ jm, ψ̃λ′ j ′m′

)
= 2A∗A′

Γ ( 1
2 − 2iλ) Γ ( 1

2 + 2iλ′)
Γ ( j + 1 − 2iλ) Γ ( j + 1 + 2iλ′)
δmm′ δ j j ′ δ(λ − λ′), (71)

so the normalization and the phases can be fixed as

A = Γ ( j + 1 + 2iλ)√
2 Γ ( 1

2 + 2iλ)
. (72)

4 Group-theoretic view

In the previous section we solved the eigenvalueproblem of
W 4 in (ρ, s = 1

2 ) UIR of the principal continuous series
of SO(1, 4) using the Hilbert space representation [22,23].
But this problem could have been solved using the results of
representation theory. Namely, the embedding coordinates,
components of the ‘Pauli–Lubanski’ vector Wα , coincide in
fact with one of the two quadratic Casimir operators of the
subgroups of SO(1, 4): W 0 is a Casimir operator of SO(4)

while W 4 and Wi are Casimir operators of SO(1, 3) sub-
groups.7 This can be easily seen from their definition:

W 0 = 1

8
ε0αβγ δMαβMγ δ = 1

4
εi jk(Mi j M4k + M4kMi j )

(73)

W 4 = 1

8
ε4αβγ δMαβMγ δ = −1

4
εi jk(Mi j M0k + M0kMi j )

(74)

where ε0i jk4 = εi jk . As W 0 is a Casimir operator of the com-
pact group SO(4), it has discrete eigenvalues which are equal
to k′(k′ +1)−k(k+1). On the other hand, to find the eigen-
values of W 4 one has to decompose representation (ρ, s) or
(ρ, s = 1

2 ) of the principal continuous series of SO(1, 4) into
the UIR’s of its subgroup SO(1, 3). This was done by Ström,

7 This very important observation is due to our referee, and it gives
much better understanding of the construction of fuzzy de Sitter space
and of its structure.

and the resulting decomposition of the representation space,
Hs = Hs+ ⊕ Hs−, is in [28] written as

Hs± = 1

(2π4)2

∞∫
0

∑
s0=±s,±(s−1),...

Hs±(s0, ν) (s2
0 + ν2) dν

= 1

(2π4)2

∞∫
−∞

∑
s0=s,s−1,...

Hs±(s0, ν) (s2
0 + ν2) dν

(75)

where s0 and ν label the UIR’s of the Lorentz group. The rep-
resentation space of the (ρ, s) representation is decomposed
into a direct integral and sum of unitary irreducible represen-
tations (ν, s0) of SO(1, 3): ν ∈ (−∞,+∞) is continuous
and s0, |s0| ≤ s, is discrete. The eigenvalue of W 0 which
corresponds to each of the representations in decomposition
(75) is equal to s0ν.

Our result for s = 1
2 is in accordance with this. There is

only one summand in (75) corresponding to s0 = s = 1
2 ; the

spectrum of W 0 is the real axis, λ = ν
2 ∈ (−∞,+∞) . An

analogous decomposition of unitary irreducible representa-
tions of the Poincaré group into a direct integral of UIR’s of
the Lorentz group was done in [29]: as we here use the same
representation space [22,23], there are many parallels in two
calculations.

5 Summary and outlook

In this paper we continued our investigation of fuzzy de Sit-
ter space defined as a unitary irreducible representation of
the de Sitter group SO(1, 4), analyzing representations of
the principal continuous series. In analogy with the com-
mutative case, fuzzy de Sitter space in four dimensions is
defined as an embedding in five dimensions: the embedding
coordinates are proportional to components of the Pauli–
Lubanski vector, xα = 
Wα , and the embedding relation
is the Casimir relation WαWα= const. By an explicit calcu-
lation in the (ρ, s = 1

2 ) representation we found that the
spectrum of time x0 is discrete while the spectra of spacelike
coordinates x4 and xi are continuous. This result is in fact
general and holds for all principal continuous UIR’s (ρ, s) of
the SO(1, 4), which can be proved by using the result [28] for
the decomposition of representations of the principal series
of SO(1, 4) into the UIR’s its SO(1, 3) subgroup.

