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Abstract We consider the mass-radius bounds for spher-
ically symmetric static compact objects in the de Rham-
Gabadadze-Tolley (dRGT) massive gravity theories, free of
ghosts. In this type of gravitational theories the graviton, the
quantum of gravity, may have a small, but non-vanishing
mass. We derive the hydrostatic equilibrium and mass con-
tinuity equations in the Lorentz-violating massive gravity
in the presence of a cosmological constant and for a non-
zero graviton mass. The case of the constant density stars
is also investigated by numerically solving the equilibrium
equations. The influence of the graviton mass on the global
parameters (mass and radius) of these stellar configurations
is also considered. The generalized Buchdahl relations, giv-
ing the upper and lower bounds of the mass-radius ratio are
obtained, and discussed in detail. As an application of our
results we obtain gravitational redshift bounds for compact
stellar type objects in the Lorentz-violating dRGT massive
gravity, which may (at least in principle) be used for obser-
vationally testing this theory in an astrophysical context.
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1 Introduction

Despite its amazing success in explaining gravitational and
cosmological dynamics on scales ranging from the Solar Sys-
tem to the Hubble radius, general relativity was confronted
from its early stages of existence with a plethora of alterna-
tive gravity theories. An interesting but less investigated way
of explaining gravity was related to field theoretical mod-
els of gravity, in which the gravitational interaction, simi-
larly to the other interactions of nature, is mediated by a spin
two particle, called the graviton. The early field theoretical
approaches to gravity were formulated in a flat geometry, and
the first such model was proposed by Fierz and Pauli [1] in
1939. This linear approach to gravity succeeded to give to
the graviton a mass, introduced five degrees of freedom in
the model, and avoided the propagation of the sixth’s one. A
theory of gravitation using a massless tensor field was pro-
posed by Thirring in [2]. In this model the field equations
require a conserved source and admit a gauge-group, while
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the equations of motion of particles are gauge invariant only
if the gauge transformation of the field is supplemented by a
linear coordinate transformation.

An important moment in the development of the massive
gravity theory was represented by the paper [3], where it was
found that there exists a discrete difference between the zero-
mass theories and the very small, but non-zero mass theories
(the vDVZ discontinuity). In this context it is important to
mention that massive gravity is a classical field theory that
does not need to be formulated in terms of the graviton, a par-
ticle mediating the gravitational interaction in a way similar
to the electromagnetic or nuclear interactions. Based on its
transformation properties, a classical gravitational field has
spin two, and it can have a mass that follows from its disper-
sion relation. These properties are general, and they are valid
without the need of introducing a particle representation of
the gravitational interaction. In the following we will use, for
simplicity, the term “graviton” as defined above, and which
does not imply an explicit particle interaction picture. In the
case of gravitation, a comparison of massive and massless
theories with experiment, in particular the perihelion move-
ment of Mercury, did show that the massive gravity theory
must be excluded, and therefore the graviton mass must be
rigorously zero.

A possible way to get around the physical consequences
of the vDVZ discontinuity was proposed in [4], and was
based on the idea that the linearized approximation of the
gravitational field breaks down near massive objects like, for
example, the Sun. Therefore an improved expansion must be
used, which, also including the previously ignored nonlinear
effects, leads to a continuous zero mass limit. Static, spheri-
cally symmetric, and asymptotically flat numerical solutions
of massive gravity with a source were obtained in [5], and
they led to a recovery of the Schwarzschild solution of stan-
dard general relativity via the Vainshtein mechanism. The
massive gravity theory seemed to face insurmountable prob-
lems after the publication of the paper [6], where it was
claimed that no acceptable tensor gravitational theory with
arbitrarily long but finite range could exist. The main points
to support this result are the facts that in the massive version
of the full Einstein theory, there are necessarily six rather
than the five tensor degrees of freedom, the energy has no
lower bound, the infinite-range limit does not exist at all, and
lowest-order forces are the same as in the massive linearized
theory, respectively. The Boulware–Deser (BD) ghost insta-
bility raised serious questions about the viability of any mas-
sive gravity theory.

However, de Rham, Gabadadze and Tolley (dRGT) [7,8]
succeeded in 2010 to construct the first (and probably unique)
nonlinear fulfillment of the Fierz–Pauli theory that is free of
the Boulware–Deser ghost instability. To achieve this goal the
Lagrangian of gravity was covariantly amended by mass and
polynomial interaction terms with arbitrary coefficients. The

consistency of the theory was investigated in the decoupling
limit, up to the fifth order in the nonlinearities. The ghost-like
pathologies in these interactions cancel for special choices
of the polynomial interactions, and it was suggested that this
result remains true to all orders in the decoupling limit. It
was also pointed out that the mixing between the helicity-
0 and 2 modes can be at most quartic in the decoupling
limit. The problem of the ghosts in the non-linear massive
gravity was analyzed within the ADM formalism in [9–11],
and it was shown that, in the entire two-parameter family
of actions, the Hamiltonian constraint is maintained at the
complete non-linear level. This result implies the absence
of the pathological Boulware–Deser ghost to all orders. In
[12] it was shown that there can be no new Lorentz invariant
kinetic interactions free from the Boulware-Deser ghost in
four dimensions in the metric formulation of gravity, beyond
the standard Einstein–Hilbert, up to total derivatives. By per-
forming a general perturbative analysis in four dimensions,
it follows that the only term with two derivatives that does
not introduce a ghost is the Einstein–Hilbert term. Moreover,
this result extends to all orders in perturbations. For reviews
on the theoretical aspects of massive gravity see [13,14], and
[15], respectively.

The establishment of a firm theoretical foundation of the
massive gravity theory has opened the possibility of the
investigation of its cosmological and astrophysical appli-
cations. The effect of helicity-0 mode which remains elu-
sive after analysis of cosmological perturbation around an
open Friedmann–Lemaitre–Robertson–Walker universe was
investigated in [16] . The non-linear form of the effective
energy-momentum tensor stemming from the mass term was
also derived for the spherically symmetric case. By solving
the spherically symmetric gravitational equations of motion
in vacuum to the linear order, a solution which has an arbitrary
time-dependent parameter was obtained. In general relativ-
ity, this parameter corresponds to the mass of a star. Hence
Birkhoff’s theorem may no longer hold in the non-linear mas-
sive gravity, and the energy can probably be emitted superlu-
minously (with infinite speed) on the self-accelerating back-
ground by the helicity-0 mode.

Homogeneous and isotropic cosmological solutions have
been presented in [17], which suffer from either Higuchi
ghost or a non-linear ghost instability. By relaxing the sym-
metry of the background by e.g. breaking isotropy in the
hidden sector, it is possible to accommodate a stable cosmo-
logical solution. Alternatively, extending the theory to allow
for new dynamical degrees of freedom can also remove the
conditions that lead to the instability. The stability of the
linear perturbations in the bimetric theory was examined in
[18]. Instabilities were presented for several classes of mod-
els, and simple criteria for the cosmological stability of mas-
sive bigravity were derived. A particular self-accelerating
bigravity model, infinite-branch bigravity, which exhibits
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both viable background evolution and stable linear pertur-
bations was also found. In [19] it was shown that by tak-
ing the Planck mass for the second metric to be small, the
instabilities of the bimetric theory describing gravitational
interactions in the presence of an extra spin-2 field can be
moved back to unobservably early times, when the theory
approaches general relativity with an effective cosmologi-
cal constant determined by the spin-2 interaction scale. The
late-time expansion history of the theory becomes extremely
close to the standard �CDM model, with a natural value
for the cosmological constant. In order for the cosmological
perturbations to be stable by Big-Bang nucleosynthesis the
Planck mass for the second metric M f must be smaller than
the electroweak scale.

