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Abstract We derive a new parametrization for the scalar
pion form factors that allows us to analyze data over a large
energy range via the inclusion of resonances, and at the same
time to ensure consistency with the high-accuracy disper-
sive representations available at low energies. As an appli-
cation the formalism is used to extract resonance proper-
ties of excited scalar mesons from data for B̄0

s → J/ψππ .
In particular we find for the pole positions of f0(1500)

and f0(2020) 1465 ± 18 − i(50 ± 9) MeV and 1910 ±
50 − i(199 ± 40) MeV, respectively. In addition, from their
residues we calculate the respective branching ratios into ππ

to be (58 ± 31)% and (1.3 ± 1.8)%.

1 Introduction

The scalar isoscalar sector of the QCD spectrum up to 2 GeV
has been of high theoretical and experimental interest for
many years. One of the main motivations for these inves-
tigations is the hunt for glueballs: their lightest represen-
tatives are predicted to occur in the mass range between
1600 and 1700 MeV with quantum numbers 0++ [1–4]. The
most straightforward way to identify glueball candidates is
to count states with and without flavor quantum number and
see if there are supernumerary isoscalar states; see, e.g., the
minireview on non-q̄q states provided by the Particle Data
Group (PDG) [5] or the reviews Refs. [6,7]. Unfortunately,
regardless of the year-long efforts, the scalar isoscalar spec-
trum is still not fully resolved: e.g. there is still an ongoing
debate whether the f0(1370) exists or not [6]. One problem
might be that most analyses of experimental data performed
so far are based on fitting sums of Breit–Wigner functions,
which can lead to reaction-dependent results. To make fur-
ther progress, it therefore appears compulsory to employ

a e-mail: ropertz@hiskp.uni-bonn.de
b e-mail: c.hanhart@fz-juelich.de
c e-mail: kubis@hiskp.uni-bonn.de

parametrizations that allow one to extract pole parameters,
for those by definition do not depend on the production
mechanism. This requires amplitudes that are consistent with
the general principles of analyticity and unitarity. In this
paper we present a new parametrization for the scalar pion
form factors that has these features built in, and in addi-
tion maps smoothly onto well constrained low-energy ampli-
tudes.

The two-pion system at low energies is well under-
stood from sophisticated investigations based on dispersion
theory—in particular the ππ–K K̄ phase shifts and inelas-
ticities can be assumed as known from threshold up to an
energy of about s = (1.1 GeV)2 [8–13]. From this infor-
mation, quantities like the scalar non-strange and strange
form factors for both pions and kaons can be constructed,
again employing dispersion theory [14–21]. The resulting
amplitudes, which capture the physics of the f0(500) (or
σ ) and the f0(980), were already applied successfully to
analyze various meson decays, see, e.g., Ref. [20]. In par-
ticular the non-Breit–Wigner shape of these low-lying res-
onances [22] is taken care of automatically. However, to
also include higher energies in the analysis, where addi-
tional inelastic channels become non-negligible and higher
resonances need to be included, one is forced to leave the
safe grounds of fully model-independent dispersion the-
ory and to employ a model. Ideally this is done in a way
that the amplitudes match smoothly onto those constructed
rigorously from dispersion relations. Moreover, to allow
for an extraction of resonance properties, the extension
needs to be performed in a way consistent with analytic-
ity.

A formalism that has all of these features was intro-
duced for the pion vector form factor in Ref. [23]. In that
case, the low-energy ππ interaction can safely be treated
as a single-channel problem in the full energy range where
high-accuracy phase shifts are available, since the two-kaon
contribution to the isovector P-wave inelasticity is very
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small [12,24].1 However, this is not true for the isoscalar
S-wave, clearly testified by the presence of the f0(980) basi-
cally at the K K̄ threshold with a large coupling to this chan-
nel [26,27]. Thus, in order to apply the formalism of Ref. [23]
to the scalar isoscalar channel it needs to be generalized. This
is the main objective of the present article. As an applica-
tion we test the amplitudes on data for B̄0

s → J/ψππ/K K̄
recently measured with high accuracy at LHCb [28,29],
which allows us to extract the strange scalar form factor of
pions and kaons up to about 2 GeV and to constrain pole
parameters and branching fractions of two of the heavier f0
resonances in that energy range.

This paper is organized as follows. In Sect. 2, we derive
the unitary and analytic scalar form factor parametrization
to be used. In Sect. 3 we illustrate its application in a
coupled-channel analysis of the decays B̄0

s → J/ψππ and
B̄0
s → J/ψK K̄ . Specifically, we discuss the stability of

our fits under changing assumptions for the parametrization
concerning the number of resonances, the degree of certain
polynomials, as well as the approximation in the description
of the effective four-pion channel. In addition, in Sect. 4 we
extract pole parameters, in particular for both the f0(1500)

and the f0(2020), via the method of Padé approximants for
the analytic continuation to the unphysical sheets. The paper
ends with a summary and an outlook in Sect. 5.

2 Formalism

The derivation of the form factor parametrization is presented
for the strange scalar isoscalar pion (kaon) form factor Γ s

π

(Γ s
K ). These are related to the matrix elements

〈
π+(p1)π

−(p2) |mss̄s| 0
〉 = 2M2

K − M2
π

2
Γ s

π (s) ,

〈
K+(p1)K

−(p2) |mss̄s| 0
〉 = 2M2

K − M2
π

2
Γ s
K (s) , (1)

where s = (p1+p2)
2. TheΓ s

i (s), i = π, K , defined this way
are invariant under the QCD renormalization group. Since
the scalar isoscalar ππ system is strongly coupled to the
K K̄ channel via the f0(980) resonance, a coupled-channel
description becomes inevitable even for energies around
s = 1 GeV2. In this paper we present a parametrization for
the scalar form factors valid at even higher energies. This
becomes possible via the explicit inclusion of further inelas-
ticities and resonances. Below 1 GeV the system is strongly
constrained by dispersion theory using a coupled-channel

1 Note that a recent analysis of N f = 2 and N f = 2 + 1 lattice data
revealed indications for the necessity to include a K K̄ component for
the ρ meson in the formalism [25].

treatment of ππ and K K̄ [20]. At higher energies exper-
imental data indicate that further inelasticities are usually
accompanied by resonances. We thus derive a parametriza-
tion that allows for resonance exchange at higher energies.
Those resonances also act as doorways for the coupling of
the system to the additional channels. At the same time we
make sure that their presence does not distort the amplitude at
lower energies. To be concrete, here we consider in addition
to ππ (channel 1) and K K̄ (channel 2) an effective 4π chan-
nel (channel 3), modeled by either ρρ or σσ . Three-channel
models with an effective σσ channel have been considered
in the literature before [15,30], while some of the f0 states
between 1.3 and 2 GeV have even been hypothesized to be
dynamically generated by attractive interactions between ρ

mesons [31–34]. It should become clear from the derivation,
however, that the formalism allows for the inclusion of addi-
tional channels in a straightforward manner.