There are other operators, that is other coordinates on
fuzzy de Sitter space whose properties one would like to
understand and physically interpret. First of them is cer-
tainly the cosmological time, τ = −
 log (W 0 + W 4), and
second are the isotropic coordinates. While it is, at least
in the (ρ, s = 1

2 ) representation, straightforward to write
the eigenvalueproblem for τ , the corresponding differential
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equation turns out to be not easy to solve. This is one of the
problems in the given setup which deserves additional work
and which might give interesting results.

The given construction of fuzzy de Sitter space can be
straightforwardly generalized to other spaces of maximal
symmetry with the symmetry groups SO(p, q), in particular
for even-dimensional spaces, p + q = d + 1 with even d.
In these cases, embedding coordinates can, as for d = 4, be
identified with the highest W -symbol,

Wα = εαα1α2...αd−1αd Mα1α2 . . . Mαd−1αd , (76)

which is a vector in a (d + 1)-dimensional flat space. The
embedding relation is the Casimir relation WαWα= const,
and the appropriate fuzzy space is then defined as an UIR of
the SO(p, q) group. Further, Wα are the Casimir operators of
subgroups SO(p−1, q) and SO(p, q−1) and their properties
are in large part determined by the group theory. On the other
hand for fuzzy Lorentzian spaces, particularly interesting are
the SO(1, d) groups which describe conformal symmetry in
d−1 dimensions. Their representation theory is well studied,
in particular, the decomposition formulas for the UIR’s of the
principal continuous series, [30,31] are known. Moreover,
the algebra of the conformal group has the same structure
that was used to define differential calculus for fuzzy de Sitter
space in four dimensions. Clearly, for arbitrary dimension d
momenta can be defined analogously to (27), as generators
of translations of the conformal group,

i p̃0 ∼ M0d , i p̃i ∼ Mid + M0i , i = 1, 2, . . . d − 1.

(77)

The p̃i mutually commute; the differential structure which
corresponds to this choice of the moving frame gives, in the
commutative limit, metric of the de Siter space in d dimen-
sions. Therefore, a general construction with common gen-
eral properties exists and should be further explored.
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Appendix A: Two additional formulas for the SO(1, 4)

It would seem from (15) that operators proportional to xα

cannot be chosen as momenta, as it is often done in noncom-
mutative geometry. But it is in fact possible, in a fixed UIR,
to express Mαβ in terms of Wα . Using formula (which can
be checked explicitly)

WβMαβ = 2iWα, (A.1)

we find

i WMρσ = [W ρ,W σ ] + 1

2
εαμρστWτ [Wα,Wμ]. (A.2)

This also means that one can useWα as ‘primitive generators’
[13] of fuzzy de Sitter space. However, metric defined by
this choice of momenta cannot be brought to the de Sitter
form, or at least it is far from obvious how to do it (a nice
simple formula which expresses MαδMβ

δ in terms of Wα is
lacking).

Appendix B: Completeness and orthogonality of eigen-
functions ψ̃λ jm

The eigenvalue equation for W 4 reduces to the Legendre
equation

(x2 − 1)
d2y

dx2 + 2x
dy

dx
− μ2

x2 − 1
y = ν(ν + 1)y (B.3)

where order, μ = ± j,±( j + 1) , is half-integer, degree,
ν = −2iλ, is imaginary and variable x = p0

m ∈ [0,∞).
To discuss behavior of solutions (67) and (68) at x = 1

and x = ∞, we express the associated Legendre functions
in terms of the hypergeometric function 2F1. For x = 1 we
use, [32]

Pμ
ν (z) = 1

2νΓ (1 − μ)
(z + 1)

μ
2 +ν

· (z − 1)−
μ
2 2F1

(
−ν,−ν − μ; 1 − μ; z − 1

z + 1

)
.

As 2F1(a, b; c; 0) = 1, in the vicinity of x = 1 we have

P± j
−2iλ(x) = 2± j

2

Γ (1 ∓ j)
(x − 1)∓

j
2 , (B.4)

that is, P j
−2iλ is divergent and P− j

−2iλ tends to zero. Therefore
we dismiss the first solution (67) for F , H .