The scalar gravitational radiation from a binary pulsar sys-
tem in the simplest model that exhibits the Vainshtein mecha-
nism was computed in [20]. The gravitational radiation is less
suppressed relative to its general relativity predictions than
static fifth forces effects within the pulsar system. Spherically
symmetric solutions of the field equations in the dRGT mas-
sive gravity model have also been extensively investigated.
In [21] it was shown that the Schwarzschild–de Sitter and
Reissner–Nordström–de Sitter black hole metrics appear as
exact solutions in the dRGT model, where the mass term sets
the curvature scale. They occur within a two-parameter fam-
ily of dGRT mass terms. In the limit of vanishing graviton
mass they go smoothly to the Schwarzschild and Reissner–
Nordström metrics. Static charged black hole solutions in
nonlinear massive gravity were found in [22], in the parame-
ter space of two gravitational potential parameters (α, β). In
the simplest case with α = β = 0, the solution exhibits the
vDVZ discontinuity but ordinary General Relativity is recov-
ered deep inside the horizon due to the existence of electric
charge. Spherically symmetric solutions in the bigravity for-
mulation of massive gravity were obtained in [23]. The solu-
tions admit both a Lorentz invariant and a Lorentz breaking
asymptotically flat behaviour and also fall in two branches.
In the first branch, all solutions can be found analytically, and
are Schwarzschild-like. In the second branch, Yukawa-like
modifications of the static potential were found. Spherically-
symmetric solutions in massive gravity generated by matter
sources with polytropic equation of state were studied in [24],
in the non-perturbative regime where the mass term non-
linearities are important. A detailed study of the spherically
symmetric solutions in Lorentz breaking massive gravity was
presented in [25]. The stability of the gravitational field by
the analysis of the Komar integral was also discussed. Static
spherically symmetric black hole solutions of dRGT massive
gravity theory in the presence of cosmological constant were
obtained in [26]. The unitary and non-unitary gauges are used
to find the solutions in three, four and five dimensions. Two
general classes of solutions were found, and in the first one
the effect of massive potential appears as the effective cos-

mological constant. The quasi-stationary profile of massive
charged scalar field in a class of charged black hole in dRGT
massive gravity was investigated in [27]. For asymptotically
dRGT anti de Sitter (AdS) black holes, unstable modes have
been found, with their frequency satisfying the condition of
superradiance. The properties of the black holes in massive
gravity theory have been investigated in [28–34].

Relativistic stars in the simplest model of the de Rham–
Gabadadze–Tolley massive gravity, which describes the mas-
sive graviton without ghost propagating mode were studied
in [35]. The modified Tolman–Oppenheimer–Volkoff equa-
tion and the constraint equation coming from the potential
terms in the gravitational action were derived, and analyti-
cal and numerical results for quark and neutron stars were
obtained. The deviations were compared with the corre-
sponding results in standard General Relativity and f (R)

gravity theory, respectively. The dRGT gravity theory leads
to small deviations from the General Relativity in terms of
density profiles and mass-radius relation. The structure of
neutron stars in the context of massive gravity was studied in
[36]. The modifications of hydrostatic equilibrium equation
in the presence of massive gravity have been explored in four
and higher dimensions. The consideration of the effects of the
Massive Gravity gives specific contributions into the struc-
ture of neutron stars. A relation between the mass and radius
of neutron stars versus the Planck mass was also obtained.

The study of the stability of compact objects in the gen-
eral relativistic framework is of central importance for under-
standing the behavior of astrophysical systems such as black
holes or neutron stars. A simple but very powerful stability
criterion was obtained by Buchdahl [37,38], and it gives the
condition for the stability of a compact object with mass M
and radius R as,

2GM

c2R
≤ 8

9
. (1)

The condition given in Eq. (1) is a stability condition in static
spherical symmetry against the collapse of massive objects
in General Relativity. If the condition is not satisfied, the
gravitating object collapses, thus leading to the formation of a
black hole. The equality sign (also called the Buchdahl limit)
corresponds to the case of constant density stars, and gives
the maximum mass-radius ratio for stable massive compact
objects. The Buchdahl upper bound was generalized in [39]
to take into account the effect of the cosmological constant
�. Sharp bounds on the mass-radius ratio were obtained in
[40–42]. For example, in [42] it was shown that if the energy
condition p + 2p⊥ ≤ ρ is satisfied, where p ≥ 0 is the
radial pressure, and p⊥ is the tangential pressure, then the
condition,

GM

c2R
≤ 2

9
− �R2

3
+ 2

9

√
1 + 3�R2, (2)
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must hold. Buchdahl type upper limits for the mass radius
ratio have been obtained for charged particles [43–45], and
for anisotropic stars [46]. In [45] it was shown that for an
object with charge q, if the condition 0 ≤ q2/r2 + �r2 ≤ 1
is satisfied, then the inequality,

Gm

c2r
≤ 2

9
+ q2

3r2

�r2

3
+ 2

9

√

1 + 3q2

r2 + 3�r2, (3)

must hold. Mass-radius ratio bounds were derived for arbi-
trary dimensional spheres in [47], and for Gauss-Bonnet
gravity in [48].

A lower bound of the mass-radius ratio in the presence
of a cosmological constant, as well as a cosmological con-
stant related minimum density was found in [49], and further
explored in [50,51]. These lower bounds can be formulated
as,

2GM

c2R
≥ 1

6
�R2, ρ = 3M

4πR3 ≥ ρ� ≡ �c2

16πG
. (4)

In the case of a charged particle with total charge Q the lower
bound for the mass-radius ratio is given by [51],

M ≥ 3

4

Q2

Rc2 + �R3c2

12G
. (5)

By using the minimum mass-cosmological constant relation,
as well as dimensional analysis [52], one can obtain a repre-
sentation of the cosmological constant in terms of the funda-
mental physical constants as [50,53,54],

� ≈ h̄2G2m6
ec

6

e12 , (6)

where me is the electron mass. For a review of the relation
between fundamental physics and the cosmological constant
see [55].

The mass-radius relations, as well as the possible exis-
tence of a minimum mass have been in different theoreti-
cal contexts, and for different physical models, in [56–61].
The generalized Buchdahl inequalities in arbitrary space-
time dimensions in the presence of a non-zero cosmological
constant were obtained in [56], by considering both the de
Sitter and anti-de Sitter cases. The dependence on the num-
ber of space-time dimensions of the minimum and maximum
masses for stable spherical objects was explicitly obtained.
Bounds for the minimum and maximum mass/radius ratio
of a stable, charged, spherically symmetric compact object
in a D-dimensional space-times were obtained, in the pres-
ence of dark energy, in [57]. By combining the lower mass
bound, in four space-time dimensions, with minimum length
uncertainty relations (MLUR) motivated by quantum grav-
ity, an alternative bound for the maximum charge/mass ratio

of a stable, gravitating, charged quantum mechanical object,
expressed in terms of fundamental constants, was obtained.
This limit leads to the correct order of magnitude value
for the charge/mass ratio of the electron, as required by
the stability conditions. The physical interpretation of the

mass scale
(
h̄2

√
�/G

)1/3
was discussed in [58]. Based on

the Generalized Uncertainty Relation, it was shown that a
black hole with age comparable to the age of the Universe
would stop radiating when the mass reaches a new mass