The derivation starts from the scalar isoscalar scattering
amplitude T (s)i f , where i and f denote the initial- and final-
state channels. To implement unitarity and analyticity we use
the Bethe–Salpeter equation, which reads

Ti f = (V + VGT )i f = Vi f + VimGmmTm f (2)

in operator form. HereVi f denotes the scattering kernel of the
initial channel i into the final channel f . The loop operator
G is diagonal in channel space and provides the free prop-
agation of the particles of channel m. For example, at the
one-loop level the above equation generates an expression of
the form

Vi1G11V1 f ∝
∫

d4k

(2π)4 Vi1(k, . . . )
i

k2 − M2
π + iε

× i

(k − P)2 − M2
π + iε

V1 f (k, . . . ) (3)

for ππ rescattering, with P being the total 4-momentum of
the system such that P2 = s. Form = 1, 2, the discontinuity
of the loop operator element Gmm reads

discGmm = 2iσm , (4)

where σm(s) = √
1 − 4M2

m/s is the two-body phase space in
the given channel, and Mm denotes the pion and kaon masses
for channels 1 and 2, respectively. For the third channel, we
need to include the finite width of the two intermediate (ρ
and σ ) mesons; we write

discGk
33 = 2i

∫ ∞

4M2
π

dm2
1 dm2

2 ρk(m
2
1) ρk(m

2
2)

× λ1/2(s,m2
1,m

2
2)

s
, (5)
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where λ(a, b, c) = a2 + b2 + c2 − 2(ab + ac + bc) is the
Källén function. Here the spectral density for the state k,
ρk(m2), is given as

ρk(q
2) = 1

π

mkΓk(q2)

(q2 − m2
k)

2 + m2
k Γ 2

k (q2)
, (6)

with the energy-dependent width

Γk(s) = Γk mk√
s

(
pπ (s)

pπ (m2
k)

)2Lk+1 (
F (Lk)
R (s)

)2
,

pπ (s) =
√
s

2
σπ(s) , (7)

where Γk (mk) denotes the nominal width (mass) of the res-
onance and Lk the angular momentum of the decay with
Lk = 1 and 0 for the ρ and the σ , respectively. The
F (L)
R (s) denote barrier factors that prevent the width from

growing continuously. We employ the parametrization of
Refs. [35,36], where their explicit forms for L = 0, 1, 2
are given by

F (0)
R = 1 , F (1)

R =
√

1 + z0

1 + z
, F (2)

R =
√

9 + 3z0 + z2
0

9 + 3z + z2 , (8)

with z = r2
R p2

π (s), z0 = r2
R p2

π (m2
k), and the hadronic scale

rR = 1.5 GeV−1. Note that as long as no exclusive data are
employed for the 4π final state, the amplitudes are not very
sensitive to the details how, e.g., the spectral density of the σ

meson is parametrized, since it enters only as the integrand
in the self energies of the resonances. However, the analysis
is somewhat sensitive to the differences between a ρρ and
a σσ self energy, since the energy dependence of the two
is quite different, given the different resonance parameters
and the different threshold behavior. We come back to this
discussion later in this section.

To proceed with the derivation we split the scattering ker-
nel into two parts, V = V0 + VR , conceptually following
the so-called two-potential formalism [37]. The effect of V0

will eventually be absorbed into the dispersive piece fixed by
the low-energy ππ–K K̄ T -matrix input. Its explicit form is
needed at no point; one may think of it as the driving term of
a Bethe–Salpeter equation

T0 = V0 + V0 G T0 . (9)

Since T0 it is the solution of a scattering equation, T0 is uni-
tary. In particular, we may write

T0 =
⎛

⎜
⎝

η0e2iδ0 −1
2iσπ

g0eiψ0 0

g0eiψ0 η0e2i(ψ0−δ0)−1
2iσK

0
0 0 0

⎞

⎟
⎠ , (10)

where δ0 is the scalar isoscalar ππ phase shift, ψ0 the phase
of the ππ → K K̄ scattering amplitude, and g0 its absolute
value. The inelasticity η0 is related to g0 via

η0 =
√

1 − 4 (g0)
2 σπ σK Θ

(
s − 4M2

K

)
. (11)

The effects of resonances heavier than the f0(980) enter
the amplitude via VR . By means of VR we can construct
the resonance T -matrix TR , related to the full T -matrix via
T = TR+T0. Since T0 is unitary by itself, TR cannot be inde-
pendent of T0 in order to respect the Bethe–Salpeter equa-
tion (2). Solving for TR we obtain

(1 − V0G − VRG) TR = VR (1 + GT0) . (12)

To proceed, we define the vertex function Ω via

Ω = 1 + T0G . (13)

Its discontinuity is given by

disc Ωi j = 2i (T0)
∗
im σm Ωmj , (14)

which agrees with the discontinuity of the Omnès matrix
derived from the scattering T -matrix T0 [38,39]. Therefore
it can be constructed from dispersion theory:

Ω =
⎛

⎝
Ω11 Ω12 0
Ω21 Ω22 0

0 0 1

⎞

⎠ , Ωi j (s) = 1

2π i

∫ ∞

4M2
π

dz
disc Ωi j (z)

z − s − iε
.

(15)

Numerical results for Ωi j (s) based on the T -matrix of
Ref. [40] are shown in Fig. 1. One observes in particular
the signature of the f0(500) or σ -meson, i.e. the broad bump
in the imaginary part of Ω11(s) below 1 GeV, accompanied
by a quick variation of the real part, which clearly cannot be
parametrized by a Breit–Wigner form. For an earlier discus-
sion about this fact see Ref. [22].

Using TR = Ω tR Ω t and V0GΩ = Ω − 1, which fol-
lows from inserting Eqs. (9) into (13), one obtains a Bethe–
Salpeter equation for tR ,

tR = VR + VR (GΩ) tR . (16)

Note that Eq. (16) does not depend on V0 explicitly. It appears
only implicitly, since the loop operator G, describing the free
propagation of the two-meson states, needs to be replaced by
the dressed loop operator (GΩ), which describes the prop-
agation of the two-meson state in the presence of the inter-
action T0, in order to preserve unitarity. The discontinuity of
this self-energy matrix Σ = GΩ is given by

disc Σi j (s) = Ω
†
im(s) discGmm(s)Ωmj (s) . (17)
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Fig. 1 Real (blue) and imaginary (red) parts of the Omnès matrix elements Ω11, Ω12, Ω21, and Ω22

The discontinuities of the loop functions for the two–body
channels and the 4π channel were given in Eqs. (4) and (5),
respectively. Equation (17) allows us to write Σ as a once-
subtracted dispersion integral,

Σi j (s) = Σi j (0) + s

π

∫
dz

z

disc Σi j (z)

z − s − iε
. (18)

The resulting self-energy functions Σi j (s) are displayed in
Fig. 2. The subtraction constants can be absorbed in a redef-
inition of the yet undefined potential VR . Please observe that
the component Σ33 looks very different for the two different
model assumptions employed. For example, the self energy
from σσ intermediate states rises very quickly right from the
4π threshold, while the one for ρρ sets in significantly later.
This difference reflects that the σ decays into two pions in an
S-wave, while the ρ decays in a P-wave. On the other hand,
since the discontinuity ofG33 enters in the expression for Σ33

only as the integrand, this component of the self energy is not
very sensitive to the details of the concrete parametrizations
employed for the spectral functions.