Similarly, at the other end of the interval, x = ∞ , we use
the formula

Pμ
ν (z) = 2−ν−1π− 1

2
Γ (− 1

2 − ν)

Γ (−ν − μ)
z−ν+μ−1 (z2 − 1)−

μ
2
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· 2F1

(
1 + ν − μ

2
,

2 + ν − μ

2
; 3

2
+ ν; 1

z2

)

+ 2νπ− 1
2

Γ ( 1
2 + ν)

Γ (1 + ν − μ)
zν+μ (z2 − 1)−

μ
2

· 2F1

(−ν − μ

2
,

1 − ν − μ

2
; 1

2
− ν; 1

z2

)
(B.5)

so we have

P− j
ν (x) = 1√

π

Γ (− 1
2 − ν)

Γ ( j − ν)
(2x)−ν−1

+ 1√
π

Γ ( 1
2 + ν)

Γ ( j + 1 + ν)
(2x)ν, x → ∞. (B.6)

Let us determine the scalar product of two eigenfunctions
ψ̃λ jm(p, θ, ϕ), , ψ̃λ′ j ′m′(p, θ, ϕ). They are given by (40),
(55):

ψ̃λ jm =
(

χ̃λ jm
p0 + p · σ

m
χ̃λ jm

)
,

χ̃λ jm = fλ j
p

φ jm + hλ j

p
χ jm . (B.7)

The scalar product (41) for Ansatz (55), (B.7), reduces to

(ψ̃, ψ̃ ′) = 2δ j j ′δmm′
∫ ∞

m

dp0

m

(
p0

(
f ∗ d f ′

dp0
+ h∗ dh′

dp0

)

+
(
f ∗ dh′

dp0
+ h∗ d f ′

dp0

))
, (B.8)

so for eigenfunctions (70) we find

(ψ̃, ψ̃ ′) = 2δ j j ′δmm′
∫ ∞

1
dx

(
x

(
A∗A′ P− j∗

−2iλP
− j
−2iλ′

+ B∗B ′ P− j−1 ∗
−2iλ P− j−1

−2iλ′
)

+
√
x2 − 1

(
A∗B ′ P− j∗

−2iλP
− j−1
−2iλ′

+ B∗A′ P− j−1 ∗
−2iλ P− j

−2iλ′
))

. (B.9)

Using relation(
ν′(ν′ + 1) − ν∗(ν∗ + 1)

)
P j∗

ν P j
ν′

= d

dx

(
P j∗

ν (x2 − 1)
dP j

ν′
dx

− P j
ν′ (x2 − 1)

dP j∗
ν

dx

)

which is a consequence of the Legendre equation and various
recurrence relations between the associated Legendre func-
tions [32], we transform the expression under the integral to
a total derivative. We find

(ψ̃, ψ̃ ′) = δ j j ′δmm′
2A∗A′ √x2 − 1

2iλ′ − 2iλ

·
(
−(2iλ + j + 1)P− j−1 ∗

−2iλ P− j
−2iλ′−1

+ (2iλ′ + j + 1)P− j∗
−2iλP

− j−1
−2iλ′−1

) ∣∣∣∞
1

(B.10)

This expression vanishes at the lower bound x = 1, while at
the upper bound we can use the asymptotics (B.6). We obtain

(ψ̃, ψ̃ ′) = δ j j ′δmm′
1

π

2A∗A′

2iλ′ − 2iλ

lim
x→∞

(
(2x)2iλ′−2iλ Γ ( 1

2 − 2iλ) Γ ( 1
2 + 2iλ′)

Γ ( j + 1 − 2iλ) Γ ( j + 1 + 2iλ′)

− (2x)−2iλ′+2iλ Γ ( 1
2 + 2iλ) Γ ( 1

2 − 2iλ′)
Γ ( j + 1 + 2iλ) Γ ( j + 1 − 2iλ′)

)
.

If a = 2λ′ − 2λ �= 0 , the upper expression as a distribution
(that is ‘under the integral’) vanishes,

lim
x→∞ xia = 0, a �= 0. (B.11)

When a → 0 , we use formula

lim
x→∞

xia − x−ia

2π ia
= δ(a) (B.12)

to obtain normalization condition (71).
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