scale M ′
T = c

(
h̄/G2

√
�
)1/3

. Upper and lower bounds on

the mass-radius ratio of stable compact objects in extended
gravity theories, in which modifications of the gravitational
dynamics are described by an effective contribution to the
matter energy-momentum tensor, were obtained in [59]. The
possibility of a variable coupling between the matter sector
and the gravitational field was considered, and the obtained
results are valid for a large class of generalized gravity mod-
els. As an applications of the obtained formalism compact
bosonic objects, described by scalar-tensor gravitational the-
ories with self-interacting scalar field potentials, and charged
compact objects, respectively, were considered. By assum-
ing a static, spherically symmetric geometry, the strong grav-
ity equilibrium properties of compact hadronic objects were
investigated in [60]. The generalized Buchdahl inequalities
for a strong gravity ‘particles’ were derived, and the upper
and lower bounds of the mass/radius ratio of stable, com-
pact, strongly interacting objects were obtained. The exis-
tence of the lower mass bound is induced by the presence of
the effective cosmological constant, which produces a mass
gap, while the upper bound corresponds to a deconfinement
phase transition. Upper and lower limits for the mass-radius
ratio of spin-fluid spheres in Einstein–Cartan theory in the
presence of a cosmological constant were considered in [61],
under the assumption that matter satisfies a linear barotropic
equation of state. In the case of the spin-generalized strong
gravity model for baryons/mesons, show the existence of
quantum spin imposes a lower mass bound for spinning par-
ticles, which almost exactly reproduces the electron mass.
The mass-radius relations for neutron stars in f (R) and other
modified theories of gravity were investigated in [62–65].

Massive gravity theories are formulated with the help of
a fixed fiducial metric fμν , and the general properties of the
theory depend very much on the choice of the metric fμν .
Therefore, each f -metric gives rise to a different massive
gravity theory. It is the goal of this work to consider the mass-
radius ratio bounds in the framework of the dRGT massive
gravity theory with Lorentz-violating fiducial metric. This
represents a generalization of the previous works on the mass-
radius upper and lower bounds to this interesting approach
to the gravitational force. After writing down the gravita-
tional field equations of dRGT massive gravity, we specialize
our analysis to the case of the spherically symmetric static
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gravitational field. For this particular geometry the hydro-
static equilibrium equations are obtained, which represent
the generalizations of the standard Tolman–Oppenheimer–
Volkoff equation of general relativity, and of the mass conti-
nuity equation, respectively. We investigate through numer-
ical analysis the solutions of these equations for the simple
but theoretically important case of the constant density stars.
The upper and lower bounds for the mass-radius ratios are
obtained, and discussed systematically for the three possi-
ble cases determined by the sign and numerical value of the
parameter γ of the model, which is proportional to the mass
square of the graviton. As possible physical applications of
our results we discuss the corrections to the minimum mass
of particles due to the non-zero graviton mass, as well as the
modifications of the surface redshift of the compact gravita-
tional objects.

The present paper is organized as follows. The field equa-
tions of the dRGT massive gravity model are introduced in
Sect. 2, where the hydrostatic equilibrium equations of com-
pact objects in static spherical symmetry are derived. The
case of the constant density stars is also investigated. The
mass-radius bounds for dense stars are derived in Sect. 3 for
arbitrary values of the model parameter γ . We discuss and
conclude our results in Sect. 4. The rescaling of the metric
function is explained in “Appendix”.

2 Field equations, geometry, hydrostatic equilibrium,
and constant density stars in dRGT massive gravity

2.1 The field equations of dRGT massive gravity with the
Lorentz-violating fiducial metric

We start with the well-known Einstein-Hilbert gravitational
action plus consistent nonlinear interaction terms interpreted
as a graviton mass which is given by [8],

S =
∫

d4x
√−g

1

2κ

[
R + 2κLm + m2

g U(g, φa)

]
, (7)

where κ = 8πG/c4, R is the scalar curvature, Lm is the
matter Lagrangian, and U is a graviton potential with the
parameter mg interpreted as graviton mass. The nonlinear
interaction potential, which is constructed to the fourth order
in the four-dimensional spacetime, is given by,

U(g, φa) = U2 + α3U3 + α4U4, (8)

where the coefficients α3 and α4 are dimensionless free
parameters. The potentials on the second, the third, and the
fourth terms are defined as,

U2 ≡ [K]2 − [K2], (9)

U3 ≡ [K]3 − 3[K][K2] + 2[K3], (10)

U4 ≡ [K]4 − 6[K]2[K2] + 8[K][K3] + 3[K2]2 − 6[K4],
(11)

respectively. The building block tensor is defined as,

Kμ
ν = δμ

ν −
√

gμσ fab∂σ φa∂νφb, (12)

where,

[K] = Kμ
μ, [Kn] = (Kn)μμ. (13)

This choice of interaction eliminates the BD ghost order
by order. We follow the previous works by choosing a simple
form of the fiducial metric to be the Lorentz-violating [66,
67],

fμν = diag(0, 0, λ2, λ2 sin2 θ), (14)

where λ is a constant, and we choose the unitary gauge φa =
xμδaμ for the Stückelberg scalars. In fact, the analysis of [8]
was initially performed for a flat Minkowski f -metric, and
the expression of the potential as introduced in [8], is valid for
such an f metric. On the other hand in [10] it was shown that
the dRGT theory with a generic f -metric is also ghost free,
and this result is valid for the case of the singular metric (14).
It should be emphasized that this choice of fiducial metric is
Lorentz-violating and the resulting massive gravity model is
the Lorentz-violating variation of the dRGT model. The “1-
K” formulation [68] is more convenient to obtain nonlinear
solutions, and it leads more easily to the field equations, as
well as to the parameters of the final solution.

In order to simplify the form of the metric, we will
reparametrize the parameters α3 and α4 to two parameters
α and β, defined by,

α3 = α − 1

3
, α4 = β

4
+ 1 − α

12
. (15)

After varying the total action S = Sg + Sm , where Sm is
the matter action, the modified Einstein field equations in the
presence of the graviton potential are

Gμν − κTμν + m2
gXμν = 0, (16)

where Tμν is the energy-momentum tensor of the matter.
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The effective energy-momentum tensor of massive gravi-
ton, obtained by varying the graviton potential term in the
action, takes the following form [66,67],

Xμν = Kμν − Kgμν

−α

{
K2

μν − KKμν + [K]2 − [K2]
2

gμν

}

+3β

{
K3

μν − KK2
μν + 1

2
Kμν

{
[K]2 − [K2]

}

−1

6
gμν

{
[K]3 − 3[K][K2] + 2[K3]

}}
. (17)

We will assume that the constraint from Bianchi identities
gives separately the covariant derivatives of Tμν and Xμν

equal to zero, according to the equations,

∇μXμν = 0, ∇μTμν = 0. (18)

2.2 The spherically symmetric case

In four space-time dimensions, we consider a static and
spherically symmetric metric of the following form,

ds2 = −n(r)d(ct)2 + dr2

f (r)
+ r2d�2, (19)

where d�2 = dθ2 + sin2 θdφ2.
We will assume that the energy-momentum tensor of the

matter is given by,

Tμ
ν = (ρc2 + P)uμuν + Pδμ

ν , (20)

i.e., by a perfect fluid, characterized by only two thermody-
namic parameters, the matter density ρ, and the thermody-
namic pressure P , respectively, as well as by its four-velocity
uμ, satisfying the normalization condition uμuμ = −1.
In the following we adopt the comoving reference frame,
in which the components of the four velocity are given by
uμ = (−n(r)−1/2, 0, 0, 0

)
.