The full solution for the scattering matrix is thus given by

T = T0 + Ω [1 − VRΣ]−1 VRΩ t . (19)

In order to obtain a parametrization for the form factor, we
adapt the P-vector formalism [41] to the system at hand. The
isoscalar scalar form factor Γ s

i is written as

Γ s
i = Mi + Ti jG j j M j , (20)

where Mi is an analytic term describing the transition from
the source to the channel i . Inserting the parametrization of
Eq. (19) we obtain, after some straightforward algebra,

Γ s
i = Ωim [1 − VRΣ]−1

mn Mn . (21)

As T0 captures the physics in the ππ and K K̄ channels at
energies below 1 GeV including the f0(500), the f0(980),
and the impact of the corresponding left-hand cuts (left-hand
cuts in the other channel(s) are neglected by construction), the
potential VR should predominantly describe the resonances
above 1 GeV. In order to reduce their impact at low energies,
we subtract VR at s = 0 and arrive at

(VR)i j =
∑

r

gri
s

m2
r

(
m2

r − s
) grj . (22)
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Fig. 2 Real (blue) and imaginary (red) parts of the self-energy functions Σ11, Σ12 = Σ21, Σ22, and Σ33, using the Omnès matrix displayed in
Fig. 1. Note that Σ33 is a once-subtracted dispersion integral over the four-particle phase space factor taken as a σσ (solid) or a ρρ (dashed) state

The bare resonance masses,mr , as well as the bare resonance–
channel coupling constants, gri , are free parameters that need
to be determined by a fit to data. The subtraction constants
are effectively absorbed into T0 that by construction captures
all physics close to s = 0.

The most general ansatz for M reads

Mi = ci + γi s + · · · −
∑

r

gri
s

m2
r − s

αr , (23)

where the parameters ci = Γ s
i (0) provide the normaliza-

tions of the different form factors. Here the isospin Clebsch–
Gordan coefficients were absorbed into the definition of the
form factors. This means explicitly

Γ s
2 → 2√

3
Γ s

2 and M2 → 2√
3
M2 , (24)

while for the third channel we absorb these factors into the
coupling constants. The bare resonance masses and the cor-
responding couplings gri are the same as before. The parame-
ters αr , which quantify the resonance–source couplings, and
the slope parameters γi are additional free parameters.

This completely defines the formalism. Clearly, the num-
ber of inelastic channels can be extended in a straightforward
way, however, for the concrete application studied in the fol-
lowing section, three channels turn out to be sufficient as
long as no exclusive data for additional channels become
available.

3 Application: B̄0
s → J/ψ π+π− and

B̄0
s → J/ψ K+K−

3.1 Parametrization of the decay amplitudes

As an example, we now apply the formalism introduced in the
previous section to the decays B̄0

s → J/ψ π+π−(K+K−),
analyzing data taken by the LHCb collaboration [28,29]. The
dominant tree-level diagram for the corresponding weak tran-
sition on the quark level is displayed in Fig. 3.

It has been argued previously [20,42] that the S-wave pro-
jection of the appropriate helicity-0 amplitude for B̄0

s →
J/ψ M1M2 transitions are proportional to the correspond-
ing strange scalar form factors of the light dimeson sys-
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Fig. 3 Tree-level W -exchange diagram for the decay process B̄0
s →

J/ψ π+π−. The hadronization of the s̄s quark pair into π+π− (S-wave
dominated) is given by the scalar form factor Γ s

π

tem M1M2; in particular, there are chiral symmetry relations
between the different dimeson channels that fix the relative
strengths to be equal to those of the matrix elements in Eq. (1)
at leading order in a chiral expansion [42]. We conjecture here
that the same will still hold true for the inclusion of the effec-
tive third (4π ) channel. In this sense, the B̄0

s decays allow to
test the pion and kaon strange scalar form factors, up to a
common overall normalization.

A previous dispersive analysis [20], which considered the
ππ–K K̄ coupled-channel system, worked well in the energy
region up to 1.05 GeV. However, due to higher resonances
and the onset of additional inelasticities the framework could
not be applied beyond this energy. Our new parametrization
allows us to overcome this limitation, while it guarantees
at the same time a smooth matching onto the amplitudes
employed in Ref. [20]. The data are provided in terms of
angular moments Y 0

L(
√
s), which are given as angular aver-

ages of the differential decay rates

〈
Y 0
L

〉
=
∫

d cos Θ
dΓ

d
√
s d cos Θ

Y 0
L(cos Θ) , (25)

where Θ is the scattering angle between the momentum of
the dipion system in the B̄0

s rest frame and the momentum of
one of the pions. We express the decay amplitude in terms of
the partial-wave-expanded helicity amplitudes HL

λ , where L
denotes the angular momentum of the pion or kaon pair, and
λ = 0, ‖,⊥ refers to the helicity of the J/ψ . The angular
moments are then given as

〈
Y 0

0

〉
= pψ pπ√

4π

{ ∣∣∣H0
0

∣∣∣
2+

∑

λ=0,‖,⊥

(∣∣∣H1
λ

∣∣∣
2+

∣∣∣H2
λ

∣∣∣
2
)}

(26)

and

〈
Y 0

2

〉
= pψ pπ√

4π

{
2Re

[
H0

0

(
H2

0

)∗]

+ 1√
5

[
2
∣∣∣H1

0

∣∣∣
2 −

∣∣∣H1‖
∣∣∣
2 −

∣∣∣H1⊥
∣∣∣
2
]

+
√

5

7

[
2
∣∣∣H2

0

∣∣∣
2 +

∣∣∣H2‖
∣∣∣
2 +

∣∣∣H2⊥
∣∣∣
2
]}

, (27)

for the moments of relevance for this work; see Refs. [20,
42] for details. In addition to the pion momentum in the
dipion rest frame pπ introduced earlier, we also use the J/ψ
momentum in the B̄0

s rest frame, pψ = λ1/2(s, M2
ψ,m2

B)/

(2mB).
The scalar helicity amplitude H0

0 can be related to the
scalar isoscalar form factor Γ s

i as

H0
0 = N pψmBΓ s

i , (28)

where the normalization factor N absorbs weak coupling
constants and the pertinent Wilson coefficients, as well as
meson mass factors and decay constants [20,42]. Here i
denotes the relevant channel. For the form factors we use the
parametrization introduced in Sect. 2. Since the main focus
of our analysis lies on the S-waves, we approximate the P-
and D-waves as Breit–Wigner functions [43],

HL
λ√

2L + 1
= wL

λ

∑

R

hR
λ eiφ

R
λ AR

× F (J )
B F (L)

R

( pψ

mB

)J( pπ√
s

)L
, (29)

for L ≥ 1. The free parameters introduced here are the
strength hR

λ of the resonance R with helicity λ, its phase
φR

λ , and a total rescaling factor wL
λ for the helicity amplitude

HL
λ . The factors F (J )

B and F (L)
R are the Blatt–Weisskopf fac-

tors of Eq. (8). Two different scales are employed therein:
while F (J )

B depends on the argument z = r2
B p2

ψ with rB =
5.0 GeV−1, for F (L)

R we use z = r2
R p2

π with rR = 1.5 GeV−1

as in Eq. (8) [36]. The position as well as width of the cor-
responding resonance is then included in the Breit–Wigner
function

AR(s) = 1

m2
R − s − imR ΓR(s)

, (30)

with an energy-dependent width ΓR(s) (7). Since the only
interference term in the angular moments considered,
Eqs. (26) and (27), is the S-D-wave interference in

〈
Y 0

2

〉
,

our fits are only sensitive to the relative phase motion of H0
0

and H2
0. To reduce the total number of free parameters for

all partial waves except the S-wave, we fix the resonance
masses mR as well as their respective widths to the central
values found in Refs. [28,29]. Furthermore we fix both hR

λ as
well as φR

λ with λ =‖,⊥ to the central values of the LHCb
fits. However, since the phase motion of our S-wave will be
different from the one of the LHCb parametrization [20], we
allow wR

λ to vary. For the helicity amplitudeH2
0 we keep both

hR
0 as well as φR

0 flexible. To avoid unnecessary parameters
we set w2

0 = 1. The number of free parameters is discussed
in more detail in Sect. 3.2.
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3.2 Fits to the decay data

In this section we discuss the fit using the form factor
parametrization of Eq. (21) to the data measured for B̄0

s →
J/ψπ+π− [28] and B̄0

s → J/ψK+K− [29], which are pre-
sented as angular moments related to the helicity amplitudes
via Eqs. (26) and (27). Note that these angular moments have
an arbitrary normalization and need to be rescaled to their
physical values. The integrated partial width is given by

Γ
(
B̄0
s → J/ψ h+h−) =

∫
d
√
s d cos Θ

dΓ

d
√
s d cos Θ

= √
4π

∫
d
√
s
〈
Y 0

0

〉
. (31)

The correctly normalized angular moments,
〈
Y 0
L

〉
norm, can be

obtained from those published,
〈
Y 0
L

〉
LHCb, by

〈
Y 0
L

〉

norm
= Γ

(
B̄0
s → J/ψ h+h−)

√
4π

∫
d
√
s
〈
Y 0

0

〉
LHCb

〈
Y 0
L

〉

LHCb
. (32)

We determine the partial decay rates Γ
(
B̄0
s → J/ψ h+h−)

via the total decay rate ΓB̄0
s

= τ−1
B̄0
s

with [5]

τB̄0
s

= (1.509 ± 0.004) 10−12 s (33)

and the branching ratios [5]

B
(
B̄0
s → J/ψ π+π−) = (2.09 ± 0.23) × 10−4 ,

B
(
B̄0
s → J/ψ K+K−) = (7.9 ± 0.7) × 10−4 . (34)

The dispersive approach using the Omnès matrix already
captures the physics of the f0(500) and f0(980) resonances.
In order to extend the description further, we use NR addi-
tional resonances. As outlined above, the S-wave contains in
total up to (Nc + Ns +1)NR +2NcNs parameters, where Nc

(Ns) denotes the number of channels (sources) included; in
this study Ns = 1, Nc = 3, and NR is either 2 or 3, depend-
ing on the fit. The last term in the sum above comes from
the non-resonant couplings of the system to the source. The
number of those parameters can be reduced from the obser-
vation that the normalizations of the pion and the kaon form
factors can be fixed to c1 = 0 and c2 = 1 [20]. Since the
four-pion channel is expected to couple similarly weakly to
an s̄s source as the two-pion one (given OZI suppression at
s = 0), we also set c3 = 0. Thus the only free parameter from
the constant terms in the sources Mi can be absorbed into the
overall normalization N introduced in Eq. (28). Below we
present fits without (γi = 0, resulting in 5NR parameters) as
well as with linear terms in the production vertex defined in
Eq. (23) (γi 
= 0, providing three more free constants).

For the decay B̄0
s → J/ψ ππ the dipion system is in

an isoscalar configuration; due to Bose symmetry the pions
can therefore only emerge in even partial waves. Since we
restrict ourselves to a precision analysis of the S-wave, we
adopt the D-waves of Ref. [28] and accordingly include two
resonances, namely f2(1270) and f ′

2(1525). For the 0 polar-
ization we introduce four new parameters given by the ampli-
tude hR

0 and φR
0 , while we fix w0

0 = 1. For the other two
helicity amplitudes we constrain hR

λ and φR
λ while keeping

w0
λ variable. This gives another two free parameters. In total

we obtain six additional free parameters.
Since K+ and K− do not belong to the same isospin mul-

tiplet, they do not follow the Bose symmetry restrictions.
Thus the P-wave in the decay B̄0

s → J/ψ K+K− is non-
negligible and, in fact, dominant. It shows large contributions
of the φ(1020) as well as of the φ(1680). Since the P-wave
does not interfere with S- or D-waves in the angular moments〈
Y 0

0

〉
and

〈
Y 0

2

〉
, we adopt the parameters of LHCb [29]. In order

to allow for some flexibility, we also fit w1
λ, resulting in three

parameters. The D-wave includes the resonances f2(1270),
f ′
2(1525), f2(1750), and f2(1950). For λ = 0 we fit both

hR
0 as well as φR

0 with fixed w2
0 = 1, resulting in eight free

parameters. For the other helicity amplitudes we stick to the
LHCb parametrization and keep w2

λ free, which results in
two additional fit parameters. Therefore in total we have 13
additional free parameters for this channel.

All in all we have 5NR +20(+3) free parameters for γi =
0 (γi 
= 0). Clearly this number is larger than the number
of parameters of two single-channel Breit–Wigner analyses,
however, the advantage of the approach advocated here is that
it allows for a combined analysis of all channels in a way that
preserves unitarity, and for a straightforward inclusion of the
4π channel in the analysis. Note that the scalar resonances
studied here are known to have prominent decays into four
pions [5]; cf. also theoretical approaches modeling some of
them as dynamically generated ρρ resonances [31–34].