For the metric given by Eq. (19), the components of Ein-
stein tensor become

Gt
t = f ′

r
+ f

r2 − 1

r2 , (21)

Gr
r = f (rn′ + n)

nr2 − 1

r2 , (22)

Gθ
θ = Gφ

φ

= f ′
(
n′

4n
+ 1

2r

)
+ f

(
n′′

2n
+ n′

2nr
− n′2

4n2

)
, (23)

where a prime denotes the derivative with respect to r . The
components of the effective energy-momentum tensor of the
massive graviton are given by,

Xt
t = −

[
α(3r − λ)(r − λ)

r2 + 3β(r − λ)2

r2 + 3r − 2λ

r

]
,

(24)

Xr
r = −

[
α(3r − λ)(r − λ)

r2 + 3β(r − λ)2

r2 + 3r − 2λ

r

]
,

(25)

X θ
θ = Xφ

φ = α(2λ − 3r)

r
+ 3β(λ − r)

r
+ λ − 3r

r
. (26)

Substitute all components in Eq. (16), the modified Ein-
stein field equations become

f ′

r
+ f

r2 − 1

r2 = m2
g

[
α(3r − λ)(r − λ)

r2 + 3β(r − λ)2

r2

+3r − 2λ

r

]
− 8πG

c2 ρ, (27)

f (rn′ + n)

nr2 − 1

r2 = m2
g

[
α(3r − λ)(r − λ)

r2 + 3β(r − λ)2

r2

+3r − 2λ

r

]
+ 8πG

c4 P, (28)

f ′( n′

4n
+ 1

2r

)
+ f

[n′′

2n
+ n′

2nr
− n′2

4n2

]

= −m2
g

[
α(2λ − 3r)

r
+ 3β(λ − r)

r

+λ − 3r

r

]
+ 8πG

c4 P. (29)

2.3 The hydrostatic equilibrium equations

The functional form of f is obtained from Eq. (27), and can
be expressed as,

f (r) = 1 − 2G

c2

M(r)

r
− �

3
r2 + γ r + ξ, (30)

where,

� = −3m2
g(1 + α + β), (31)

γ = −λm2
g(1 + 2α + 3β), (32)

ξ = λ2m2
g(α + 3β), (33)

and,

M(r) = 4π

r∫

0

ρ(r ′)r ′2dr ′, (34)

respectively, with M(r) representing the total mass inside the
radius r of a spherically symmetric object. The graviton mass
mg is included in the cosmological constant term, namely �,
and the extra terms, γ and ξ , respectively. The coordinate
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r can be rescaled without any loss of generality by setting
ξ = 0 (for details see “Appendix”). Hence, the expression of
f can be written as,

f (r) = 1 − 2G

c2

M(r)

r
− �

3
r2 + γ r. (35)

From the continuity equation,∇μTμν = 0, it follows that,

n′

n
= − 2P ′

ρc2 + P
. (36)

By substituting Eqs. (35) and (36) in Eq. (28), the TOV
equation in the presence of a massive graviton in the dRGT
massive gravity theory can be obtained as,

dP

dr
= −

(ρc2 + P)
[(

8πG
c4 P − 2

3�
)
r3 + γ r2 + 2G

c2 M(r)
]

2r2
[
1 − 2G

c2
M
r − �

3 r
2 + γ r

] .

(37)

In order to obtain the structure of stars the hydrostatic
equilibrium equation (37) must be integrated together with
the mass continuity equation,

dM(r)

dr
= 4πρr2, (38)

after the equation of state of the matter, P = P(ρ), was
specified. The boundary conditions that must be imposed at
the center and on the surface of the star are ρ(0) = ρc, and
P(R) = 0, where ρc is the central density, and R is the radius
of the compact object.

The hydrostatic equilibrium and the mass continuity equa-
tions can be written in a dimensionless form with the help of
the set of the dimensionless quantities (η, θ,�), defined as,

r = aη, M = M∗μ, ρ = ρcθ, P = ρcc
2�, (39)

where,

a = c√
4πGρc

, M∗ = 4πρca
3 = c3

√
4πG3ρc

. (40)

In the new variables the mass continuity and the hydro-
static equilibrium equations take the form,

dμ

dη
= θη2, (41)

d�

dη
= −

(θ + �)
[
(� − ψ) η3 + ση2

2 + μ
]

η2
(

1 − 2μ
η

− ψη2 + ση
) , (42)

where we have denoted,

ψ = �

3
a2 = �c2

12πGρc
, σ = γ a = γ c√

4πGρc
. (43)

In order to close the system of Eqs. (41) and (42) one must
specify the equation of state of the matter � = �(θ). The
boundary conditions for the integration of the system are
θ(0) = 1 and �(ηS) = 0, where ηS defines the vacuum
boundary of the compact object.

2.4 Constant density stars in Lorentz-violating dRGT
massive gravity

Constant density stars can give in some astrophysical cir-
cumstances an acceptable physical description of realistic
astrophysical objects. Moreover, they are important from the-
oretical point of view since they allow some insights into the
general properties of the relativistic compact objects. In the
following we will investigate the properties of the constant
density stars in dRGT massive gravity.

The requirement of the constant density ρ = ρc =
constant,∀r ∈ [0, R] fixes the dimensionless density θ as
θ = 1 inside the star. Then Eq. (41) can be immediately inte-
grated to give the dimensionless mass density distribution as,

μ(η) = η3

3
. (44)

Substituting this expression of the mass into the hydrostatic
equilibrium equation (42) it follows that the pressure � obeys
the first order differential equation given by,

d�

dη
= −

η (1 + �)
(
� − ψ + 1

3 + σ
2η

)

1 − ( 2
3 + ψ

)
η2 + ση

. (45)

Equation (45) must be integrated with the boundary condi-
tions �(0) = �c, and �(ηS) = 0. The variations of the
dimensionless pressure profile inside the constant density
star in massive gravity theory are presented for positive and
negative numerical values of σ in Figs. 1 and 2, respectively.

As one can see from Fig. 1, the vanishing of the pres-
sure at the vacuum boundary of the star is dependent on
the adopted values of the positive dimensionless param-
eter σ . In the general relativistic case, corresponding to
ψ = σ = 0, the (dimensionless) radius of the star is given
by ηS = 1.06, while ηS = 1.10, 1.12, 1.11, 1.09, and 1.06
for σ = 0.25, 0.50, 0.75, 1.00, and 1.25, respectively. This
implies an increase at first, and then a decrease in the radius
of the star with increasing σ and for the fixed value ψ = 0.06.

On the other hand, Fig. 2 shows the pressure profile inside
the sphere for negative σ . A remarkable feature is the increase
of pressure near the central region of the sphere. It can be
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η

η

Fig. 1 Variation of the dimensionless pressure � as a function of the
dimensionless radial coordinate η for a constant density star in dRGT
massive gravity theory for ψ = 0.06, and different values of σ : σ =
0.25 (dotted curve), σ = 0.50 (dashed-dotted curve), σ = 0.75 (short
dashed curve), σ = 1 (dashed curve), and σ = 1.25 (long dashed
curve). For the sake of comparison we have also presented the standard
general relativistic case, corresponding to ψ = σ = 0 (solid curve). The
boundary condition used to integrate the TOV equation are �(0) = 1,
and � (ηs) = 0, respectively

0.0 0.2 0.4 0.6 0.8 1.0
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Fig. 2 Variation of the dimensionless pressure � as a function of the
dimensionless radial coordinate η for a constant density star in dRGT
massive gravity theory for ψ = 0.06, and different values of σ : σ =
−0.05 (dotted curve), σ = −0.25 (dashed-dotted curve), σ = −0.50
(short dashed curve), σ = −0.75 (dashed curve), σ = −1 (long dashed
curve), andσ = −1.25 (long dashed-double dotted curve). The standard
general relativistic case also corresponds to ψ = σ = 0 (solid curve)

shown that this is generic for any negative value of σ . For
sufficiently small η, the term −σ/2η in Eq. (45) becomes
dominant and,

d�

dη

 − (1 + �)

(σ

2

)
. (46)

Consequently, for sufficiently small η and negative (positive)
σ , �(η) is always an increasing (decreasing) function.