The LHCb collaboration extracted two additional S-
wave resonances from their data [28], namely f0(1500) and
f0(1790). Since there is no f0(1790) in the listings of the
Review of Particle Physics by the PDG [5], we use the name
f0(2020) for the higher state, in particular since the parame-
ters we extract below are close to those reported for that reso-
nance. The first fit includes our parametrization with NR = 2
and γi = 0 (Fit 1). To test the stability of this solution, we
also include a fit with NR = 2 and γi 
= 0 (Fit 2) as well as a
fit with NR = 3 and γi = 0 (Fit 3). In order to obtain an esti-
mate of the systematic uncertainty, we repeat each fit with two
different assumptions about the third channel, which we take
to be dominated by either σσ or ρρ. The respective reduced
χ2 of the best fit results are listed in Table 1. We show the
corresponding angular moments in Figs. 4 (ρρ) and 5 (σσ ).
In principle we could have also investigated mixtures of σσ

and ρρ intermediate states or parametrizations representing
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Table 1 Reduced χ2 for the best fits. See main text for details

χ2/ndf σσ ρρ

Fit 1 429.9
384−30−1 = 1.22 376.2

384−30−1 = 1.07

Fit 2 413.3
384−33−1 = 1.18 361.4

384−33−1 = 1.03

Fit 3 366.9
384−35−1 = 1.05 335.4

384−35−1 = 0.96

the channels π(1300)π or a1(1260)π reported to be relevant
for the f0(1500) [5], however, since with the given choices
we already find excellent fits to the data although the cor-
responding two-point function Σ33 look vastly different for
the σσ and the ρρ case (cf. the lower right panel of Fig. 2),
studying other possible decays will be postponed until data
for further exclusive final states become available.

We note first of all that the ρρ fits have a lower reduced
χ2 compared to the σσ fits. Allowing for a linear term in the
source further improves the data description, as witnessed by
the differences of Fits 1 and 2. The overall best reduced χ2

is obtained by including another, third, resonance.
For the ρρ fit (see Fig. 4) we see that Fit 2 improves the

description of
〈
Y 0

0

〉
ππ

in the energy region between 1.6 and
2.0 GeV. The biggest change between Fit 3 and the other
ones is given by the better description of the high-energy tail
in the decay B̄0

s → J/ψK+K−.
For the σσ fit, Fig. 5, we observe a similar picture. Fit 2

provides a very slight overall improvement of Fit 1. However,
here the main difference between Fit 3 and the rest resides in
the better description of the f0(1500) especially for the decay
B̄0
s → J/ψ π+π−, while the high-energy tail of B̄0

s →
J/ψ K+K− remains nearly untouched.

For a better comparison of the different fits we discuss the
resulting form factors Γ s

i in some detail. We begin by com-
paring the strange scalar pion form factor Γ s

1 as shown in
Fig. 6. In all fits three resonances are clearly visible, namely
the f0(980), f0(1500), and a broad structure around 2 GeV
related to the f0(2020) resonance. Furthermore we also know
that the input contains the broad f0(500) resonance. Fit 3 con-
tains an additional resonance: in the case of the ρρ fit, it has its
pole around 2.4 GeV and is relatively narrow. Notice that the
maximum energy available for the ππ system in the decay
studied is 2.27 GeV, thus this additional resonance in fact
only contributes with its low-energy tail, giving small correc-
tions for the high-energy parts of the angular moments. This
is clearly visible in

〈
Y 0

0

〉
KK at high energies in Fig. 4, where

Fit 3 can describe the last data points better than Fits 1 and 2.
In comparison we see that the σσ fit lacks any such high-
energy resonance. For this fit the difference between Fit 3
and the rest is only visible in the argument of Γ s

1 , showing a
shift in the range 1.5 . . . 2 GeV. This improves the description
of
〈
Y 0

2

〉
ππ

near the f0(1500) resonance. From this discussion
it becomes clear that the data analyzed here do not allow

us to extract information on any further resonance beyond
f0(500), f0(980), f0(1500), and f0(2020).

By comparing the extracted kaon form factors Γ s
2 in Fig. 7

we see very similar features as for the pion form factor. How-
ever, the f0(1500) couples more weakly to the K K̄ channel
than to ππ , which is in line with what is reported about this
state by the PDG [5]. The impact of the additional resonance
in Fit 3 that appears outside the accessible data range is even
more pronounced.

In Fig. 8 we compare the form factor of the additional,
effective 4π , channel Γ s

3 . We see that the results of the fits
with the 4π channel parametrized as ρρ differ significantly
from the ones employing the σσ variant. Moreover, also
Fits 1–3 differ strongly from each other, even in the kine-
matic regime that can be reached in B̄0

s decays. To further
constrain these amplitudes it is compulsory to include data
on B̄0

s → J/ψ4π in the analysis, which is so far unavailable
in partial-wave-decomposed form [44].

Finally in Fig. 9 we show the phases, δ, and inelasticities,
η, that result for T11 in the different fits, where we use the
standard parametrization

T11 =
(
ηe2iδ − 1

)
/(2iσπ) . (35)

In the figure we also show the two-channel input phase δ0

and inelasticity η0 introduced in Eq. (10) as black solid lines.
The comparison of the different lines demonstrates that the
high-energy extension maps smoothly onto the low-energy
input, as it should. In the phases one clearly sees the effect
of the f0(1500), which leads to a deviation of the phase of
T11 from the input phase. In the inelasticity the full model
starts to deviate from the input already at about 1.1 GeV as
a consequence of the inclusion of the 4π channel. As in the
phase the f0(1500) also leads to a pronounced structure in
the inelasticity. It is interesting to observe that neither in the
phase nor in the inelasticity there is a clear imprint of the
f0(2020), which can be understood from its small coupling
to the two-pion channel.

In Fig. 9 we also show a comparison of our phases and
inelasticities to those extracted in Ref. [45] (plotted as purple
dashed lines) and the preferred solution [7] of the CERN–
Munich ππ experiment [46] (data points with error bars). As
one can see in the phase shifts, all analyses agree up to about
1.5 GeV. However, the effect of the f0(1500), present in all
analyses, is very different. Also for the inelasticity there is
no agreement between our solution and those from the two
other sources, but here the deviation starts basically with the
onset of the K̄ K channel; for a more detailed discussion
of the current understanding of the inelasticity in the scalar
isoscalar channel, we refer to Ref. [11]. Note that there is
also no agreement between the amplitudes of Ref. [7] and
Ref. [45]. Thus, at this time one is to conclude that T11 above
1.1 GeV is not yet known.
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Fig. 4 Angular moments
〈
Y 0

0

〉
and

〈
Y 0

2

〉
for the decay B̄0

s →
J/ψ π+π− (top two) and B̄0

s → J/ψ K+K− (bottom four)
with an effective ρρ channel. The picture shows Fit 1 in blue,

Fit 2 in red, and Fit 3 in green. On the lower axis we show
the fit residuals defined by χ = (〈

Y 0
L

〉
measured − 〈

Y 0
L

〉
fit

)
/σmeasured

In a similar way, we can also compare the extracted
ππ → K K̄ amplitude T12 with its absolute value g as well
as its phase ψ , which are both shown in Fig. 10. While the
resonance effects of the f0(1500) look qualitatively well-
described by our high-energy extension, we see some differ-
ences to the actual data [47, 48]. Note that the shown results
are a prediction based solely on the B̄0

s decay data and could
be improved upon by explicitly taking the phase motion into
account in the fit.