At first sight, the increase of the pressure with radius for
small η seems to imply the existence of an instability of this
spherical configuration around the center. The reason is we

normally need pressure force (∝ −�∇P) to exert outward to
balance inward gravitational attractive force. However, for
sufficiently small η, the force of gravity in the massive gravity
model with negative σ (or γ ) actually is always repulsive,
i.e. antigravity. We can prove this statement by the following.
Generically, the gravity force (per mass) from the massive
gravity metric is given by,

− f ′(r) = 8πGr

c2 (ρ(r) − ρ̄(r)

3
) + 2�r

3
− γ. (47)

For sufficiently small r , the dominant term is the constant
force from massive gravity contribution γ . If γ < 0, this
force is repulsive, i.e. exerting outwardly from the center of
the sphere. Note also that for sufficiently large r , another
repulsive “cosmological constant” term becomes dominant.

From Eq. (47) when γ < 0, the critical radius rc where
gravity changes from repulsive in r < rc region to attractive
in r > rc region is given by f ′(rc) = 0 (for constant density
profile, there is no rc, gravity is always repulsive through-
out the object). On the other hand, Eq. (37) tells us that the
pressure is an increasing function of radius until,

8πG

c4 Pr = 2�r

3
− γ − 2GM

c2r2 ,

= −8πG

c2 ρr − f ′(r), (48)

then it will start to decrease with respect to r . Therefore, the
region of increasing pressure will always be accompanied
by antigravity with positive − f ′(r) force until − f ′(r) =
8πG(P+ρc2)r/c4 where the pressure starts to decrease with
r while gravity is still repulsive. Beyond this radius, the pres-
sure force becomes repulsive while gravity is still repulsive
thus we have instability of the spherical shell. Interestingly,
the static sphere in the negative γ scenario is stable with
repulsive gravity balancing inward pressure gradient force!
The radius of the stable compact object in this case is then
given by Eq. (48). Having high pressure boundary and vac-
uum outside requires high surface tension for such object to
be truly stable under dissipation.

Another interesting possibility of static configuration in
negative γ scenario is the halo or spherical shell. This can
only occur when ρ is not constant as we can see from Eq. (47).
For r > rc in generic profile, Eq. (37) guarantees that the
pressure gradient force is outward balancing the attractive
gravity. A static halo with inner radius larger than rc is thus
stable.

In physical units the radius of the constant density compact
objects in dRGT massive gravity Theory (for σ ≥ 0) is given
by,

R = 10.362 ×
(

ρc

1015 g/cm3

)−1/2

× ηS km. (49)
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Fig. 3 Variation of the dimensionless mass μ as a function of the
dimensionless radial coordinate η for a constant density star in dRGT
massive gravity theory

Hence the mass effects associated to the possible existence
of the graviton may change the mass of a neutron star with
a central density of the order of ρc = 1015 g/cm3 from
R ≈ 11.0 km, a value corresponding to the standard general
relativistic case, to R ≈ 11.6 km, for ψ = 0.06 and σ =
0.50.

The interior mass profiles of these models are presented
in Fig. 3.

For constant density stars all the interior mass profiles
follow the same law, μ = η3/3. The physical maximum
mass MS of the constant density star can be obtained as,

MS = M∗μ (ηS) = 2.33 ×
(

ρc

1015 g/cm3

)−1/2

× η3
S M�.

(50)

Hence the mass of a constant density star can vary from
MS = 2.78M� for ψ = σ = 0, corresponding to the general
relativistic case, to MS = 3.27M�, corresponding to ψ =
0.06 and σ = 0.50.

3 The Buchdahl limits in the Lorentz-violating dRGT
massive gravity

We introduce now the generalized Buchdahl variables
(x, ω, ζ, y), defined as follows,

x = r2, ω(r) = G

c2

M(r)

r3 , ζ = n1/2, (51)

y2 = f (r) = 1 − 2ω(r)r2 − �

3
r2 + γ r. (52)

Then Eqs. (36) and (37) can be rewritten as,

1

ζ

dζ

dx
= − 1

ρc2 + P

dP

dx
↔ d

dx
(ζ P) = −ρc2 dζ

dx
, (53)

and,

dP

dx
= − (ρc2 + P)

y2

[
2πG

c4 P − �

6
+ γ

4
x−1/2 + ω

2

]
, (54)

respectively. By using the above equations, in terms of new
variables, we obtain,

d

dx

(
y
dζ

dx

)
− 1

2

ζ

y

dω

dx
+ γ

8

ζ

y
x−3/2 = 0. (55)

We will introduce a new independent variable �, obtained
by changing the derivative 2y(d/dx) → d/d�, and defined
as,

�(r) =
∫ r

0
r ′
[

1 − 2G

c2

M(r ′)
r ′ − �

3
r ′2 + γ r ′

]− 1
2

dr ′, (56)

with �(0) = 0. We define the mean density of the star as,

ρ̄ = M(r)
4
3πr3

. (57)

Both the local density ρ and the mean density ρ̄ are required
to be decreasing functions of r inside the spherically sym-
metric object. The requirement that the matter density is a
decreasing function throughout the star implies that,

d

dr

(
M(r)

r3

)
< 0, (58)

leading to dω/dx < 0.

3.1 Mass-radius bounds in dRGT massive gravity for
compact objects for γ > 0

As a first case in the analysis of the mass-radius bounds in
dRGT massive gravity we assume the condition that γ > 0.
Then for the function ζ we obtain immediately the following
constraint,

d2ζ

d�2 < 0. (59)

This condition must hold for all points inside the vacuum
boundary of the compact spherically symmetric object. By
using the mean value theorem, we obtain the inequality,

dζ

d�
≤ ζ(�) − ζ(0)

� − 0
≤ ζ(�)

�
. (60)

Since ζ(0) > 0, it follows that,

1

ζ

dζ

d�
≤ 1

�
. (61)
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We introduce now the new function α(r), defined as,

α(r) = 1 − c2r

2GM

(
−�

3
r2 + γ r

)
. (62)

This leads to,

y2 = 1 − 2G

c2

M(r)

r
α(r). (63)

By using the condition (58), for all r ′ < r we obtain the
inequality,

M(r ′)
r ′3 ≥ M(r)

r3 , r ′ < r. (64)

Furthermore, we will assume that inside the star the following
condition,

α(r ′)M(r ′)
r ′ ≥ α(r)

M(r)

r

(
r ′

r

)2

, (65)

also holds. The above inequality follows directly from the
requirement,

d

dr

(
α(r)

M(r)

r3

)
< 0, (66)

leading to,

γ <
8πG

c2 (ρ̄ − ρ)r, r < R, (67)

which is valid for all r < R where R is the radius of the com-
pact spherically symmetric object. From Eq. (65), it follows
that,

[
1 − 2G

c2

M(r ′)α(r ′)
r ′

]− 1
2 ≥

[
1 − 2G

c2

M(r)α(r)

r3 r ′2
]− 1

2

.

(68)

Therefore, the right-hand side of inequality (61) is bounded
by,

{∫ r

0
r ′
[

1 − 2G

c2

M(r ′)α(r ′)
r ′

]− 1
2

dr ′
}−1

≤ 2G

c2

M(r)α(r)

r3

[

1 −
√

1 − 2G

c2

M(r)α(r)

r

]−1

. (69)

The left-hand side of inequality (61) can be rewritten with the
use of Eqs. (53) and (54), and thus we eventually obtain the

generalized Buchdahl inequality for dRGT massive gravity,
in the form,

(
4πG

c4 P − �

3

)
r2 + G

c2

M(r)

r
+ γ

2
r ≤ y(1 + y). (70)

This relation is valid for r ∈ [0, R]. The upper bound of
the mass-radius ratio follows by estimating the generalized
Buchdahl inequality at the vacuum boundary of the compact
object, where r = R, P(R) = 0, and M(R) = M , respec-
tively. Then it follows that,

GM
c2R

+ γ R
2 − �R2

3√
1 − 2GM

c2R
− �R2

3 + γ R
≤

2GM
c2R

+ �R2

3 − γ R

1 −
√

1 − 2GM
c2R

− �R2

3 + γ R
,

(71)

or in an alternative form,

3G

c2

M

R
≤
√

1 − 2G

c2

M

R
− �

3
R2 + γ R + 1 + γ

2
R. (72)

For convenience, the physical variables in the above inequal-
ity are redefined by introducing the dimensionless quantities,

u := G

c2

M

R
, a := �

3
R2, b := γ R. (73)

Consequently, the inequality (72) becomes,

3u − 1 − b

2
≤ √

1 − 2u − a + b. (74)

In order to find the lower and upper bounds on the mass/radius
ratio, we would square the inequality to get rid of the square
root. However, this can be done only when the Left Hand
Side of (74) is bounded from below, i.e. |3u − 1 − b/2| ≤√

1 − 2u − a + b. Since the Left Hand Side is always nega-
tive for sufficiently small u (for large u, the Left Hand Side
is positive and squaring is justified naturally), the inequality
is trivially satisfied and there is no lower bound on u.

However, there is an additional physical condition to be
imposed here. For the matter sphere to exist physically, we
need the matter pressure to compensate for the pressure from
the cosmological constant or the pressure generated by the
massive gravity in this case, i.e.,

Ptotal = P + P� ≥ 0, (75)

is required inside the sphere. For negative P�, this condition
implies positive matter pressure P . The equation of state of
matter thus demands the matter density ρ ≥ −P�/wc2 > 0
and consequently,

ρ̄ = 3M/4πR3 � �c2/8πG, (76)
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inside the sphere. Since u = 4πGρ̄R2/3c2, the condition
|3u − 1 − b/2| ≤ √

1 − 2u − a + b is valid when

ρ̄ ≥ 1

2

�c2

8πG
, (77)

and for small u, a, and b, respectively. This is always true for
the condition (76) above, therefore squaring the inequality is
justified.

By reorganizing the above relation, we obtain,

9u2 − (4 + 3b)u +
(
b2

4
+ a

)
≤ 0, (78)

or, equivalently,

(u − u1)(u − u2) ≤ 0, (79)

where,

u1 = 4 + 3γ R

18

⎡

⎣1 −
√

1 − 3
(
3γ 2 + 4�

)
R2

(4 + 3γ R)2

⎤

⎦ , (80)

u2 = 4 + 3γ R

18

⎡

⎣1 +
√

1 − 3
(
3γ 2 + 4�

)
R2

(4 + 3γ R)2

⎤

⎦ . (81)

Hence, under the condition γ > 0, in the presence of massive
graviton, the mass-radius ratio of compact objects is bounded
by,

4 + 3γ R

9

⎡

⎣1 −
√

1 − 3
(
3γ 2 + 4�

)
R2

(4 + 3γ R)2

⎤

⎦

≤ 2GM

c2R
≤ 4 + 3γ R

9

⎡

⎣1 +
√

1 − 3
(
3γ 2 + 4�

)
R2

(4 + 3γ R)2

⎤

⎦ .

(82)

The validity of this inequality demands that the value in the
square root be greater than zero, a requirement which leads
to the constraint,

� <
4 + 6γ R

3R2 . (83)

Nontrivial (positive) lower bounds do exist only when the
fraction in the square root is greater than zero, which gives
another constraint for the negative � case,

γ >

√

−4�

3
,� < 0, (84)

whilst it is trivially satisfied for � > 0 as long as (83) is
valid.

3.2 Mass-radius ratios in the presence of a cosmological
constant only: the case γ = 0

For the case γ = 0, Eq. (82) leads to the condition for the
existence of a lower and an upper mass-radius bound, which
is given by,

4

9

[

1 −
√

1 − 3

4
�R2

]

≤ 2GM

c2R
≤ 4

9

[

1 +
√

1 − 3

4
�R2

]

.

(85)

This relation implies the existence of a minimum mass/radius
ratio for a matter particle, which is induced by the presence
of a cosmological constant, as shown first in [49]. The exis-
tence of � also determines modifications of the Buchdahl
upper limit of general relativity [39]. The generalized Buch-
dahl inequality (85) gives a nontrivial solution only when the
condition,

0 < � <

(
4

3

)
R−2, (86)

corresponding to a Schwarzschild-de Sitter type geometry,
is satisfied.

3.3 Mass-radius bounds in dRGT massive gravity for dense
stars for γ < 0

For the case γ < 0, we can write the generalized Buchdahl
equation for spherically symmetric objects in the following
form,

y(yζ ′)′ = 1

2
ω′ζ + |γ |

8

ζ

x3/2 . (87)

Subsequently, we introduce four new variables �,ψ, η and
z, defined as,

�(r) ≡ |γ |
8

ζ

r2 , (88)

ψ = ζ − η, (89)

where,

η = 4
∫ r

0

(∫ r1

0

�(r2)√
1 − �(r2)

r2

dr2

)
r1√

1 − �(r1)
r1

dr1, (90)

while the last variable z is given by,

dz = 1

y(x)
dx → z(r) =

∫ r

0

2r ′
√

1 − �(r ′)
r ′

dr ′. (91)
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The function �(r) is obviously defined by,

y2 = 1 − �(r)

r
, (92)

where,

�(r) = 2GM(r)

c2 + �

3
r3 + |γ |r2. (93)

In terms of the new variables defined above, the Buchdahl
equation Eq. (87) can be written as,

d2ψ(z)

dz2 = 1

2
ω′(x)ζ(x). (94)

We assume first the condition that, for r ′ < r ,

�(r ′)
r ′ ≥ �(r)

r

(
r ′

r

)2

, r ′ < r, (95)

and use the assumption that the density inside the object does
not increase with r in the above relation. Finally, the above
assumptions lead to the condition,

|γ | > −8πG

c2 (ρ̄ − ρ)r, (96)

which is valid for all r ≤ R as long as the matter density is
a decreasing function of the radial coordinate r . Next, as a
second condition we assume that for r ′ < r ,

�(r ′) ≥ �(r), (97)

that is, �(r) is a decreasing function of r . This condition
leads to a constraint on |γ | given by,

|γ | <
4

3r
− 40πG

9c2 ρ̄r + 2

9
�r − 8πG

3c4 Pr. (98)

This relation is trivially valid for r → 0, and at the surface
r = R it gives a constraint,

|γ | <
4

3R
− 10G

3c2

M

R2 + 2

9
�R. (99)

Alternatively, it can be written with the help of the dimen-
sionless parameters already defined in Eq. (43) as,

σ > − 4

3η
+ 10

9
η − 2

3
ψη. (100)

For example, when ψ is equal to 0.06, all cases with
σ = −0.05,−0.25,−0.50,−0.75,−1, and −1.25 satisfy
this condition at the surface.