4 Extraction of resonance poles

In this section we present the extraction of resonance poles
in the complex s-plane from the parametrizations discussed
above. Traditionally those are given in terms of a mass M
and a width Γ , connected to the pole position sp via [5]

√
sp = M − i

Γ

2
. (36)
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Fig. 5 Angular moments
〈
Y 0

0

〉
and

〈
Y 0

2

〉
for the decay B̄0

s →
J/ψ π+π− (top two) and B̄0

s → J/ψ K+K− (bottom four)
with an effective σσ channel. The picture shows Fit 1 in blue,

Fit 2 in red, and Fit 3 in green. On the lower axis we show
the fit residuals defined by χ = (〈

Y 0
L

〉
measured − 〈

Y 0
L

〉
fit

)
/σmeasured

For narrow resonances located far from relevant thresh-
olds, these parameters agree with the standard Breit–Wigner
parameters. However, for broad and/or overlapping states,
significant deviations can occur between the parameters
derived from the pole location and those from Breit–Wigner
fits. Since the analytic continuation to different Riemann
sheets needs the on-shell scattering T -matrix as input, which,
due to left-hand cuts induced by crossing symmetry, has a
complicated analytic structure that cannot be deduced from
the phase shifts straightforwardly, we use the framework of

Padé approximants to search for the poles on the nearest
unphysical sheets. For a thorough introduction into this topic,
see e.g. Refs. [49–51].

As the form factor Γ s
1 (s) (Fig. 6) as well as T11(s) (Fig. 9)

are smooth functions when moving from the upper com-
plex s-plane of the first Riemann sheet to the lower com-
plex s-plane of the neighboring unphysical sheet, we may
expand both around some properly chosen expansion point s0

according to
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Fig. 6 Modulus (left) and phase (right) of the pion form factor Γ s
1 for

the fits with an additional ρρ (top) and σσ (bottom) channel. The input
scalar isoscalar scattering phase δ0 is depicted in black. Fit 1 is shown

in blue, Fit 2 in red, and Fit 3 in green. The dotted vertical lines mark
the kinematic upper limit for

√
s in the B̄0

s decay

PN
M (s, s0) =

∑N
n=0 an(s − s0)

n

1 + ∑M
m=1 bm(s − s0)m

. (37)

The denominator allows for the inclusion of M resonance
poles lying on the unphysical Riemann sheet. In the following
we set M to 1, allowing for the extraction of the resonance
that lies closest to the expansion point s0. The numerator
ensures the convergence of the series to the form factor or
the scattering matrix for N → ∞. In order to obtain the
complex parameters an and bn , we fit Padé approximants to
both the form factor and the scattering matrix simultaneously.
As both T11 and Γ s

1 have the same poles, the parameters bn
are the same for both, however, the an are different. Note
furthermore that the a0 parameters are constrained by Γ s

1 (s0)

or T11(s0), respectively.
For near-threshold poles such as the f0(500) and f0(980),

we perform the Padé approximation not in s, but in the con-
formal variable

w(s) =
√
s − 4M2

π −
√

4M2
K − s

√
s − 4M2

π +
√

4M2
K − s

, (38)

instead [49]. This variable transformation maps the upper
half complex s-plane of the first Riemann sheet to the inner
upper half of a unit circle in the complex w plane, without
introducing any unphysical discontinuities. The lower half
of the second Riemann sheet is then mapped onto the lower
half of the unit circle in the complex w-plane. This allows us
to search for the two lowest poles within a circle around the
expansion point s0, without being limited by the proximity
of the ππ and K K̄ thresholds, which are automatically taken
care of.

The statistical uncertainty is obtained through a bootstrap
analysis of the fit results presented in Sect. 3.2. The system-
atic uncertainty coming from the Padé approximation on the
other hand is estimated by [50]

ΔN =
∣∣∣∣
√
sNp −

√
sN−1
p

∣∣∣∣ , (39)

where sNp denotes the pole extracted by employing PN
1 (s, s0).

As in principle the results still depend on the expansion
point s0, we proceed as follows. We first calculate Padé
approximants for a varying s0; near the true pole position,
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Fig. 7 Modulus (left) and phase (right) of the kaon form factor Γ s
2 for the fits with an additional ρρ (top) and σσ (bottom) channel. Fit 1 is shown

in blue, Fit 2 in red, and Fit 3 in green. The dotted vertical lines mark the kinematic upper limit for
√
s in the B̄0

s decay

the extracted Padé pole stabilizes. Finally we choose the s0

that minimizes ΔN for the maximum order of N employed.
Corresponding residues of the poles are then described by

the coupling strength gRππ of the resonance R to ππ and the
coupling gRss of the s̄s source to the resonance R. They are
defined by the near-pole expansions [27,52]

lim
s→sp

T11(s) = rT
sp − s

= g2
Rππ

32π(sp − s)
,

lim
s→sp

Γ s
1 (s) = rΓ

sp − s
= − gRππgRss√

3(sp − s)
. (40)

The extracted poles and residues for the resonances are shown
in Table 2.

As we did not include any variation of the input phases,
we see that the statistical uncertainty coming from the fit
parameters of the higher-mass resonances has only a small
impact on the poles of f0(500) and f0(980). In fact the uncer-
tainty is dominated by the systematic error coming from the
Padé expansion. At higher energies the statistical uncertainty
becomes more significant.

However, overall we have strong systematic effects due to
the assumptions on the parametrization such as the number
of additional resonances and the linear terms in the poly-
nomials. As we do not have a criterion that allows us to
decide which fits we should prefer, we keep them all and per-
form a conservative estimate of the uncertainty: we choose
a range for the resonance parameters such that all poles
with their corresponding errors are included. The quoted
mean is the middle of the resulting box as illustrated in
Fig. 11.

In order to see whether the pole extraction leads to sensi-
ble results, we first compare our findings for the f0(500) and
f0(980) to the literature [27,40,52,53]. In our parametriza-
tion the f0(500) has a mass of (442 ± 2) MeV with a width
of (512 ± 10) MeV. For the f0(980) we find a mass of
(996 ± 6) MeV and a width of (57 ± 11) MeV. As Ref. [40]
serves as our input below 1 GeV, their pole positions are
taken as a benchmark, which lie at (441 − i 544/2) MeV and
(998 − i 42/2) MeV, respectively. While the real parts are
therefore perfectly consistent, we see that our parametriza-
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tion slightly shifts the imaginary parts of the poles with
respect to the input.

Furthermore we can compare the coupling strengths gRππ

and gRss to the ones found in Ref. [27], which we adjust for
the fact that the latter are quoted for the complex conjugate
poles. For the f0(500), we obtain

∣∣g f0(500)ππ

∣∣ = (4.53 ± 0.03) GeV,

arg
(
g f0(500)ππ

) = (−73 ± 2)◦ ,
∣∣g f0(500)ss

∣∣ = (11 ± 2) MeV,

arg
(
g f0(500)ss

) = (90 ± 7)◦ . (41)

This is to be compared to
∣∣g f0(500)ππ

∣∣ = 4.76 GeV and
arg

(
g f0(500)ππ

) = −76.4◦ as well as
∣∣g f0(500)ss

∣∣ =(
17 ± 5+1

−7

)
MeV and arg

(
g f0(500)ss

) = 80.2◦ [27]. With

the exception of |g f0(500)ππ |, which appears to be shifted by
about 5%, these numbers are consistent with our findings.
For the f0(980) pole, we find

∣∣g f0(980)ππ

∣∣ = (3.1 ± 0.5) GeV,

arg
(
g f0(980)ππ

) = (−81 ± 5)◦ ,
∣∣g f0(980)ss

∣∣ = (147 ± 14) MeV,

arg
(
g f0(980)ss

) = (9 ± 4)◦ , (42)

in comparison to the reference values
∣∣g f0(980)ππ

∣∣ =
2.80 GeV, arg

(
g f0(980)ππ

) = −85.3◦,
∣∣g f0(980)ss

∣∣ =(
146 ± 44+14

−7

)
MeV, and arg

(
g f0(980)ss

) = 14.2◦ [27]. In

this case therefore all parameters are consistent within uncer-
tainties, with a small tension for the argument of g f0(980)ss .
In particular, we reproduce the well-known hierarchy in the
couplings to the s̄s current: the f0(980) couples to the strange
scalar current an order of magnitude more strongly than
the f0(500) does. Overall we find good agreement of our
pole parameters for f0(500) and f0(980) with the literature.
We see that, a posteriori, the subtraction of the additional
term in the scattering amplitude that introduces the explicit
resonances, cf. Eq. (22), suppresses its influence on the
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Fig. 9 Scalar isoscalar pion–pion scattering phase shift δ (left) and
inelasticity η (right) defined by the ππ S-wave amplitude T11 =(
ηe2iδ − 1

)
/(2iσπ ) for the fits with an additional ρρ (top) and σσ

(bottom) channel. Fit 1 is shown in blue, Fit 2 in red, Fit 3 in green,

and the input δ0 and η0 [40] in black. The purple dashed line shows the
K -matrix solution of Ref. [45]. In addition we plot the preferred phase
shifts and inelasticities [7] of the CERN–Munich ππ experiment [46],
which are denoted by data points with error bars

lower-mass poles sufficiently. The agreement between the
reference parameters and ours gives us confidence for an
extraction of the higher poles via Padé approximants.

As a reference for the higher resonance poles, we com-
pare to the Breit–Wigner parameters of LHCb [36]. For the
f0(1500), the collaboration quotes a resonance with mass
(1465.9 ± 3.1) MeV and width (115 ± 7) MeV. The pole we
extract corresponds to a mass of (1465 ± 18) MeV and a
width of (100 ± 19) MeV, which lies within the previously
quoted uncertainties of LHCb. The uncertainties we find are
significantly larger: this is most likely due to the more flexible
range of resonance parametrizations we employ; the masses
and widths extracted using Breit–Wigner functions only are
probably too optimistic. In addition we can extract the cor-
responding residues, which are given by

∣∣g f0(1500)ππ

∣∣ = (2.9 ± 1.0) GeV,

arg
(
g f0(1500)ππ

) = (−42 ± 4)◦ ,
∣∣g f0(1500)ss

∣∣ = (125 ± 76) MeV,

arg
(
g f0(1500)ss

) = (167 ± 21)◦ . (43)

The main uncertainties stem from the assumptions made on
the parametrization of the form factor, such as the number
of resonances and the additional channels. Nevertheless, we
note that, despite a large uncertainty, the central value for∣∣g f0(1500)ss

∣∣ seems to be comparable to
∣∣g f0(980)ss

∣∣. For fur-
ther comparison, according to Refs. [27,54] the a0(1450)

couples to an isovector scalar ūd current with
∣∣ga0(1450)ud

∣∣ =
(284 ± 54) MeV, which is of the same order as our extracted
value for g f0(1500)ss . The precise relation between the two
couplings might be used to elucidate the structure of a scalar
nonet around 1.5 GeV, which is however beyond the scope
of the present study.

For broad, overlapping resonances a definition of branch-
ing ratios is not straightforward. Here we follow a prescrip-
tion originally proposed to define the width of f0(500) →
γ γ [55] by using the narrow-width formula of the form

BR→ππ = ΓR→ππ

ΓR
= |gRππ |2

32πmRΓR

√

1 − 4M2
π

m2
R

, (44)
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Fig. 10 Scalar isoscalar ππ → K K̄ scattering phase shift ψ (left) and
absolute value g (right) defined by the S-wave amplitude T12 = g eiψ

for the fits with an additional ρρ (top) and σσ (bottom) channel. Fit 1

is shown in blue, Fit 2 in red, Fit 3 in green, and the input g0 and ψ0
[40] in black. For comparison we show the amplitude analyses of Refs.
[47] (open diamonds) and [48] (filled stars)

with the residues as coupling constants. With this we can
deduce a branching ratioB f0(1500)→ππ = (58±31)%, where
the main uncertainty stems from the difference between Fits 1
and 2 with an additional σσ channel compared to the rest
of the fits. This is compatible with the (much more pre-
cise) branching ratio quoted by the PDG, B f0(1500)→ππ =
(34.9 ± 2.3) % [5].

The last resonance identified by LHCb as the f0(1790) has
a mass of (1809 ± 22) MeV with a width of (263 ± 30) MeV.
As we do not impose a Breit–Wigner line shape, our fits
seem to prefer a significantly heavier and much broader
resonance with mass (1910 ± 50) MeV and a width of
(398 ± 79) MeV. Note that for the average we neglected
the pole extracted from Fit 1 with the ρρ parametrization,
since this fit describes the prominent resonance structure in
the ππ spectrum less accurately than the rest of the fits. As
the pole position of the higher pole extracted in our anal-
ysis is in better agreement with the f0(2020) of the PDG
(which quotes a mass of (1992 ± 16) MeV and a width of
(442 ± 60) MeV [5]), we will refer to it as such in the follow-
ing. Furthermore we see that this pole allows for a stronger
variance in the different fits. As its line shape does not only

depend on the interference with other resonances, but also
on further inelasticities, additional information about these
channels would be appreciable.

Finally, we can also constrain the coupling strengths of
this resonance to ππ and s̄s, which are given as

∣∣g f0(2020)ππ

∣∣ = (1.2 ± 0.9) GeV,

arg
(
g f0(2020)ππ

) = (2 ± 89)◦ ,
∣∣g f0(2020)ss

∣∣ = (1019 ± 786) MeV,

arg
(
g f0(2020)ss

) = (−72 ± 149)◦ . (45)

As we can see the coupling strength to the ππ -channel is con-
sistent with 0 within 1.5σ . The big uncertainty also strongly
influences the extraction of g f0(2020)ss , which in addition is
affected by a strong systematic uncertainty coming from the
parametrization and can hardly be constrained in a meaning-
ful manner. Using the narrow-width formula of Eq. (44), the
branching ratio into ππ is B f0(2020)→ππ = (1.3 ± 1.8)%,
which is obviously also consistent with zero. No meaningful
branching ratios are quoted by the PDG in this case.