From the condition ω′(x) < 0, we obtain the inequality,

d2

dz2 ψ(z) < 0, (101)

which holds for all r in the range 0 ≤ r ≤ R. Again, by
using the mean value theorem, we find,

dψ

dz
≤ ψ(z) − ψ(0)

z
≤ ψ(z)

z
. (102)

Since ψ(0) = ζ(0) − η(0) = ζ(0) > 0, it follows that,

dψ

dz
≤ ψ(z)

z
→ dζ

dz
− dη

dz
≤ ζ − η

z
. (103)

After substituting the new variables (90) and (91) in the above
relation, we obtain,

1

2r

√

1 − �(r)

r

dζ

dr
− 2

∫ r

0

�(r ′)
√

1 − �(r ′)
r ′

dr ′

≤ 1

2
∫ r

0
r ′

√
1− �(r ′)

r ′
dr ′

⎡

⎣ζ − 4
∫ r

0

r1√
1 − �(r1)

r1

×
⎛

⎝
∫ r1

0

�(r2)√
1 − �(r2)

r2

dr2

⎞

⎠ dr1

⎤

⎦ . (104)

The denominator of the right-hand side of Eq. (104) is
bounded from above as a result of using the condition, (95).
Hence we have,

⎛

⎝
∫ r

0

r ′
√

1 − �(r ′)
r ′

dr ′
⎞

⎠

−1

≤ �(r)

r3

(

1 −
√

1 − �(r)

r

)−1

.

(105)

As for the term related to �, it is also bounded as a con-
sequence of the conditions (95) and (97), such that,

∫ r

0

�(r ′)
√

1 − �(r ′)
r ′

dr ′ ≥ �(r)
∫ r

0

(
1 − �(r)

r

(
r ′

r

)2)− 1
2

dr ′

= �(r)

(
�(r)

r3

)− 1
2

arcsin

(√
�(r)

r

)
.

(106)

Hence the term in the numerator on the right-handed side of
Eq. (104) has a lower bound, which can be obtained as,
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∫ r

0

r1√
1 − �(r1)

r1

(∫ r1

0

�(r2)√
1 − �(r2)

r2

dr2

)
dr1

≥
∫ r

0
r1

(
1 − �(r1)

r1

)− 1
2

⎛

⎜⎜
⎝

�(r)
(

�(r)
r3

) 1
2

arcsin

(√
�(r)

r

)
⎞

⎟⎟
⎠ dr1

≥
∫ r

0
r1

(
1 − �(r)

r3 r2
1

)− 1
2

⎛

⎜⎜
⎝

�(r)
(

�(r)
r3

) 1
2

arcsin

(√
�(r)

r

)
⎞

⎟⎟
⎠ dr1

=
⎛

⎝
1 −

√
1 − �(r)

r
�(r)
r3

⎞

⎠ �(r)
(

�(r)
r3

) 1
2

arcsin

(√
�(r)

r

)

= �(r)
(

�(r)
r3

) 3
2

[

arcsin

(√
�(r)

r

)

−
√

1 − �(r)

r
arcsin

(√
�(r)

r

)]

≥ �(r)
(

�(r)
r3

) 3
2

[√
�(r)

r
−
√

1 − �(r)

r
arcsin

(√
�(r)

r

)]

, (107)

where we have used the identity arcsin x ≥ x . Subsequently,
we insert the inequalities (105), (106) and (107) into
Eq. (104) and use the relation y2 = 1−�(r)/r . Afterwards,
we obtain,

y

r

dζ

dr
≤ 1 + y

r2

⎡

⎣ζ(r) − 4�(r)r3

⎛

⎝ 1

1 − y2 −
y arcsin

(√
1 − y2

)

(1 − y2)3/2

⎞

⎠

⎤

⎦

+4�(r)
r

√
1 − y2

arcsin

(√
1 − y2

)
. (108)

Since for ordinary matter the energy condition ρc2 + P ≥ 0
always holds, it allows us to replace 1/ζ with 1/y, such that,
(

4πG

c4 P − �

3

)
r2 + G

c2

M(r)

r
− |γ |

2
r

≤ y(1 + y) + 4�(r)r3

1 − y

⎛

⎝
y arcsin

(√
1 − y2

)

√
1 − y2

− 1

⎞

⎠

+4�(r)r3
arcsin

(√
1 − y2

)

√
1 − y2

≤ y(1 + y) + 4r3 �(r)

y
,

(109)

where we have also used the relation,

arcsin

(√
1 − y2

)
≤
√

1 − y2

y
. (110)

Hence we have obtained the Buchdahl inequality for the
mass-radius ratio of a compact object in dRGT massive grav-
ity theory for the case γ < 0. This inequality is valid for all
values of the radial coordinate inside the star, r ∈ [0, R]. The
upper and lower bounds on the mass-radius ratio are deter-
mined by considering the Buchdahl inequality at the surface

of the object, where r = R, P(R) = 0 and M(R) = M ,
respectively. Then it follows that,

3G

c2

M

R
≤
√

1 − 2G

c2

M

R
− �

3
R2 − |γ |R + 1. (111)

For convenience, the variables in the above inequality are
redefined as follows,

u = G

c2

M

R
, a = �

3
R2, b = |γ |R. (112)

Consequently, the inequality (111) becomes,

3u ≤ √
1 − 2u − a − b + 1. (113)

After squaring and simplifying the above relation, we obtain,

u2 − 4u

9
+ (a + b)

9
≤ 0, (114)

or, equivalently,

(u − u−)(u − u+) ≤ 0, (115)

where,

u± = 2

9

[

1 ±
√

1 − 3 (�R + 3|γ |) R
4

]

. (116)

Hence we have obtained the following lower and upper
bounds for the mass-radius ratio of compact objects in dRGT
massive gravity,

4

9

[

1 −
√

1 − 3 (�R + 3|γ |) R
4

]

≤ 2GM

c2R

≤ 4

9

[

1 +
√

1 − 3 (�R + 3|γ |) R
4

]

.

(117)

The inequality demands the value in the square root greater
than zero which leads to a constraint,

|γ | <
4

9R
− �

3
R. (118)

A nontrivial (positive) lower bound in this case exists only
when the fraction in the square root is greater than zero giving
another constraint,

|γ | > −�

3
R. (119)
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4 Discussions and final remarks

Massive gravity is an interesting theory of gravitation,
inspired by the quantum field theoretical approach to gravity,
and which assumes a non-zero mass of the quanta intermedi-
ating the gravitational interaction, the graviton. Despite the
initial many complicated theoretical problems raised by this
approach, a consistent formulation proposed in [7,8] seems
to offer the possibility of an alternative to standard general
relativity, which allows us to go beyond the theoretical limits
imposed by Einstein’s theory. The dRGT model of massive
gravity is ghost-free, and, at least at the classical level, it
has strictly five (or seven in the bimetric case) gravitational
degrees of freedom [9–11]. However, when applied to cos-
mology, it turns out that the theory with Minkowski fiducial
metric does not have flat and closed Friedmann-Lemaitre-
Robertson-Walker solutions [69]. In the context of the very
early Universe cosmology, that is, during inflation, the prop-
agation of the gravitational waves would also be affected by
the non-trivial mass of the graviton [70–73].

In the present paper we have investigated in the frame-
work of Lorentz-violating dRGT massive gravity theory an
important property of compact general relativistic objects,
namely, their mass-radius ratio bounds, which are impor-
tant indicators of their stability properties. These bounds can
be obtained from the generalized Buchdahl inequality, from
which the existence of a minimum value of this ratio, as well
as an upper stability limit do follow. In order to obtain the
mass-radius ratio bounds we have adopted a specific form
for the g11 component of the metric tensor, in which the cor-
rections to the standard Schwarzschild-de Sitter geometry
are represented by a correction term of the form γ r , where
the coefficient γ , proportional to the graviton mass square,
gives the new contribution coming from the ghost-free mas-
sive gravity. After adopting the functional form of the metric,
we have obtained the basic equations describing the hydro-
static equilibrium properties of high density stars. As com-
pared to the standard general relativistic case, a new term of
the form γ r2, depending on the mass of the graviton, does
appear in the TOV equation. We have first investigated the
role this term may play in the description of stellar proper-
ties for the case of constant density stars. In some astrophys-
ical situations the assumption of constant density may give
a good description of the global parameters of high density
objects. As opposed to the standard general relativistic case,
in dRGT massive gravity theory there is no exact solution
of the gravitational field equations, and hence a numerical
investigation is required. The pressure distribution inside the
star, and consequently its radius, shows a significant theoreti-
cal dependence on the numerical values of the dimensionless
parameter σ , constructed from γ , the density of the star, and
the fundamental constants of physics.

We also explored the stability of a static sphere in dRGT
massive gravity model. Interestingly, the linear term γ r in the
metric has a crucial role in the stability condition. When γ

is negative, the massive-gravity TOV equation demonstrates
the universal gravitational stability of a static sphere between
repulsive gravity and inward pressure gradient force in con-
trast to the conventional gravitational stability of compact
object. Such object, however, requires high surface tension to
maintain the high pressure boundary condition. Interestingly
enough, stable static hollow spheres or halo configurations
are also possible for the γ < 0 case as long as the inner
radius is larger than the turnover radius rc of gravity.

We have obtained, and investigated in detail the Buchdahl
inequality for both a positive and negative γ (the case γ = 0
reduces the model to the standard general relativistic case). In
the case γ > 0, the Buchdahl inequality implies the existence
of an absolute minimum particle mass, which is given by,

2GM

c2R
≥ γ 2

8

(
1 + 4�/3γ 2

)
R2

(1 + 3γ R/4)
, γ > 0. (120)

Alternatively, this relation can be formulated in terms of an
absolute minimum density ρmin , so that the density ρ =
3M/4πR3 of any matter configuration must satisfy the con-
straint,

ρ ≥ ρmin ≡ 3c2γ 2

64πG

(
1 + 4�/3γ 2

)

(1 + 3γ R/4)
, γ > 0. (121)

However, the minimum density is radius-dependent, and the
above inequality can also be interpreted as a matter density-
radius relation. It is important to mention that a lower limit
for the mass does exist in massive gravity even in the absence
of the cosmological constant, when � = 0. In this case we
have,

2GM

c2R
≥ γ 2

8

R2

(1 + 3γ R/4)
, γ > 0, (122)

and,

ρ ≥ ρmin ≡ 3c2γ 2

64πG

1

(1 + 3γ R/4)
, γ > 0, (123)

respectively. Therefore there is a straightforward relation
between the minimum mass an elementary particle can have,
and the mass of the graviton. If a quantum of gravity does
exist, its existence would impose a strong limit on the mini-
mum mass a particle can have. From a physical point of view
one can assume that it is the graviton mass that determines the
gravitational mass of the elementary particles, and mediates
their gravitational interactions.
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A very different minimum mass expression is obtained in
the case γ < 0 . From Eq. (117) we immediately obtain,

2GM

c2R
≥ |γ | (1 + �R/3|γ |) R

2
, γ < 0. (124)

As for the particle mass density, it satisfies a lower bound
given by,

ρ ≥ ρmin ≡ 3c2|γ |
16πG

(1 + �R/3|γ |)
R

, γ < 0. (125)

Similarly to the γ > 0 case, a minimum mass does exist even
in the absence of the cosmological constant, � = 0, and it is
given by,

2GM

c2R
≥ |γ |R

2
, γ < 0. (126)

A similar relation is obtained if the condition �R/3|γ | << 1
is satisfied for all R. As for the minimum matter density, it
is given by a relation of the form,

ρmin ≡ 3c2|γ |
16πGR

, γ < 0. (127)

As for the upper bounds of the mass-radius ratios of the
compact stars in massive gravity, they are given by,

2GM

c2R
≤ 4

9

(
1 + 3γ R

4

)

×
[

2 − 9γ 2
(
1 + 4�/3γ 2

)
R2

32 (1 + 3γ R/4)2

]

, γ > 0, (128)

and

2GM

c2R
≤ 4

9

[
2 − 3 (�R + 3|γ |) R

8

]
, γ < 0. (129)

In both cases in the limit γ = 0, � = 0, the corre-
sponding expressions reduce to the standard Buchdahl limit
2GM/c2R ≤ 8/9.

The existence of upper/lower bounds of the mass-radius
ratio for compact objects also leads to the existence of some
limiting values for other physical and geometrical quanti-
ties of observational interest. One such important quantity
is the surface red shift z of the high density star, which
can be defined in the massive gravity effects corrected
Schwarzschild-de Sitter geometry as

z ≡ 1√
f (r)

−1 = 1
√

1 − 2GM(r)/c2r − �r2/3 + γ r
−1.

(130)

We consider first the case γ > 0. Then, from Eq. (71), written
as

1

y

[
−�

3
R2 + GM

c2R
+ γ R

2

]

≤ 1

1 − y

[
2GM

c2R
+ �

3
R2 − γ R

]
, (131)

we obtain

z ≤ 2GM/c2R − γ R + �R2/3

GM/c2R + γ R/2 − �R2/3
. (132)

In the case γ ≡ 0 and � ≡ 0, we reobtain the standard
general relativistic gravitational redshift restriction z ≤ 2.
Alternatively, the redshift bound can be reformulated as

z ≤ 2
[
1 − (c2/8πGρ̄

)
(3γ /R − �)

]

1 + (c2/8πGρ̄
)
(3γ /R − 2�)

. (133)

Hence, at least in principle, observations of the gravitational
redshift from compact high density astrophysical objects may
offer the possibility of discriminating between massive grav-
ity and other modified theories of gravity.

To conclude, in the present paper we have investigated
some of the implications of the dRGT massive gravity the-
ory with Lorentz-violating fiducial metric, which are rele-
vant at both microscopic and macroscopic scale. The results
obtained in the present analysis may provide some insights
for the possible experimental/observational testing of this
particular class of massive gravity theory at both elementary
particle and astrophysical levels, as well as on its theoretical
foundations.
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Appendix: Rescaling of the metric and the value of ξ

The vacuum spherically symmetric metric f in massive grav-
ity is given by Eq. (30), and has the form

f (r) = 1 − 2G

c2

M

r
− �

3
r2 + γ r + ξ. (134)

We can rescale the coordinate r by setting

r ′ = r/
√

1 + ξ, (135)

leading to

ds2 = −n(r ′)d(ct)2 + dr ′2

1 − 2G
c2

M(r ′)
r ′ − �

3 r
′2 + γ√

1+ξ
r ′

+r ′2(1 + ξ)d�2. (136)

By considering a small spherical surface, its area is given
by 4π(1 + ξ)r ′2. However, the surface of the sphere with
radius ranging from Solar System scales up to extragalactic
or cosmological scale is very close to 4πr2, i.e., the Universe
is spatially flat. Therefore, we set the value of ξ to be zero.
Accordingly, the metric f becomes

f (r) = 1 − 2G

c2

M

r
− �

3
r2 + γ r. (137)

Nevertheless, with the use of Eq. (33) it follows that the
value ξ = 0 leads to the condition α = −3β. This condition
affects both γ and �, but γ also depends on λ. Consequently,
γ and � are the two remaining independent parameters in
the metric.
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