Since the bare resonance coupling strengths gri as well
as the bare resonance masses mr are source-independent,
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Table 2 Padé poles for f0(500), f0(980), and f0(1500) for N = 5, as well as f0(2020) for N = 6. The error is the uncorrelated sum of statistical
and systematic uncertainty

Fit
√
s0

GeV Re
√
sp/MeV −2 × Im

√
sp/MeV |rT |/GeV2 arg(rT ) |rΓ |/GeV2 arg(rΓ )

f0(500) ρρ 1 0.481 441 ± 1 504 ± 2 0.204 ± 0.002 −145 ± 1 0.0309 ± 0.0028 −160 ± 3

f0(500) σσ 1 0.466 440 ± 1 521 ± 1 0.205 ± 0.001 −149 ± 1 0.0254 ± 0.0010 −169 ± 2

f0(500) ρρ 2 0.483 441 ± 1 503 ± 1 0.204 ± 0.001 −145 ± 1 0.0275 ± 0.0010 −159 ± 2

f0(500) σσ 2 0.486 443 ± 1 521 ± 2 0.205 ± 0.002 −147 ± 1 0.0279 ± 0.0032 −161 ± 4

f0(500) ρρ 3 0.481 441 ± 2 505 ± 3 0.202 ± 0.002 −145 ± 2 0.0279 ± 0.0039 −159 ± 4

f0(500) σσ 3 0.485 442 ± 1 510 ± 1 0.203 ± 0.001 −146 ± 1 0.0284 ± 0.0023 −161 ± 3

f0(980) ρρ 1 0.941 998 ± 2 65 ± 3 0.099 ± 0.006 −164 ± 3 0.258 ± 0.016 107 ± 4

f0(980) σσ 1 0.941 998 ± 1 48 ± 2 0.082 ± 0.007 −164 ± 5 0.258 ± 0.019 109 ± 5

f0(980) ρρ 2 0.941 1001 ± 2 65 ± 3 0.114 ± 0.011 −160 ± 6 0.270 ± 0.020 109 ± 5

f0(980) σσ 2 0.941 998 ± 1 50 ± 2 0.082 ± 0.006 −166 ± 5 0.249 ± 0.014 108 ± 4

f0(980) ρρ 3 0.941 993 ± 3 65 ± 3 0.094 ± 0.005 −168 ± 3 0.261 ± 0.012 103 ± 3

f0(980) σσ 3 0.941 998 ± 2 60 ± 2 0.099 ± 0.007 −163 ± 5 0.281 ± 0.016 109 ± 4

f0(1500) ρρ 1 1.459 1460 ± 6 109 ± 7 0.131 ± 0.017 −82 ± 3 0.18 ± 0.03 −53 ± 5

f0(1500) σσ 1 1.449 1456 ± 4 107 ± 8 0.047 ± 0.005 −86 ± 3 0.23 ± 0.02 −74 ± 4

f0(1500) ρρ 2 1.517 1465 ± 4 116 ± 4 0.115 ± 0.007 −86 ± 2 0.18 ± 0.02 −50 ± 2

f0(1500) σσ 2 1.449 1452 ± 5 103 ± 8 0.045 ± 0.005 −82 ± 6 0.23 ± 0.02 −54 ± 6

f0(1500) ρρ 3 1.466 1465 ± 5 105 ± 7 0.097 ± 0.018 −87 ± 3 0.18 ± 0.03 −57 ± 4

f0(1500) σσ 3 1.476 1477 ± 6 90 ± 9 0.097 ± 0.010 −86 ± 7 0.12 ± 0.04 −51 ± 16

f0(2020) ρρ 1 2.145 1996 ± 67 998 ± 163 0.215 ± 0.407 4 ± 82 2.23 ± 0.62 18 ± 15

f0(2020) σσ 1 1.900 1888 ± 9 344 ± 12 0.005 ± 0.002 −104 ± 24 0.48 ± 0.04 106 ± 4

f0(2020) ρρ 2 1.949 1869 ± 9 461 ± 15 0.026 ± 0.013 31 ± 33 0.51 ± 0.06 −10 ± 11

f0(2020) σσ 2 1.900 1908 ± 10 344 ± 19 0.008 ± 0.006 −101 ± 64 0.41 ± 0.10 103 ± 13

f0(2020) ρρ 3 1.949 1919 ± 23 366 ± 47 0.011 ± 0.006 77 ± 51 0.45 ± 0.11 32 ± 15

f0(2020) σσ 3 1.900 1910 ± 50 414 ± 42 0.014 ± 0.016 82 ± 69 0.72 ± 0.34 66 ± 34

we can use the same parameters for any decay with ππ S-
wave final-state interactions and negligible left-hand cuts.
Therefore a simultaneous study of B̄0

s → J/ψππ and B̄0
d →

J/ψππ [56] should be useful to constrain the resonances in
the scalar isoscalar channel further.

5 Summary and outlook

In this article, we have shown that the parametrization of
Ref. [23] for the pion vector form factor can be adapted to the
scalar form factors of pions and kaons, marrying the advan-
tages of a rigorous dispersive description at low energies
with the phenomenological success of a unitary and ana-
lytic isobar model beyond. For the scalar isoscalar channel,
the low-energy part must already be provided in terms of a
dispersively constructed coupled-channel Omnès matrix. We
rely on the conjecture that the resulting strange scalar form
factors can be tested in a simultaneous study of the S-waves
in the helicity amplitudes for the decays B̄0

s → J/ψππ

and B̄0
s → J/ψK K̄ , whose leading angular moments we

can describe successfully. In this way, we have in fact deter-
mined the corresponding strange scalar form factors up to

√
s ≈ 2 GeV, in particular for the pion with rather good accu-

racy. To quantify the uncertainties of the method, we com-
pared fits based on different assumptions, such as different
numbers of resonances as well as different final-state chan-
nels. Although they describe the data almost equally well, we
see a significant systematic uncertainty at higher energies,
which should be reduced significantly, however, once fur-
ther information about the inelastic channels becomes avail-
able. For now, we only included an effective 4π channel
modeled either by ρρ or σσ intermediate states; for a more
detailed description of the branching ratios of the heavier
scalar isoscalar resonances, we might need to include further
inelastic channels such as a1π , ηη, or ηη′.

As the parametrization developed is fully unitary and ana-
lytic, we extracted resonance parameters as pole positions
and residues in the complex energy plane, employing Padé
approximants. In particular, we determined resonance poles
as well as coupling constants for f0(1500) and f0(2020).
While the pole location for the f0(1500) is consistent with
the one derived from the LHCb Breit–Wigner extraction, we
find a significantly shifted pole for the f0(2020). This shift
ought to be tested experimentally in other processes with
prominent S-wave pion–pion final-state interactions. Alter-
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Fig. 11 Poles for the f0(500) (left top), f0(980) (right top), f0(1500)

(left bottom), and f0(2020) (right bottom). We show the three fits with
a σσ channel, namely Fit 1 (red), Fit 2 (green), and Fit 3 (blue), as well

as the fits with the ρρ channel with Fit 1 (cyan), Fit 2 (magenta), and
Fit 3 (orange). The mean values are shown in black

natively – or in addition – we might also include scattering
data at higher energies in the fits explicitly [45,57].
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